高分子材料制备方法

合集下载

新型功能性高分子材料的制备与应用

新型功能性高分子材料的制备与应用

新型功能性高分子材料的制备与应用随着现代科技的不断发展,新型功能性高分子材料的研制和应用已经成为一个热门领域。

随着经济的迅速发展,精细化、高效化、智能化的高分子材料不断涌现,成为人类生产、生活中不可或缺的一部分。

本文将重点探讨新型功能性高分子材料的制备与应用。

一、新型功能性高分子材料的制备方法1.聚合反应法聚合反应法是制备高分子材料的最常用方法,通过单体之间的共价键进行成链,形成线性、交联、支化等复杂的结构。

催化聚合和引发聚合是聚合反应法的两类主要方法。

现代高分子材料领域中采用的催化聚合方法主要是有机过氧化物成为的引发剂,如二苯钴、双(三甲基锡)二过氧化物等。

2.物理吸附法物理吸附法是指将功能性基团带有吸附性能的低分子化合物吸附在高分子材料表面形成复合材料,以提高高分子材料的特性。

物理吸附法的制备条件较为温和,不需要使用高温和高压,很好地保留了高分子材料的结构和性能。

3.化学修饰法化学修饰法是指利用化学反应在高分子材料与其他分子之间形成化学键,从而改变材料的物理、化学和生物性质。

化学修饰法不仅可以增强高分子材料的结构稳定性和力学性能,还可以赋予它特定的化学性质,例如亲水性、亲油性等,拓展其应用范围。

二、新型功能性高分子材料的应用1.医学领域高分子材料在医学领域中应用广泛,例如制备生物质谱检测芯片、生物传感器、人工关节、缓释药物等。

2.环保领域高分子材料在环境污染治理和资源回收等方面起着重要作用,例如油污处理、废水处理、有机废弃物处理等。

3.电子信息领域高分子材料在发光二极管、有机场效应晶体管、柔性电子、电热材料等方面应用广泛,为电子信息产业的发展提供了重要支持。

4.新能源领域高分子材料在太阳能电池电极、锂电池隔膜材料、燃料电池阴阳极材料等方面的应用不断扩大,是新能源领域的重要组成部分。

总之,新型功能性高分子材料的制备和应用是一个不断发展的领域。

在实际应用中,高分子材料的制备方法和结构设计必须与其所需的应用性能相匹配。

工业制备的高分子材料的合成方法与机理

工业制备的高分子材料的合成方法与机理

工业制备的高分子材料的合成方法与机理一、引言高分子材料是一种庞大且具有广泛应用的材料范畴,其广泛应用与优异的物理化学性能、成本效益和可塑性有关。

目前,随着各大产业的快速发展和进步,高分子材料的应用领域已经覆盖了从传统工业到高科技行业的各个方面。

因此,高分子材料已成为生产的主要基础材料之一。

高分子材料的制备方法是深入研究高分子新材料和高性能材料的核心。

在本文中,我们将讨论多种工业制备高分子材料的合成方法和机制。

二、聚合方法聚合方法是一种常见的高分子合成方法。

聚合是指在化学反应中、利用反应物中的单体分子,打破其分子内部的化学键,使它们以新的键链接形成高分子结构玻璃状态的组分,这种化学反应被称为“聚合反应”。

聚合反应的产物是具有较高分子量的聚合物。

根据聚合过程中产生的中间体、反应物和催化剂的不同,聚合过程可分为自由基聚合、阴离子聚合、阳离子聚合、离子配位聚合、单电子转移聚合、共价链转移聚合、引发分裂聚合等多种聚合方式。

各种聚合方式带有不同的特征,因此已经被广泛应用到高分子材料领域。

三、加成反应加成反应是另一种高分子材料的制备方法。

这种合成方法涉及将两种或多种低分子化合物反应在一起形成高分子。

加成反应可以是发生常规反应,也可以是发生放热反应。

将这些反应物与催化剂混合在一起通常可以促进反应的进行。

随着逐渐进行的反应,高分子材料的分子量仍将不断增加。

在这种反应中,常用的反应物有乙烯和丙烯等低分子衍生物,这些衍生物可以形成高度规则的多聚物。

四、交联反应交联反应是另一种工业制备高分子材料的方法,其过程与聚合反应类似,但是其反应物比聚合物的单体更少。

交联反应会产生“网络结构”,其高分子物质的最终状态类似于橡胶。

交联反应可以通过两种方式进行:物理交联和化学交联。

物理交联指的是在高分子材料中存在的相互作用力(如范德华力,氢键等)而引起的交联点。

化学交联是指通过加入交联剂(如二异氰酸酯、多烯等)在高分子材料中构建耐候性更高、强度更高的交联结构。

功能高分子材料的制备与应用

功能高分子材料的制备与应用

功能高分子材料的制备与应用近年来,随着科技的快速发展,我们正处于一个新的时代——功能高分子材料时代。

功能高分子材料,简称功能材料,是一类具有特殊功能的高分子材料,具有广泛的应用前景。

本文将探讨功能高分子材料的制备方法以及其在不同领域中的应用。

一、功能高分子材料的制备方法功能高分子材料的制备方法多种多样,下面将介绍其中几种常见的方法。

1. 化学合成法化学合成法是目前最常用的功能高分子材料制备方法之一。

通过选择合适的单体、催化剂和反应条件,进行聚合反应,可以得到所需的高分子材料。

这种方法可以控制材料的分子结构和性能,从而实现特定功能的调控,例如聚合物的改性和功能化。

2. 共聚合法共聚合法是一种将两个或多个单体在一定条件下共同聚合得到的方法。

通过调整单体的比例和聚合反应的条件,可以合成具有特殊结构和功能的高分子材料。

相比于单一单体聚合,共聚合法可以获得更多样化、更复杂的材料结构,从而实现更多样的功能。

3. 物理交联法物理交联法是一种通过物理相互作用力使高分子链之间结合的方法。

这种方法通常涉及一些非共价键的形成,如氢键、范德华力等。

物理交联的特点在于其可逆性,可以通过外界刺激,如温度、光照等,使交联解除,实现材料在不同环境下的控制性能变化。

二、功能高分子材料的应用领域功能高分子材料在各个领域都有广泛的应用,下面将介绍几个典型的领域。

1. 生物医学领域功能高分子材料在生物医学领域中有着巨大的应用潜力。

例如,可以制备生物可降解聚合物材料用于药物缓释系统,实现药物长效释放;可以制备生物相容性的材料用于组织工程和人工器官的修复;还可以制备具有生物活性的高分子材料用于生物传感器等。

2. 环境领域功能高分子材料在环境领域中具有广泛的应用前景。

例如,可以制备具有高吸附性能的高分子材料用于水处理和废气处理,实现环境污染物的净化;可以制备具有光催化功能的高分子材料用于处理光催化降解有机污染物等。

3. 新能源领域功能高分子材料在新能源领域中也有着重要的应用价值。

生物医用高分子材料的制备生产方法

生物医用高分子材料的制备生产方法

生物医用高分子材料的制备生产方法
1. 共聚物法:指将两个或更多的单体在聚合反应中同时进行聚合,得到的高分子材料称为共聚物。

常用的共聚物制备方法包括自由基共聚、阴离子共聚、阳离子共聚及复合共聚等。

例如合成聚乙烯醇和聚乙烯醇接枝聚乙二醇共聚物。

2. 溶液法:将高分子前体或分子筛等添加到有机溶液中,通过溶剂挥发或凝胶化等方法制备高分子材料。

例如制备丙烯酸共聚物的方法。

3. 电纺法:将高分子材料通过高电场作用下,由一根金属针头或环状电极喷出成纤维,形成纳米级的纤维网,主要用于制备纳米级纤维和膜材料。

例如以聚乳酸为原料制备的纳米级聚乳酸纤维。

4. 压延法:通过将高分子料均匀地压搓,加热后将高分子材料制成膜状材料。

例如制备聚苯醚膜的方法。

5. 喷雾干燥法:将高分子溶液通过喷雾器雾化成小颗粒,然后通过干燥制成高分子材料。

例如制备聚酰胺6 纳米颗粒的方法。

高分子材料的加工与制备方法

高分子材料的加工与制备方法

高分子材料的加工与制备方法在现代科技的快速发展和应用推广下,高分子材料的加工和制备方法愈加重要和广泛应用。

高分子材料是一类由大量重复单体结构构成的大分子化合物。

而加工和制备高分子材料的方法则是指将这些物质转化为特定形状和性质的工艺过程。

本文将介绍几种常见的高分子材料加工和制备方法。

首先,传统的高分子材料加工方法之一是热塑性材料的注塑成型。

这种方法主要适用于聚合物材料,特点是可以生产出各种形状的制品,如塑料盖子、桶、板材等。

其具体工艺流程为:首先将高分子材料切割成颗粒状,然后将颗粒状的材料放入注塑机的料斗中,通过加热和挤出等过程,将材料熔融后注入模具中。

待冷却凝固后,即得到所需要的成品。

注塑成型方法的优点是生产效率高、成本相对较低,可以大规模生产。

而缺点是材料的形状和尺寸受模具限制。

此外,高分子材料的制备方法还包括热固性材料的热压成型。

这种方法主要适用于含有交联结构的高分子材料,如环氧树脂、酚醛树脂等。

它的工艺流程为:首先将高分子物质与硬化剂混合,形成粘稠的糊状物。

然后将糊状物放入模具中,施加热压力,使材料在高温下发生交联反应,从而形成固体。

热压成型的优点是可以制备出高耐热、高强度的制品,适用于需要高温环境下使用的产品。

然而,热压成型过程中对模具的要求较高,且成本较高。

此外,溶液共混是一种常见的高分子材料的制备方法。

这种方法适用于将两种或多种相溶的高分子材料混合在一起,从而得到新的复合材料。

具体步骤为:将两种高分子材料溶解在相同或相似的溶剂中,通过搅拌和混合等过程,使两种材料均匀分散在溶液中。

然后将溶液蒸发或使用其他方法将溶剂去除,得到固态的混合材料。

溶液共混的优点是制备过程简单、成本较低,可以获得新材料的独特性能。

而缺点则是混合后的材料性能难以控制,容易出现相分离现象。

最后,高分子材料还可以通过纺丝方法制备纤维。

纺丝方法主要适用于聚合物材料,如聚酯纤维、聚酰胺纤维等。

具体工艺流程为:首先将高分子材料加热熔化至黏度适宜的状态,形成糊状物。

高分子材料的制备及应用研究

高分子材料的制备及应用研究

高分子材料的制备及应用研究高分子材料是一种有机化合物,由多个单体分子经过共价或离子键结合而成,具有分子量较大、长链或分支链的特点。

在日常生活中,高分子材料被广泛应用于塑料、橡胶、纤维、涂料、粘合剂等各个领域。

本文将就高分子材料的制备及应用研究进行探讨。

一、高分子材料的制备高分子材料的制备通常可以分为两类:物理方法和化学方法。

1.物理方法:物理方法是指利用物理原理将多个单体分子结合成高分子材料。

例如,加热时将低分子量单体化合物分解为自由基,再利用自由基引发剂进行链式聚合反应,形成高分子。

又如,通过利用高分子界面活性剂制成纳米乳液,然后在外界条件的作用下控制相转移,获得一种微粒直径稳定的高分子。

2.化学方法:化学方法则是利用化学反应或酶催化的方法将多个单体分子结合成高分子材料。

例如,聚合物材料可以通过通过酶的催化作用,将一些生物提取物聚合成高分子。

又如,可以通过两种单体分子在特定催化剂存在下的共聚反应,形成不同的共聚物品种。

二、高分子材料的应用高分子材料在生产、科学研究和医学治疗方面都有着广泛的应用。

1.生产领域:高分子材料在生产领域中主要应用于塑料、橡胶、纤维、涂料、粘合剂等诸多方面。

例如,聚乙烯和聚丙烯等塑料材料广泛应用于制造各种商品包装,如袋子、瓶子、保鲜膜、玩具等。

聚氨酯等高分子材料则广泛应用于制造泡沫塑料材料,被广泛用于隔音、隔热等方面。

此外,化纤、涂料、粘合剂、拉铆钉、密封材料等产业也都广泛使用高分子材料。

2.科学研究领域:高分子材料在科学研究领域有着非常广泛的应用,例如纳米粒子通过控制粒径的方式被制成了表面整齐,形状多样,组成结构不断变化的高分子材料。

这种材料在纳米学,材料科学,生物医药等领域有着广泛的应用。

3.医学治疗领域:高分子材料在医学治疗方面应用广泛,如医用高分子材料,中空纤维膜等常用于血液透析,膜分离和支架等医疗设备中。

另外,高分子材料也广泛应用于医学材料。

例如,人工关节材料、医用湿敷料等。

高分子材料技术

高分子材料技术

高分子材料技术1. 简介高分子材料技术是一门研究高分子材料制备、改性和应用的学科。

高分子材料广泛应用于各个领域,如塑料工业、橡胶工业、纺织工业、医药工业等。

本文将详细介绍高分子材料的制备方法、改性技术和应用领域。

2. 高分子材料的制备方法2.1 聚合法聚合法是制备高分子材料的常用方法之一。

通过聚合反应,将单体分子聚合成高分子链。

聚合反应可以分为自由基聚合、阴离子聚合、阳离子聚合和离子自由基共聚等多种类型。

2.2 缩聚法缩聚法是另一种常用的高分子材料制备方法。

该方法通过两个或更多的小分子反应生成聚合物链。

缩聚反应常用于制备聚酯、聚酰胺等高分子材料。

2.3 乳液聚合法乳液聚合法是一种在水溶液中进行聚合反应的方法。

在乳液聚合中,单体和乳化剂溶解在水溶液中,自由基或离子聚合反应在乳液珠中进行。

2.4 分子模板法分子模板法是一种特殊的制备方法,用于制备具有特定形状和功能的高分子材料。

在分子模板法中,通过与目标分子具有亲和性的模板分子结合,将高分子材料制备成与模板形状相似的形状。

3. 高分子材料的改性技术3.1 添加剂改性添加剂改性是一种简单有效的高分子材料改性技术。

通过在高分子基体中添加适量的添加剂,可以改善高分子材料的性能,如增加耐热性、改善抗氧化性等。

3.2 复合改性复合改性是将高分子材料与其他材料进行混合,形成复合材料的改性技术。

复合材料可以通过增强剂的添加来增加其强度和刚度,也可以通过填充剂的添加来改善其导热性和耐磨性。

3.3 共混改性共混改性是将两种或多种高分子材料混合在一起,形成共混物的改性技术。

通过共混改性,可以实现高分子材料性能的互补和增强。

3.4 表面改性表面改性是利用化学处理、物理处理或涂层等方法改变高分子材料表面性质的技术。

常用的表面改性方法包括等离子体处理、电子束辐照、化学修饰等。

4. 高分子材料的应用领域4.1 塑料工业高分子材料在塑料工业中有广泛的应用。

它们可以用来制造各种塑料制品,如塑料袋、塑料瓶、塑料管等。

高分子材料制备方法

高分子材料制备方法

高分子材料制备方法
高分子材料制备方法有很多种,以下是常见的几种方法:
1. 添加聚合法:通过将单体加入反应体系中,在适当的温度和反应条件下进行聚合反应,来制备高分子材料。

常见的添加聚合法有自由基聚合法、阴离子聚合法、阳离子聚合法、共聚法等。

2. 缩聚法:通过合成可溶性低聚物和聚合物,然后通过化学反应或物理处理将其聚合成高分子材料。

常见的缩聚法有聚酯缩聚法、聚酰胺缩聚法、聚酰胺缩聚法等。

3. 乳液聚合法:将单体与表面活性剂、乳化剂等混合形成乳液,并通过反应引发剂或共聚催化剂进行聚合反应,得到乳液聚合物。

乳液聚合法具有操作简便、能够得到高纯度、高分子量聚合物等优点。

4. 溶液聚合法:将单体溶解在溶剂中,添加引发剂或催化剂,然后通过聚合反应得到高分子溶液。

常见的溶液聚合法有溶液聚合法、聚合溶胶-凝胶法等。

5. 辐射聚合法:通过辐射源(如光、电子束、离子束等)照射单体或预聚合体,使其发生聚合反应。

辐射聚合法具有反应速度快、操作简单等优点。

6. 其他方法:还有一些其他制备方法,如发泡法、交联法、剪切聚合法、纺丝
法等。

需要根据具体的高分子材料的性质和用途来选择适合的制备方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性聚合物链。
23
第三章 功能高分子的制备方法
如果引发剂(R-R’)对增长自由基向引发剂自 身的链转移反应具有很高的活性,或由引发剂分解 产生的自由基的一部分易于发生与链自由基的终止 反应,那么乙烯基单体的自由基聚合过程则可由下 式来表示。
R R' + n M R [ M ]n R'
由于该引发剂集引发、转移和终止等功能 于一体,故称之为引发转移终止剂(iniferter)。
9
第三章 功能高分子的制备方法
3.0
追加 单 体
2.0
2.5
-3
Mn× 10
2.0
1.5
1.0
1.0
0.5
0.0 0 50 100 150 200
转 化 率
%
图3—1 用HI/I2引发2-乙酰氧乙基乙烯基醚聚合时 单体转化率与数均分子量和分子量分布的关系
10
第三章 功能高分子的制备方法
采用HI/I2引发体系引发烷基乙烯基醚进行阳离 子活性聚合的机理为:
13
引发
M A + ROH RO M + CH2 O RO M CH2 + AH RO CH2 CH2 O M
增长
RO CH2 CH2 O M + CH2 O RO [CH2 CH2 O] nCH2 CH2 O M CH2
14
第三章 功能高分子的制备方法
四氢呋喃为五元环,较稳定,阴离子聚合不能 进行,而只能进行阳离子聚合。碳阳离子与较大的 反离子组成的引发剂可引发四氢呋喃的阳离子活性 聚合。例如 Ph3C+SbF6- 可在-58℃下引发四氢呋 喃聚合,产物的相对分子质量分散指数为1.04。
17
第三章 功能高分子的制备方法
① 链引发反应
CH3 CH3
δ
OCH3 C OSi(CH3)3
C
+
δ
CH3 C C
CH2
OCH3 O
HF2
CH3O O
CH3 C C CH3 CH2
CH3 C C
OCH3 OSi(CH3)3
(I)
18
第三章 功能高分子的制备方法
② 链增长反应
CH3O C O CH3 C CH3 CH2 CH3 C C O CH3 + OSiMe3 CH2 CH3 C C O CH3 O
CH3O C O
CH3 C [ CH2 CH3
CH3 C ]n CH2 COOCH3
CH3 C H + SiMe3OCH3
COOCH3
20
第三章 功能高分子的制备方法
基团转移聚合与阴离子型聚合一样,属“活性聚 合”范畴,故产物的相对分子质量分布很窄,一般D = 1.03~1.2。同时,产物的聚合度可以用单体和引 发剂两者的摩尔浓度比来控制(DP = [M]/[I])。 此外还有以苯甲醛为引发剂,以 Bu2AlCl 或 ZnBr2为催化剂,硅烷基乙烯醚为单体的Aldol—基 团转移聚合。
21
第三章 功能高分子的制备方法
H C O + CH2 CHOSiMe2Bu ZnBr2 H C CH2 H C O OSiMe2Bu n CH2 H [C H CH2 ]n+1 C O CH3OH
CHOSiMe2Bu ZnBr2 H CH2 ]n+1 C O +
OSiMe2Bu
H [C OH
(n+1)BuMe2SiOCH3
33
单官能度 Z
C S
R
R = C(CH3)2ph, CH(CH3)ph, CH2ph, CH
第三章 功能高分子的制备方法 C(CH )(CN)CH CH COOH, C(CH )(CN
3 2 2 3
C(CH3)2CN, C(CH3)(CN)CH2CH2CH2O
CH3 双官能度 Z CS C CH3
3.2.3 阳离子活性聚合 阳离子聚合出现于20世纪40年代,典 型工业产品有聚异丁烯和丁基橡胶。 目前,烷基乙烯基醚、异丁烯、苯乙烯 及其衍生物、1, 3 —戊二烯、茚和α-蒎烯等都 已经实现了阳离子活性聚合。
8
第三章 功能高分子的制备方法
在用HI/I2引发烷基乙烯基醚的阳离子聚合中, 发现聚合过程具有以下活性聚合的典型特征: ① 数均相对分子质量与单体转化率呈线性关系; ② 聚合完成后追加单体,数均分子量继续增长; ③ 聚合速率与HI的初始浓度[HI]0成正比; ④ 引发剂中I2浓度增加只影响聚合速率,对相对分 子质量无影响; ⑤ 在任意转化率下,产物的分子量分布均很窄,< 1.1。
第三章 功能高分子的制备方法
3.1 概述
高性能与功能高分子材料的特点在于他们特殊的 “性能”和“功能”,因此在制备这些高分子材料的时 候,分子设计成为十分关键的研究内容。
1
第三章 功能高分子的制备方法
目前采用的制备功能高分子材料的方法可 归纳为以下三种类型: 功能性小分子材料的高分子化; 已有高分子材料的功能化; 多功能材料的复合以及已有功能高分子材料 的功能扩展。
CH3O C O
CH3 C CH3 CH2
CH3 C CH2
CH3 C C
O CH3 OSiMe3
COOCH3
聚合物 (II)
19
第三章 功能高分子的制备方法
③ 链终止反应
CH3O C O CH3 C [ CH2 CH3 CH3 C ]n CH2 COOCH3 CH3 C C O CH3 OSiMe3 + CH3OH
6
第三章 功能高分子的制备方法
3.2.2 阴离子活性聚合 基本特点: 1)聚合反应速度极快,通常在几分钟内即告完成; 2)单体对引发剂有强烈的选择性; 3)无链终止反应; 4)多种活性种共存; 5)相对分子质量分布很窄,目前已知通过阴离子活 性聚合得到的最窄相对分子质量分布指数为1.04。
7
第三章 功能高分子的制备方法
31
第三章 功能高分子的制备方法
R + A X nM R [ M ]n -1 M + A X
R
X +A
R [ M ]n X + A
其中A—X为链转移剂
图3—6 可逆加成—断裂链转移自由基聚合原理示意图
32
第三章 功能高分子的制备方法
S
单官能度
C Z Z = ph, CH3 R = C(CH3)2ph, CH(CH3)ph, CH2ph, CH2phCH=CH2 C(CH3)2CN, C(CH3)(CN)CH2CH2CH2OH, C(CH3)(CN)CH2CH2COOH, C(CH3)(CN)CH2CH2COONa S R
C2H5 C2H5
多官能度
图 3—4 常用光引发转移终止剂结构式 C2H 5 C2H5 NCS CH2 CH2 SCN
28
第三章 功能高分子的制备方法
2. TEMPO引发体系 TEMPO(2,2,6,6-四甲基氮氧化物)是有机化 学中常用的自由基捕捉剂。 上世纪70年代末,澳大利亚的Rizzardo等人首次 将TEMPO用来捕捉增长链自由基以制备丙烯酸酯齐 聚物。 1993年,加拿大Xerox公司在 Rizzardo 等人 的工作基础上开展了苯乙烯的高温聚合。发现采用 TEMPO/BPO作为引发体系在120℃条件下引发苯乙 烯的本体聚合为活性聚合。
15
第三章 功能高分子的制备方法
3.2.5 基团转移聚合 基团转移聚合(group transfer po1ymerization, GTP)作为一种新的活性聚合技术,是1983年由美 国杜邦公司的O. W. Webster等人首先报道的。
16
第三章 功能高分子的制备方法
所谓基团转移聚合,是以不饱和酯、酮、酰胺 和腈类等化合物为单体,以带有硅、锗、锡烷基等 基团的化合物为引发剂,用阴离子型或路易士酸型 化合物作催化剂,选用适当的有机物为溶剂,通过 催化剂与引发剂之间的配位,激发硅、锗、锡等原 子与单体羰基上的氧原子结合成共价键,单体中的 双键与引发剂中的双键完成加成反应,硅、锗、锡 烷基团移至末端形成“活性”化合物的过程。
R
n SiR2 (OSiR2)2 O [ O Si ] 3n R
12
第三章 功能高分子的制备方法
2. 环醚的开环聚合 环醚主要是指环氧乙烷、环氧丙烷、四氢呋喃 等。它们的聚合物都是制备聚氨酯的重要原料。
环氧乙烷和环氧丙烷都是三元环,可进行阴离
子聚合和阳离子聚合。四苯基卟啉/烷基氯化铝或醇钠 可引发他们进行阴离子活性开环聚合。
2
第三章 功能高分子的制备方法
3.2 高分子合成新技术
3.2.1 活性与可控聚合的概念 活性聚合是1956年美国科学家Szwarc等人在 研究萘钠在四氢呋喃中引发苯乙烯聚合时发现 的一种具有划时代意义的聚合反应。
3
第三章 功能高分子的制备方法
Szwarc等人发现,在无水、无氧、无杂质、低 温条件下,以四氢呋喃为溶剂,萘钠引发剂引发的 苯乙烯阴离子聚合不存在任何链终止反应和链转移 反应,在低温、高真空条件下存放数月之久其活性 种浓度可保持不变。若再加入单体可得到更高相对 分子质量的聚苯乙烯。 基于此发现,Szwarc等人第一次提出了活性聚 合(living polymerization)的概念。
24
第三章 功能高分子的制备方法
目前已发现很多可作为引发转移终止剂 的化合物,可分为热分解和光分解两种。 1). 热引发转移终止剂 主要为是C-C键的对称六取代乙烷类化 合物。其中,又以1, 2—二取代的四苯基乙烷 衍生物居多。
25
第三章 功能高分子的制备方法
R1 R1 R1 = H, X = Y = CN, OC6H5, OSi(CH3) R2 = OCH3, X = Y = CN R2 C X C Y R3 R3 = H, X = H, Y = C6H5
相关文档
最新文档