差速器工作原理

合集下载

简述差速器的结构及工作原理

简述差速器的结构及工作原理

差速器的结构及工作原理一、引言差速器是汽车传动系统中的重要部件之一,它在车辆转弯时起到关键作用。

本文将详细介绍差速器的结构和工作原理。

二、差速器的结构差速器主要由以下几个部分组成:1. 主齿轮主齿轮是差速器的核心部件之一,它由一组齿轮组成,通常是一对大小相等的齿轮。

主齿轮直接与车辆的传动轴相连,负责传递动力。

2. 左右半轴差速器的左右半轴分别与左右车轮相连,它们通过差速器的齿轮系统与主齿轮相连。

左右半轴负责传递主齿轮传递过来的动力到车轮。

3. 行星齿轮差速器中的行星齿轮组件是一个重要的结构,它由多个行星齿轮和一个太阳齿轮组成。

行星齿轮通过齿轮的啮合与主齿轮相连,太阳齿轮则与左右半轴相连。

4. 差速器壳体差速器壳体是差速器的外部保护结构,它起到固定和保护差速器内部零部件的作用。

差速器壳体通常由铸铁制成,具有足够的强度和刚性。

三、差速器的工作原理差速器的工作原理可以简单概括为:在直线行驶时,左右车轮需以相同的速度旋转;在转弯时,左右车轮的旋转速度可以不同。

具体来说,差速器的工作原理如下:1. 直线行驶时当车辆直线行驶时,主齿轮将动力传递给左右半轴,而行星齿轮组件则起到传递动力的作用。

由于行星齿轮的特殊结构,左右半轴的旋转速度相等,左右车轮以相同的速度旋转。

2. 转弯时当车辆转弯时,内侧车轮需要行驶更短的路径,而外侧车轮需要行驶更长的路径。

为了实现这种差异,差速器的行星齿轮组件开始发挥作用。

当车辆转弯时,内侧车轮会遇到阻力,使得行星齿轮组件中的行星齿轮被阻止旋转。

而外侧车轮则没有受到阻力,行星齿轮组件中的行星齿轮可以自由旋转。

因此,行星齿轮组件的自由旋转导致左右半轴的旋转速度差异,使得内侧车轮旋转速度较低,而外侧车轮旋转速度较高。

这样,车辆可以顺利完成转弯动作。

四、差速器的优势与应用差速器在汽车传动系统中有着重要的优势和应用:1. 提高车辆操控性能差速器可以使车辆在转弯时更加稳定和灵活,提高操控性能。

差速器原理

差速器原理

差速器原理
差速器是一种广泛应用的驱动系统,使用两个转动部件驱动关节产生转矩和转速的差异。

它被广泛用于给汽车、汽艇和其他机械设备提供动力,以改善其表现和性能。

差速器是一种高效的传动机构,也被称为增效器。

它可以在液压变矩器和电机之间提供机械传动和流体动力分开,使得输出转矩和转速可以有效地控制。

差速器的工作原理是,使用两个相互靠近的轴,用来传输动力,它们的转矩和转速的差异就可以实现控制。

例如,在汽车中,差速器使两个驱动轮在不同驱动状态下有不同的转速和转矩,以提高汽车的制动和加速能力;在风力发电机中,差速器使用两个轴,其中一个轴可以处理高速转动,而另一个轴可以处理低速转动,从而最大限度地利用风力能量。

差速器的结构包括轴销、齿轮、传动轮和轴承。

轴销能够支撑转子,确保其正确的旋转;齿轮将动力从轴承传输给转子;传动轮可以使轴的动力转变,以达到输出的期望;轴承则用来支撑转子,以确保其正确的旋转。

如上所述,差速器是一种常见的机械系统,它的工作原理是利用两个协调工作的轴,以达到控制转速和转矩的目的。

它可以用于汽车、风力发电机和其他机械系统中。

它的结构包括轴销、齿轮、传动轮和轴承。

在未来,差速器还将继续发挥重要作用,继续为机械系统提供动
力。

它将为汽车、汽艇和其他设备提供更好的性能,从而提高它们的能源效率。

另外,随着技术的发展,差速器的结构和性能也将有所改进,以应对新的应用。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种常见的机械装置,广泛应用于汽车、工程机械和其他需要转向控制的设备中。

它的主要作用是平衡车轮的转速差异,使车辆能够顺利转弯并保持稳定性。

下面将详细介绍差速器的工作原理。

一、差速器的组成部份差速器主要由齿轮组成,包括主齿轮、行星齿轮、卫星齿轮和差速齿轮。

主齿轮与动力源相连,行星齿轮与车轮相连,卫星齿轮与行星齿轮相连,差速齿轮则连接了两个行星齿轮。

二、差速器的工作原理当车辆直线行驶时,主齿轮带动行星齿轮转动,行星齿轮通过卫星齿轮传递动力给车轮,车轮以相同的速度旋转。

这时,差速器的差速齿轮不起作用,车轮之间的转速差异为零。

当车辆转弯时,车轮之间的行驶半径不同,内侧车轮行驶的距离较短,转速较慢,而外侧车轮行驶的距离较长,转速较快。

这时,差速器的差速齿轮开始发挥作用。

差速齿轮连接了两个行星齿轮,当车辆转弯时,内侧车轮的行星齿轮转速较慢,而外侧车轮的行星齿轮转速较快。

差速齿轮的作用是让两个行星齿轮之间的转速差异得到平衡,以保持车轮的稳定性。

差速齿轮的设计原理是利用齿轮的相对运动来平衡转速差异。

当车辆转弯时,内侧车轮的行星齿轮转速较慢,差速齿轮会自动调整位置,使得其与内侧车轮的行星齿轮相连,从而降低内侧车轮的转速。

同时,差速齿轮与外侧车轮的行星齿轮之间的相对速度增加,从而提高外侧车轮的转速,以平衡车轮之间的转速差异。

三、差速器的优点和应用差速器的工作原理使得车辆在转弯时能够更加稳定,减少了车轮之间的磨擦和磨损。

同时,差速器还能够提高车辆的通过性能,在不同路况下保持车轮的附着力,提高车辆的牵引力和操控性。

差速器广泛应用于各种车辆和工程机械中,特殊是四轮驱动和多轴驱动的车辆。

它在汽车、卡车、越野车、拖拉机等交通工具中起到关键作用,使得车辆能够平稳转弯并保持稳定性。

此外,差速器还被应用于工程机械中,如挖掘机、装载机等,以提高其操控性和通过性能。

总结:差速器是一种能够平衡车轮转速差异的机械装置,通过差速齿轮的设计原理,使得车辆能够在转弯时保持稳定性。

简述差速器的工作原理

简述差速器的工作原理

简述差速器的工作原理
差速器是一种用于传递动力并保持车辆稳定性的装置,主要应用于四驱车辆的驱动系统中。

差速器的工作原理可以通过以下几点来简述:
1. 动力传递:车辆的动力由发动机通过传动装置传递给驱动轴,然后再传递给车轮。

差速器作为传动装置的一部分,主要负责将发动机输出的动力传递给驱动轴。

2. 差速功能:差速器的关键作用是解决车辆转弯时内外轮速度差异的问题。

当车辆转弯时,内侧轮子需要比外侧轮子更短的路程来完成同样的转弯角度,因此内外轮的旋转速度会有所不同。

3. 齿轮组设计:差速器内部采用了齿轮组。

通常情况下,差速器的齿轮组包括主齿轮、行星齿轮和管轴齿轮等组件。

主齿轮通过传动皮带或链条与发动机相连,而驱动轴则连接到主齿轮与行星齿轮之间。

行星齿轮由管轴齿轮连接,在转向时,行星齿轮的转动速度会改变。

4. 差速效应:当车辆转弯时,行星齿轮的转速会改变,内外轮的转速差异也会导致差速器快速转动。

这时,行星齿轮与管轴齿轮之间的摩擦会产生一个反力矩,使差速器的输出扭矩分配给内外轮不同,从而实现内外轮的不同转速。

5. 稳定性:差速器的工作原理可以保持车辆的稳定性。

当车辆行驶直线时,差速器允许内外轮以相同速度旋转,传递相同的
扭矩。

而在转弯时,差速器根据需要调整内外轮的转速差异,从而防止车辆因为内外轮转速不同而失去稳定性。

总的来说,差速器通过差速效应来实现车辆行驶时内外轮的速度调整,确保车辆转弯时的稳定性,同时保证车辆在直线行驶时的正常动力传递。

这一工作原理使得驱动力在不同的路况下得到了合理的分配和调节,提高了车辆的操控性和驾驶舒适度。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种用于传动系统的装置,主要用于解决车辆转弯时内外两个轮胎转速不同而产生的问题。

它由一组齿轮组成,通过差速器,车辆能够平稳地转弯,并且保持驱动力分配到两个轮胎上。

差速器的工作原理可以通过以下几个方面来解释:1. 齿轮传动:差速器由一组齿轮组成,包括差速齿轮、行星齿轮和太阳齿轮。

其中差速齿轮连接到车辆的驱动轴,行星齿轮与差速齿轮相连,太阳齿轮与车轮相连。

当车辆直行时,差速齿轮和行星齿轮一起旋转,太阳齿轮也会以相同的速度旋转,使两个车轮以相同的速度转动。

2. 转弯时的差速作用:当车辆转弯时,内外两个轮胎的转速会有所不同。

这是因为内侧轮胎在转弯时行驶的距离较短,而外侧轮胎行驶的距离较长。

差速器的作用就是在转弯时,自动调整内外两个轮胎的转速差异,使车辆能够平稳地转弯。

3. 差速齿轮的作用:差速齿轮是差速器的核心部件,它能够使内外两个轮胎以不同的速度旋转。

当车辆转弯时,差速齿轮会根据内外两个轮胎的转速差异,自动调整齿轮之间的传动比例,使转速较快的轮胎转动更多的齿轮,转速较慢的轮胎转动较少的齿轮,从而使两个轮胎的转速保持一定的差异。

4. 行星齿轮的作用:行星齿轮是差速器中的一个重要组成部分。

它通过与差速齿轮的啮合,将驱动力传递到太阳齿轮上,进而驱动车轮。

在转弯时,行星齿轮会根据差速齿轮的转速差异,自动调整齿轮之间的传动比例,使驱动力分配到内外两个轮胎上,从而保持车辆的平稳性。

总结起来,差速器的工作原理是通过差速齿轮和行星齿轮的协同作用,根据车辆转弯时内外两个轮胎的转速差异,自动调整齿轮之间的传动比例,使驱动力平稳地分配到两个轮胎上,保持车辆的稳定性和可靠性。

这种设计能够有效解决车辆转弯时产生的问题,提高驾驶的安全性和舒适性。

差速器的工作原理

差速器的工作原理

差速器的工作原理
差速器是一种在车辆传动系统中广泛应用的装置,它能够使车辆在转弯时保持稳定性,并且能够将动力传递到车辆的两个驱动轮上。

下面将详细介绍差速器的工作原理。

差速器主要由齿轮组成,包括两个主齿轮和一个行星齿轮。

其中一个主齿轮与驱动轴相连,另一个主齿轮与两个驱动轮相连,行星齿轮则位于两个主齿轮之间。

差速器的工作原理可以通过以下步骤进行解释:
1. 直行状态下:当车辆直线行驶时,两个驱动轮的转速相同,主齿轮和行星齿轮也会以相同的速度旋转。

此时,行星齿轮不会转动,差速器的主要作用是将动力传递到两个驱动轮上。

2. 转弯状态下:当车辆转弯时,内侧的驱动轮需要行驶的距离更短,因此需要更快的转速。

而外侧的驱动轮则需要行驶的距离更长,因此需要较慢的转速。

这就会导致两个驱动轮的转速不同。

3. 差速器的作用:当车辆转弯时,两个驱动轮的转速不同,这就会导致主齿轮和行星齿轮之间的差异。

差速器的作用就是通过行星齿轮的转动来平衡这种差异。

当转速不同的驱动轮开始运动时,行星齿轮会自动转动,并且通过其它齿轮的作用将动力传递给转速较慢的驱动轮。

4. 平衡动力分配:差速器通过调整行星齿轮的转动速度,使得转速不同的驱动轮都能得到适当的动力。

这样,车辆在转弯时能够保持稳定,并且不会出现驱动轮打滑的情况。

总结起来,差速器的工作原理就是通过行星齿轮的转动来平衡转速不同的驱动轮,并且将动力传递到两个驱动轮上。

它的作用是保持车辆在转弯时的稳定性,并
且防止驱动轮打滑。

差速器的设计和工作原理对于车辆的操控性能和行驶安全性起到了重要的作用。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种机械装置,常用于汽车的驱动系统中,它的主要作用是平衡驱动轮的转速差异,使车辆在转弯时能够更加稳定和灵便。

下面将详细介绍差速器的工作原理。

一、差速器的结构差速器通常由环齿、行星齿轮、夹板和齿轮轴等部件组成。

环齿是差速器的外部齿轮,与驱动轴相连;行星齿轮由多个小齿轮组成,与驱动轮相连;夹板连接行星齿轮和环齿,起到连接和平衡的作用;齿轮轴是连接差速器和驱动轮的轴。

二、差速器通过行星齿轮的运动来实现驱动轮的差速平衡。

当车辆直线行驶时,驱动轮转速相同,差速器的行星齿轮处于静止状态,夹板将环齿和行星齿轮连接在一起,驱动轮同时转动。

当车辆转弯时,内侧驱动轮需要转动的距离比外侧驱动轮更短,这就导致了两者的转速差异。

差速器的作用就是平衡这种转速差异,使得车辆能够顺利转弯而不浮现滑动或者打滑的情况。

当车辆转弯时,内侧驱动轮的转速较慢,行星齿轮也会相应地减速。

夹板会受到行星齿轮的阻力,因此夹板会向外侧挪移,使环齿和行星齿轮脱离连接。

这样,内侧驱动轮的转速可以相对自由地减慢,而外侧驱动轮则可以继续以较快的速度转动。

当车辆转弯结束后,差速器会自动恢复到直线行驶状态。

夹板会受到环齿的推力,重新将环齿和行星齿轮连接在一起,驱动轮再次同时转动。

三、差速器的优势差速器的工作原理使得车辆在转弯时更加稳定和灵便。

它能够平衡驱动轮的转速差异,减少驱动轮之间的滑动,提高车辆的牵引力和操控性能。

同时,差速器还能够减少车辆传动系统的负荷,延长整个驱动系统的使用寿命。

四、差速器的应用差速器广泛应用于汽车的驱动系统中,特殊是后驱车辆和四驱车辆。

它在转弯、过坎和路面不平等情况下发挥着重要作用,保证了车辆的稳定性和可靠性。

除了汽车领域,差速器也被用于其他机械设备中,如工程机械、农业机械和工业机械等。

它们在相应的领域中起到平衡转速差异的作用,提高机械设备的性能和效率。

总结:差速器是一种重要的机械装置,它通过平衡驱动轮的转速差异,使车辆在转弯时更加稳定和灵便。

差速器的工作原理

差速器的工作原理

差速器的工作原理差速器是一种重要的汽车传动装置,它在车辆转弯时起到平衡驱动力的作用。

差速器的主要功能是使车轮能够以不同的速度旋转,以适应车辆在转弯时内外侧车轮的行驶距离不同的情况,从而保证车辆的稳定性和操控性。

差速器由齿轮组成,主要包括齿轮壳、齿轮、轴承和齿轮轴等部件。

当车辆行驶直线时,差速器的齿轮会以相同的速度旋转,从而实现驱动力的均衡传递。

然而,在车辆转弯时,内外侧车轮的行驶距离不同,如果没有差速器的作用,会导致车辆发生滑动或转向困难。

差速器通过齿轮的设计和布置来实现不同车轮的旋转速度差异。

一般而言,差速器中有两个主要的齿轮,一个是主动齿轮,另一个是从动齿轮。

主动齿轮由发动机输出的动力传递给差速器,而从动齿轮则分别与左右两侧的车轮相连。

当车辆行驶直线时,主动齿轮会将动力平均地传递给两个从动齿轮,使其以相同的速度旋转。

然而,当车辆转弯时,内侧车轮需要行驶的距离较短,而外侧车轮需要行驶的距离较长。

差速器的设计就是为了解决这个问题。

差速器中的齿轮布置使得从动齿轮能够相对于主动齿轮发生一定的旋转差异。

当车辆转弯时,内侧车轮需要旋转的速度较慢,而外侧车轮需要旋转的速度较快。

差速器通过使从动齿轮相对于主动齿轮旋转一定的角度,使得内外侧车轮能够以不同的速度旋转,从而保证车辆的稳定性。

差速器的工作原理可以用以下流程来描述:1. 当车辆行驶直线时,主动齿轮将动力平均地传递给两个从动齿轮,使其以相同的速度旋转。

2. 当车辆转弯时,内侧车轮需要旋转的速度较慢,而外侧车轮需要旋转的速度较快。

3. 差速器的设计使得从动齿轮相对于主动齿轮发生一定的旋转差异,使内外侧车轮能够以不同的速度旋转。

4. 通过差速器的作用,车辆能够在转弯时保持稳定性和操控性。

差速器的工作原理是保证车辆在转弯时能够灵活适应不同车轮行驶距离的关键。

它的设计和布置使得车辆能够平稳地转弯,避免了滑动和转向困难的问题。

差速器在汽车传动系统中起到了至关重要的作用,它的性能和工作状态对车辆的操控性和驾驶体验有着重要的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【什么是差速器?以及差速器工作原理】
差速器具有三种功能:
•把发动机发出的动力传输到车轮上;
•充当汽车主减速齿轮,在动力传到车轮之前将传动系的转速减下来
•将动力传到车轮上,同时,允许两轮以不同的轮速转动
为什么需要差速器?
当汽车转向时,车轮以不同的速度旋转。

在这个图中你可以看到,在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。

因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。

同时需要注意的是:前轮较之后轮,所走过的路程是不同的。

对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。

由于它们之间没有相互联结,它们彼此独立转动。

但是两主动轮间相互是有联系的。

因此一个引擎或一个变速箱可以同时带动两个车轮。

如果你的车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。

这会导致汽车转向困难。

此时,为了使汽车能够转弯,一个轮胎将不得不打滑。

对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件产生很大的应力。

差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

差速器的在汽车上的应用
现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。

这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。

这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。

差速器的结构
典型的差速器结构图
1-轴承;2和8-差速器壳;3和5-调整垫片;6-行星齿轮;7-从动锥齿轮;4-半轴齿
轮;9-行星齿轮轴;
差速器最基本的结构由差速器从动齿轮(图中的7)、差速器壳体、行星齿轮轴、行星齿轮、半轴齿轮组成;
1-输入轴(将驱动差速器从动齿轮);2-差速器壳体;3-行星齿轮;4-半轴齿轮(驱动
两侧传动轴输出);
差速器结构图
说明:这里的框架即是差速器壳体;太阳齿轮即是所说的半轴齿轮;
如果想要改善这个现象使车辆在转弯时能够变的较为顺畅,就要让左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。

为了解决这个问题,一百年前,法国Renault (雷诺)汽车的创始人Louis Renault,就发明了差速器这个东西。

差速器的内主要是由螺旋环状齿轮(主齿轮)、行星齿轮和左右轴齿轮所组成的,有了差速器车辆在转弯时动力会透过变速箱,主传动轴将动力传至差速器使大的螺旋环状齿轮转动,在转弯时二边车轮的转速虽然不同,但透过行星齿轮后可自行调节左右车轮不同的速差,使车辆顺利的完成转弯的动作。

透过文字可能比较难懂,因此我们找了影片让大家一看就能了解它的作动原理。

虽然有了差速器可让车轮顺利的完成转弯的动作,但当有一轮驱动轮打滑或空转时,车辆将会失去前进的动力。

这主要是因为当一侧车轮失去抓地力时,这一轮的阻力为零,而另一侧车轮的阻力却很大,在螺旋环状齿轮转动的同时,调节车轮转速的行星齿轮也会不停的一直自转,把动力源源不断的传递到失去抓地力的那一轮,而使车辆无去前进只能呆在原地不动。

为了解决这种情况的发生,事必要对差速器的作动进行某种程度的限制,因此就出现了限滑差速器和差速器锁定这类特殊的差速器。

差速器工作原理
整个差速器系统的核心是四个齿轮:两个行星齿轮和两个与传动轴相连的半轴齿轮。

这四个齿轮都在差速器壳内,这个壳体连接着传动轴(图中①),本身也要转动,在行驶时它的转动方向与车轮转动方向相同。

我们可以用一个球体来解释差速器问题!我们假设这个球体和地球一样有两个极点,并且以两极的连线为轴进行自传,这个球体可以理解为差速器壳体,这个壳体的两极连接的就是汽车的左右半轴。

这里安装着两个半轴齿轮,两齿轮中心的连线就是差速器壳体转动的轴线(图中②、④)。

除了两个半轴齿轮外还有两个行星齿轮(图中③)。

理解两个行星齿轮的状态是理解差速原理的关键。

还拿刚才所说的球体来举例,两个齿轮是对向安装并且与半轴齿轮垂直,相当于6点钟和12点钟位置。

这两个齿轮经常要朝相反方向转动,从而实现差速作用。

壳体在自传过程中会带着两个齿轮做公转。

这四个齿轮虽然安装在壳体内部但都是可以独立于差速器壳体转动的,只不过它们相互咬合在一起,每个齿轮的两边都咬合着另外两个齿轮(每个半轴齿轮都咬合着两个行星齿轮,每个行星齿轮都咬合着两个半轴齿轮),只要其中一个齿轮转动都会牵扯到其他三个齿轮一起转动,而且其中一个齿轮朝某个方向转动,与它相对的另一边齿轮必定朝反方向转动!这个现象可以通过实验来证实:
如果把一辆车的两个驱动轮都悬空,转动一边的车轮,另一侧车轮会朝相反方向转动。

『车辆直行时差速器状态』
直线行驶时的特点是左右两边驱动轮的阻力大致相同。

从发动机输出的动力首先传递到差速器壳体上使差速器壳体开始转动。

接下来要把动力从壳体传递到左右半轴上,我们可以理解为两边的半轴齿轮互相在“较劲”,由于两边车轮阻力相同,因此二者谁也掰不过对方,因此差速器壳体内的行星齿轮跟着壳体公转同时不会产生自转,两个行星齿轮咬合着两个半轴齿轮以相同的速度转动,这样汽车就可以直线行驶了!
『一侧车轮遇到阻力』
假设车辆现在向左转,左侧驱动轮行驶的距离短,相对来说会产生更大的阻力。

差速器壳体通过齿轮和输出轴相连,在传动轴转速不变情况下差速器壳体的转速也不变,因此左侧半轴齿轮会比差速器壳体转得慢,这就相当于行星齿轮带动左侧半轴会更费力,这时行星齿轮就会产生自传,把更多的扭矩传递到右侧半轴齿轮上,由于行星齿轮的公转外加自身的自传,导致右侧半轴齿轮会在差速器壳体转速的基础上增速,这样以来右车轮就比左车轮转得快,从而使车辆实现顺滑的转弯。

相关文档
最新文档