差速器的工作原理

合集下载

差速器的工作原理

差速器的工作原理

差速器的工作原理标题:差速器的工作原理引言概述:差速器是汽车传动系统中的重要部件,它能够有效地解决车辆转弯时内外轮胎转速不同的问题。

本文将详细介绍差速器的工作原理,包括差速器的结构、工作原理以及其在汽车传动中的重要作用。

一、差速器的结构1.1 主齿轮组件差速器的主要组成部份是主齿轮,它通常由齿轮和轴组成。

主齿轮通过轴与驱动轴相连,负责将动力传递到差速器。

1.2 行星齿轮组件行星齿轮组件由多个行星齿轮和行星齿轮轴组成。

行星齿轮通过行星齿轮轴与主齿轮相连,同时与驱动轮相连。

行星齿轮的数量和位置是根据差速器的设计而定的。

1.3 差速器壳体差速器壳体是差速器的外壳,它起到保护内部齿轮和轴的作用。

差速器壳体通常由钢铁或者铝合金制成,具有足够的强度和刚度。

二、差速器的工作原理2.1 差速效应差速器的工作原理基于差速效应,即在转弯时,内外轮胎的转速不同。

差速器通过合理分配动力,使得内外轮胎能够以不同的速度旋转,从而保证车辆的稳定性和行驶平顺性。

2.2 主齿轮传动当车辆直线行驶时,主齿轮传递动力到行星齿轮组件,行星齿轮以相同的速度旋转,并将动力传递到驱动轮。

2.3 差速器的转向作用当车辆转弯时,内外轮胎的转速不同。

差速器通过行星齿轮的设计,使得内外轮胎能够以不同的速度旋转,从而保持车辆的平稳行驶。

三、差速器在汽车传动中的重要作用3.1 提供转向灵便性差速器能够根据车辆的转向情况,合理分配动力到内外轮胎,从而提供转向灵便性。

这样可以保证车辆在转弯时的稳定性和操控性。

3.2 减少轮胎磨损差速器能够使内外轮胎以不同的速度旋转,从而减少轮胎的磨损。

如果没有差速器,内外轮胎的转速不同,会导致轮胎之间的滑动,增加磨损。

3.3 提高车辆的通过性差速器能够根据路面条件和车辆的行驶状态,合理分配动力到内外轮胎,从而提高车辆的通过性。

在不同路况下,差速器能够使车辆保持稳定的牵引力和抓地力。

四、差速器的维护与保养4.1 定期检查差速器油定期检查差速器油的质量和油位,确保正常的润滑和冷却效果。

差速器的工作原理

差速器的工作原理

差速器的工作原理引言概述:差速器是一种常见的汽车传动装置,它在车辆转弯时起到了至关重要的作用。

差速器可以使车轮以不同的转速旋转,从而解决了车辆在转弯时内外侧车轮行驶距离不同的问题。

本文将详细介绍差速器的工作原理。

一、差速器的组成部份1.1 主齿轮组:主齿轮组是差速器的核心组成部份,由主齿轮、夹盘轴和半轴组成。

主齿轮通过传动轴与发动机连接,夹盘轴通过半轴与车轮相连。

1.2 夹盘轴:夹盘轴是差速器的输出轴,它将主齿轮传递的动力传输给车轮。

1.3 半轴:半轴连接夹盘轴和车轮,将差速器输出的动力传递给车轮。

二、差速器的工作原理2.1 直行时的工作原理:当车辆直行时,主齿轮将动力传递给夹盘轴,夹盘轴再将动力传递给车轮。

此时,差速器的主要作用是传递动力,车轮以相同的速度旋转。

2.2 转弯时的工作原理:当车辆转弯时,内外侧车轮需要以不同的速度旋转,以保证转弯的平稳性。

差速器通过主齿轮组的设计实现了这一功能。

内侧车轮行驶的距离较短,因此需要以较高的速度旋转;而外侧车轮行驶的距离较长,因此需要以较低的速度旋转。

主齿轮组的设计使得内外侧车轮可以以不同的速度旋转,从而解决了车辆转弯时内外侧车轮行驶距离不同的问题。

2.3 差速锁定功能:在某些特殊情况下,如车辆陷入泥泞地带或者某一车轮打滑时,差速器的差速锁定功能能够将动力传递给具有更好抓地力的车轮,以提供更好的牵引力。

三、差速器的优势3.1 提高车辆操控性:差速器的工作原理使得车辆在转弯时更加平稳,提高了操控性能。

3.2 保护车辆传动系统:差速器可以根据不同路况和行驶状态,合理分配动力,减少传动系统的损耗,延长传动系统的使用寿命。

3.3 提高车辆通过性:差速器的差速锁定功能可以提供更好的牵引力,使车辆在复杂路况下更容易通过。

四、差速器的维护与保养4.1 定期更换差速器油:差速器油起到润滑和冷却的作用,定期更换差速器油可以保证差速器的正常工作。

4.2 注意车辆行驶状态:避免长期高速行驶或者急加速,以减少差速器的负荷。

简述差速器的工作原理

简述差速器的工作原理

简述差速器的工作原理
差速器是一种用于转向的装置,主要应用于汽车、摩托车等车辆中。

差速器的工作原理如下:
1. 差速器包括一个输入轴和两个输出轴。

输入轴连接到马达或发动机,而两个输出轴连接到车轮。

2. 当车辆在直线行驶时,两个输出轴的转速应该相同,因此输入轴的转速也会传递到两个输出轴,使车轮都以相同的速度旋转。

3. 当车辆转弯时,由于外侧轮子行驶的路程较长,它们需要以较快的速度旋转。

而内侧轮子行驶的路程较短,它们需要以较慢的速度旋转。

4. 差速器通过使用一组齿轮将输入轴的转速分配给两个输出轴,实现这种速度差异的补偿。

5. 差速器中的齿轮包括环齿轮和卫星齿轮。

环齿轮连接到输入轴,而卫星齿轮分别连接到两个输出轴。

卫星齿轮与环齿轮的传动比例决定了输出轴的旋转速度。

6. 当车辆转弯时,差速器的齿轮会使内外两个输出轴的旋转速度不同,以适应不同行驶路程造成的速度差异。

7. 通过差速器的工作,车辆可以更顺畅、稳定地转弯,同时减轻了车轮和传动系统的负荷。

总结而言,差速器通过分配输入轴的转速给两个输出轴,并根据车辆行驶情况的变化调整转速差异,使车轮能够适当地旋转,以实现平稳、灵活的转弯。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种机械装置,常用于汽车的驱动系统中,它的主要作用是平衡驱动轮的转速差异,使车辆在转弯时能够更加稳定和灵活。

下面将详细介绍差速器的工作原理。

一、差速器的结构差速器通常由环齿、行星齿轮、夹板和齿轮轴等部件组成。

环齿是差速器的外部齿轮,与驱动轴相连;行星齿轮由多个小齿轮组成,与驱动轮相连;夹板连接行星齿轮和环齿,起到连接和平衡的作用;齿轮轴是连接差速器和驱动轮的轴。

二、差速器通过行星齿轮的运动来实现驱动轮的差速平衡。

当车辆直线行驶时,驱动轮转速相同,差速器的行星齿轮处于静止状态,夹板将环齿和行星齿轮连接在一起,驱动轮同时转动。

当车辆转弯时,内侧驱动轮需要转动的距离比外侧驱动轮更短,这就导致了两者的转速差异。

差速器的作用就是平衡这种转速差异,使得车辆能够顺利转弯而不出现滑动或打滑的情况。

当车辆转弯时,内侧驱动轮的转速较慢,行星齿轮也会相应地减速。

夹板会受到行星齿轮的阻力,因此夹板会向外侧移动,使环齿和行星齿轮脱离连接。

这样,内侧驱动轮的转速可以相对自由地减慢,而外侧驱动轮则可以继续以较快的速度转动。

当车辆转弯结束后,差速器会自动恢复到直线行驶状态。

夹板会受到环齿的推力,重新将环齿和行星齿轮连接在一起,驱动轮再次同时转动。

三、差速器的优势差速器的工作原理使得车辆在转弯时更加稳定和灵活。

它能够平衡驱动轮的转速差异,减少驱动轮之间的滑动,提高车辆的牵引力和操控性能。

同时,差速器还能够减少车辆传动系统的负荷,延长整个驱动系统的使用寿命。

四、差速器的应用差速器广泛应用于汽车的驱动系统中,特别是后驱车辆和四驱车辆。

它在转弯、过坎和路面不平等情况下发挥着重要作用,保证了车辆的稳定性和可靠性。

除了汽车领域,差速器也被用于其他机械设备中,如工程机械、农业机械和工业机械等。

它们在相应的领域中起到平衡转速差异的作用,提高机械设备的性能和效率。

总结:差速器是一种重要的机械装置,它通过平衡驱动轮的转速差异,使车辆在转弯时更加稳定和灵活。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种用于汽车传动系统的重要装置,它能够有效地分配驱动力和转速,使车辆在转弯时保持稳定,并提供更好的操控性能。

差速器的工作原理涉及到齿轮传动和差速机构的运转,下面将详细介绍差速器的工作原理。

1. 差速器的基本结构差速器通常由主齿轮、卫星齿轮、行星齿轮、差速齿轮和差速杆组成。

主齿轮由发动机输出的动力传递给差速器,卫星齿轮通过行星齿轮与主齿轮相连,行星齿轮又与差速齿轮相连,差速杆则负责连接车轮。

2. 当车辆行驶直线时,差速器的工作原理是简单的,主齿轮传递动力给差速齿轮,差速齿轮再通过差速杆将动力传递给车轮,使车辆正常行驶。

然而,当车辆转弯时,内外侧车轮需要以不同的转速旋转。

这时,差速器的作用就显现出来了。

差速器允许内外侧车轮以不同的转速旋转,从而保持车辆的稳定性。

3. 差速器的工作原理解析当车辆转弯时,外侧车轮需要行驶更长的距离,因此需要更快的转速。

而内侧车轮行驶的距离较短,所以需要较慢的转速。

差速器通过差速杆的作用,使内外侧车轮能够以不同的转速旋转。

差速杆上的差速齿轮会根据内外侧车轮的转速差异,自动调整齿轮的位置。

当车辆转弯时,外侧车轮需要更快的转速,差速齿轮会被推向一侧,与行星齿轮相连,从而使外侧车轮转速更快。

与此同时,内侧车轮的转速会相应减慢。

这样,差速器可以让车辆在转弯时内外侧车轮以不同的转速旋转,避免了车辆因转弯而产生的滑动和打滑现象,保持了车辆的稳定性和操控性能。

4. 差速器的优势差速器的工作原理使得车辆能够更好地适应转弯和曲线行驶的情况,具有以下优势:- 提供更好的操控性能:差速器使车辆能够更好地应对转弯时的不同转速需求,提供更好的操控性能,使驾驶者更容易控制车辆。

- 保护传动系统:差速器的工作原理能够有效地分配驱动力和转速,减少传动系统的磨损和损坏,延长传动系统的使用寿命。

- 提高车辆的稳定性:差速器能够避免车辆在转弯时产生的滑动和打滑现象,保持车辆的稳定性,提高行驶安全性。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种用于传动装置的重要部件,它主要用于解决车辆在转弯时内外轮胎转速不一致的问题,保证车辆的稳定性和操控性。

本文将详细介绍差速器的工作原理,包括结构组成、工作原理和应用场景。

一、差速器的结构组成差速器一般由主齿轮、副齿轮、行星齿轮和差速器壳体等部件组成。

主齿轮与驱动轴相连,副齿轮与两个轮胎的驱动轴相连,行星齿轮则位于主齿轮和副齿轮之间。

差速器壳体则起到固定和支撑各个部件的作用。

二、在车辆直线行驶时,差速器的工作原理比较简单。

主齿轮通过驱动轴带动副齿轮,副齿轮再通过两个驱动轴分别带动左右两个轮胎,实现车辆的前进。

此时,行星齿轮处于静止状态,不对传动起作用。

然而,当车辆转弯时,内外轮胎需要以不同的速度旋转,以适应转弯的半径。

这时,差速器就发挥了作用。

当车辆转弯时,内侧轮胎需要沿更短的弧线行驶,而外侧轮胎需要沿更长的弧线行驶。

由于两个轮胎的行驶距离不同,所以它们的转速也不同。

差速器通过行星齿轮的工作原理,使得内外轮胎的转速差异得到补偿。

当车辆转弯时,行星齿轮会被主齿轮带动旋转,同时也会带动副齿轮。

由于行星齿轮与副齿轮的啮合,副齿轮的转速会相应调整,以适应内外轮胎的转速差异。

这样,差速器就能够平衡内外轮胎的转速,保证车辆的稳定性和操控性。

三、差速器的应用场景差速器广泛应用于各种车辆传动装置中,特别是在四轮驱动和后驱车辆中。

在四轮驱动车辆中,差速器不仅用于前轴和后轴之间,还用于左右两个轮胎之间。

这样可以更好地解决车辆在转弯时内外轮胎转速不一致的问题,提高车辆的操控性和通过性能。

此外,差速器还广泛应用于工程机械、农用车辆和各种特种车辆中。

这些车辆在作业过程中经常需要转弯或行驶在复杂的路况下,差速器的使用可以有效地提高车辆的稳定性和通过性能,保证工作的顺利进行。

总结:差速器是车辆传动装置中的重要部件,它通过行星齿轮的工作原理,解决了车辆在转弯时内外轮胎转速不一致的问题。

差速器的应用广泛,主要用于四轮驱动和后驱车辆,以及工程机械、农用车辆和特种车辆等。

简述差速器的工作原理

简述差速器的工作原理

简述差速器的工作原理
差速器是一种用于传递动力并保持车辆稳定性的装置,主要应用于四驱车辆的驱动系统中。

差速器的工作原理可以通过以下几点来简述:
1. 动力传递:车辆的动力由发动机通过传动装置传递给驱动轴,然后再传递给车轮。

差速器作为传动装置的一部分,主要负责将发动机输出的动力传递给驱动轴。

2. 差速功能:差速器的关键作用是解决车辆转弯时内外轮速度差异的问题。

当车辆转弯时,内侧轮子需要比外侧轮子更短的路程来完成同样的转弯角度,因此内外轮的旋转速度会有所不同。

3. 齿轮组设计:差速器内部采用了齿轮组。

通常情况下,差速器的齿轮组包括主齿轮、行星齿轮和管轴齿轮等组件。

主齿轮通过传动皮带或链条与发动机相连,而驱动轴则连接到主齿轮与行星齿轮之间。

行星齿轮由管轴齿轮连接,在转向时,行星齿轮的转动速度会改变。

4. 差速效应:当车辆转弯时,行星齿轮的转速会改变,内外轮的转速差异也会导致差速器快速转动。

这时,行星齿轮与管轴齿轮之间的摩擦会产生一个反力矩,使差速器的输出扭矩分配给内外轮不同,从而实现内外轮的不同转速。

5. 稳定性:差速器的工作原理可以保持车辆的稳定性。

当车辆行驶直线时,差速器允许内外轮以相同速度旋转,传递相同的
扭矩。

而在转弯时,差速器根据需要调整内外轮的转速差异,从而防止车辆因为内外轮转速不同而失去稳定性。

总的来说,差速器通过差速效应来实现车辆行驶时内外轮的速度调整,确保车辆转弯时的稳定性,同时保证车辆在直线行驶时的正常动力传递。

这一工作原理使得驱动力在不同的路况下得到了合理的分配和调节,提高了车辆的操控性和驾驶舒适度。

差速器的工作原理

差速器的工作原理

差速器的工作原理标题:差速器的工作原理引言概述:差速器是汽车传动系统中的重要组成部份,它的主要作用是使车辆在转弯时能够保持稳定性,并且能够使驱动轮同时获得合适的扭矩。

在汽车行驶过程中,差速器的工作原理起着至关重要的作用。

本文将详细介绍差速器的工作原理。

一、差速器的基本结构1.1 主要由差速齿轮、半轴、差速器壳体等部件组成。

1.2 差速齿轮通过半轴与驱动轮相连,通过差速器壳体与车轮相连。

1.3 差速器壳体内部装有差速器齿轮,通过齿轮的配合来实现差速器的工作。

二、差速器的工作原理2.1 当车辆在直线行驶时,两个驱动轮同时转动,差速器齿轮不起作用。

2.2 当车辆转弯时,内侧驱动轮与外侧驱动轮的速度不同,差速器齿轮开始发挥作用。

2.3 差速器齿轮会根据车辆转向的情况,使内外侧驱动轮获得不同的扭矩,以保持车辆的平稳性。

三、差速器的作用3.1 保证车辆在转弯时不会浮现打滑现象,提高行驶的稳定性。

3.2 使驱动轮获得合适的扭矩,提高车辆的通过能力。

3.3 增加车辆的操控性,提高驾驶的舒适性和安全性。

四、差速器的维护保养4.1 定期更换差速器油,保持差速器内部的润滑性能。

4.2 注意差速器的工作温度,避免过热造成损坏。

4.3 定期检查差速器齿轮的磨损情况,及时更换磨损严重的部件。

五、差速器的改进与发展5.1 随着汽车技术的不断发展,差速器的结构和工作原理也在不断改进。

5.2 一些高端汽车采用电子差速器或者主动差速器,提高了车辆的性能和操控性。

5.3 未来差速器可能会更加智能化,更好地适应不同驾驶环境和路况。

结语:差速器作为汽车传动系统中的重要组成部份,其工作原理对车辆性能和操控性起着至关重要的作用。

通过了解差速器的结构和工作原理,可以更好地理解车辆在行驶过程中的表现,同时也可以更好地进行差速器的维护保养,以保证车辆的安全和稳定性。

希翼本文对读者有所匡助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差速器的工作原理(图,另附文字说明)
工作原理:当汽车直走时,两个行星齿轮只公转,不自转。

如图中右上所示。

右下图表示的是汽车(方向是朝读者这边走的)右转。

根据力学原理,转弯时内侧车轮势必会转的慢些,此时驱动轴转速不变,行星轮此时一边绕半轴公转,一边自转。

因此可以看出,转弯时汽车驱动力会减小的,特别是走泥路时尽量避免打方向,以防抛锚。

(不知解释的对不对,望各位指点!)
差速器
图D-C5-3(3-93)准双曲面齿轮单级主减速器 1-从动锥齿圈;2-薄垫片;3-差速器轴承;4-主动锥齿轮;5-主动锥齿轮后轴承;
6-主动锥齿轮前轴承;7-主动锥齿轮密封圈;8-隔离套管;9-半轴齿轮; 10-差速器壳;11-进油道
如图所示为单级主减速器结构,它采用一对准双曲面锥齿轮传动。

图D-C5-6(3-96)差速器构造零件的分解
1-轴承;2-左外壳;3-垫片;4-半轴齿轮;5-垫圈;6-行星齿轮; 7-从动齿轮;8-右外壳;9-十字轴;10-螺栓
目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。

对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。

图D-C5-7(3-97)差速器运动原理示意图
1,2-半轴齿轮;3-差速器壳;4-行星齿轮;5-行星齿轮轴;6-主减速器从动齿轮
左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,这就是两半轴齿轮直径相等的对称式锥齿轮差速器的运动特性关系式。

图D-C5-8(3-98)差速器扭矩分配示意图
1- 半轴齿轮;2-半轴齿轮;3-行星齿轮轴;4-行星齿轮
设输入差速器壳的转矩为M0 ,输出给左、右两半轴齿轮的转矩为M1和M2,Mf 为折合到半轴齿轮上总的内摩擦力矩,则:
M1=0.5(M0-Mf)
M2=0.5(M0+Mf)
图D-C5-9(3-99)斯堪尼亚LT110型汽车的强制锁止式差速器
1-活塞;2-活塞皮碗;3-气路管接头;4-工作缸;5-套管;6-半轴;7-压力弹簧;8-锁圈;9-外接合器;10-内接合器;11-差速器壳
在对称式锥齿轮差速器上设置差速锁,使之成为强制锁止式差速器。

用电磁阀控制的气缸操纵离合机构,使一侧半轴与差速器壳相接合,这就相当于把左右两半轴锁成一体一同旋转。

这样,当一侧驱动轮打滑而牵引力过小时,从主减速器传来的转矩绝大部分部分配到另一侧驱动轮上。

图D-C5-10(3-100)托森轮间差速器
1-差速器壳;2-直齿轮轴;3-半轴;4-直齿轮;5-主减速器被动齿轮;6-蜗伦;7-蜗杆
托森差速器又称蜗轮-蜗杆式差速器, 由差速器壳,左半轴蜗杆、右半轴蜗杆、蜗轮轴和蜗轮等组成。

蜗轮通过蜗轮轴固定在差速器壳上,三对蜗轮分别与左、右半轴蜗杆相啮合,每个蜗轮两端固定有两个圆柱直齿轮。

成对的蜗轮通过两端相互啮合的直齿圆柱齿轮发生联系。

2009-3-30 7:11:00 来源: 汽车之家
[汽车DIY]汽车是我们在日常生活中经常会用到的交通工具,然而一辆车要开动起来其实并不简单,其中凝聚着人类上百年的科技结晶。

今天为大家讲解车内一个很不起眼但很关键的设备——差速器。

要解释差速器原理,我们首先引用百度百科中的解释:
“……汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。


“……普通差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。

发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。

差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。

当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。

……”
“这种调整是自动的,这里涉及到‘最小能耗原理’,也就是地球上所有物体都倾向于耗能最小的状态。

例如把一粒豆子放进一个碗内,豆子会自动停留在碗底而绝不会停留在碗壁,因为碗底是能量最低的位置(位能),它自动选择静止(动能最小)而不会不断运动。

同样的道理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。

当转弯时,由于外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮此时就会产生两个方向相反的附加力,由于‘最小能耗原理’,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异。


如果对于专业人事来说,这篇文章到此可以结束了,但是作为普通汽车爱好者,我们需要的不是死板的书本知识,因此这里有必要用通俗易懂的语言把差速器是怎样工作的这一问题解释清楚。

● 为什么要装差速器?
首先要说的是差速器这个装置装在哪里,它的位置应该处于传动轴与左右半轴的交汇点,从变速箱输出的动力在这里被分配到左右两个半轴。

至于为什么要装差速器这个问题就不需多做解释了,百度百科里写得非常清楚。

我们都知道汽车在直线
行驶时左右两个驱动轮的转速是相同的,但在转弯过时两边车轮行驶的距离不是等长的,因此车轮的转速肯定也会不同。

差速器的作用就在于允许左右两边的驱动轮以不同的转速运行。

● 差速器的构造:
其实说白了,整个差速器系统的核心是四个齿轮:两个行星齿轮和两个与传动轴相连的半轴齿轮。

这四个齿轮都在差速器壳内,这个壳体连接着传动轴(图中①),本身也要转动,在行驶时它的转动方向与车轮转动方向相同。

我们可以用一个球体来解释差速器问题!我们假设这个球体和地球一样有两个极点,并且以两极的连线为轴进行自传,这个球体可以理解为差速器壳体,这个壳体的两极连接的就是汽车的左右半轴。

这里安装着两个半轴齿轮,两齿轮中心的连线就是差速器壳体转动的轴线(图中②、④)。

除了两个半轴齿轮外还有两个行星齿轮(图中③)。

理解两个行星齿轮的状态是理解差速原理的关键。

拿上面所说的球体来举例,两个齿轮是对向安装并且与半轴齿轮垂直,相当于6点钟和12点钟位置。

这两个齿轮经常要朝相反方向转动,从而实现差速作用。

壳体在自传过程中会带着两个齿轮做公转。

这四个齿轮虽然安装在壳体内部但都是可以独立于差速器壳体转动的,只不过它们相互咬合在一起,每个齿轮的两边都咬合着另外两个齿轮(每个半轴齿轮都咬合
着两个行星齿轮,每个行星齿轮都咬合着两个半轴齿轮),只要其中一个齿轮转动都会牵扯到其他三个齿轮一起转动,而且其中一个齿轮朝某个方向转动,与它相对的另一边齿轮必定朝反方向转动!这个现象可以通过实验来证实:如果把一辆车的两个驱动轮都悬空,转动一边的车轮,另一侧车轮会朝相反方向转动。

● 差速器的运作原理:
『车辆直行时差速器状态』
直线行驶时的特点是左右两边驱动轮的阻力大致相同。

从发动机输出的动力首先传递到差速器壳体上使差速器壳体开始转动。

接下来要把动力从壳体传递到左右半轴上,我们可以理解为两边的半轴齿轮互相在“较劲”,由于两边车轮阻力相同,因此二者谁也掰不过对方,因此差速器壳体内的行星齿轮跟着壳体公转同时不会产生自转,两个行星齿轮咬合着两个半轴齿轮以相同的速度转动,这样汽车就可以直线行驶了!
『一侧车轮遇到阻力』
假设车辆现在向左转,左侧驱动轮行驶的距离短,相对来说会产生更大的阻力。

差速器壳体通过齿轮和输出轴相连,在传动轴转速不变情况下差速器壳体的转速也不变,因此左侧半轴齿轮会比差速器壳体转得慢,这就相当于行星齿轮带动左侧半轴会更费力,这时行星齿轮就会产生自传,把更多的扭矩传递到右侧半轴齿轮上,由于行星齿轮的公转外加自身的自传,导致右侧半轴齿轮会在差速器壳体转速的基础上增速,这样以来右车轮就比左车轮转得快,从而使车辆实现顺滑的转弯。

● 普通差速器的弊端:
现在有一个问题:如果一侧驱动轮失去抓地力为什么车辆就无法前行?那是因为当一侧车轮失去抓地之后,相当于这一侧车轮的阻力为0,而另一侧车轮的阻力相对于失去抓地的这一侧来说太大了,在跟着壳体做公转的同时,差速器内的行星齿轮自身还会疯狂的自转,把动力源源不断的传递到失去抓地的那一侧车轮,因此车子只会呆在原地不动。

这也是为什么很多高性能车要装备限滑差速器。

限滑差速器的作用是若左右半轴的转速差过大,限滑差速器会锁止普通差速器,让动力能够在左右两侧半轴合理分配。

而一些专业的越野车装备四驱装置和差速锁,在抓地力不足的情况下通过手动控制或者电子设备会自动把差速器锁止,此时差速器就不起作用了,动力被平均分配到四个车轮上帮助车辆拜托困境,关于四驱装置的原理会在之后的文章中做具体讲解。

相关文档
最新文档