电力系统频率调整
电力系统频率调节

第一节 安全用电知识
二、安全距离 为了保证电气工作人员在电气设备运行操作、维护检修时不致误碰带
电体,规定了工作人员离带电体的安全距离;为了保证电气设备在正常运 行时不会出现击穿短路事故,规定了带电体离附近接地物体和不同相带 电体之间的最小距离。安全距离主要有以下几方面: 1.设备带电部分到接地部分和设备不同相部分之间的距离,如表7-1所 示; 2.设备带电部分到各种遮栏间的安全距离,如表7-2所示; 3.无遮栏裸导体到地面间的安全距离,如表7-3所示; 4.电气工作人员在设备维修时与设备带电部分间的安全距离,如表7-4 所示。
由上式可知,要控制发电机频率就得控制机组转速。 在稳态电力系统,机组发出的功率与整个系统的负荷功率加上系统总损
耗之和是相等的。
下一页 返回
4. 1电力系统的频率特性
当系统的负荷功率增加时,系统就出现了功率缺额。此时,机组的转速 下降,整个系统的频率降低。
可见,系统频率的变化是由于发电机的负荷功率与原动机输入功率之间 失去平衡所致,因此调频与有功功率调节是分不开的。
流 可达正常电流的几十倍甚至上百倍,产生的热量(正比于电流的平方)是 温度上升超过自身和周围可燃物的燃点引起燃烧,从而导致火灾。 (2)过载引起电气设备过热选用线路或设备不合理,线路的负载电流量 超过了导线额定的安全载流量,电气设备长期超载(超过额定负载能力), 引起线路或设备过热而导致火灾。
(1)具有足够大的容量和可调范围。 (2)允许的出力调整速度满足系统负荷变化速度的要求。 (3)符合经济运行原则。 (4)联络线上交换功率的变化不致影响系统安全运行。
上一页 下一页 返回
4. 1电力系统的频率特性
水轮发电机组的出力调整范围大,允许出力变化速度快,一般宜选水电 厂担任调频。
电力系统的电压和频率调节

电力系统的电压和频率调节电力系统中的电压和频率调节是确保供电系统稳定、高效运行的关键措施。
在电力系统中,电压和频率的调节对于保持用电设备的正常运行以及保障用户的电能质量至关重要。
本文将探讨电力系统中电压和频率调节的原理、方法以及相关控制策略。
一、电压调节1. 电压调节的重要性电力系统中的电压调节是对电压进行稳定控制的过程。
电压的稳定控制是为了保持用电设备在正常范围内工作,同时保证电能质量。
过高或过低的电压都会对电力设备的正常运行产生不利影响,甚至导致设备故障。
2. 电压调节的原理电压调节的原理是通过调整发电机励磁电流或变压器的变比来实现。
在电力系统中,通过自动电压调节器(AVR)调节发电机励磁电流,来控制电压。
同时,变压器的变比调整也可以实现电压调节。
3. 电压调节的方法电压调节的方法主要包括电力系统的无功功率补偿、发电机励磁控制和变压器的变压器调节等。
无功功率补偿通过调整无功功率的流动来改变电网的电压;发电机励磁控制通过调节励磁电流来控制发电机输出电压;变压器调节通过调节变压器的变比来实现电网电压的调整。
二、频率调节1. 频率调节的重要性在电力系统中,频率的稳定性对于保证电力设备的运行和电能质量是至关重要的。
电网的负荷波动、运行状态的变化等因素都会导致频率的波动。
频率的稳定性是确保用电设备正常运行的基础。
2. 频率调节的原理频率调节的原理是通过调节电力系统的发电量来实现。
在电力系统中,发电量和负荷之间必须保持平衡,以维持频率的稳定。
当负荷增加时,发电量也需要增加,以保持频率不变。
3. 频率调节的方法频率调节的方法包括机械调节和自动调节两种方式。
机械调节是通过人工干预来调节机组的负荷和发电量,以维持频率的稳定。
而自动调节则通过采用自动调节装置来实现。
现代电力系统中,自动频率调节器(AGC)是常用的调节装置,它可以自动监测频率的变化并控制机组负荷的调整。
三、电压和频率调节的控制策略1. 电压和频率的联合调节为了确保电力系统供电稳定、高效运行,电压和频率调节是需要相互协调的。
电力系统有功功率的平衡与频率调整

i1
(2)约束条件:
n
n
等式约束: 有功功率必须保持平衡
PGi PLi P
i 1
i 1
若忽略网损,则
n
n
PGi PLi 0
i 1
i 1
不等式约束: 系统的运行限制
PGi min PGi PGi max QGi min QGi QGi max Ui min Ui Ui max
解:按等耗量微增准则
1
dF1 dPG1
0.3 0.0014PG1
2
dF09PG3
PG1 14.29 0.572PG2 0.643PG3 PG1 PG2 PG3 400
1 2 3
第五章 电力系统有功功率的平衡和频率调整
5.2.1电力系统负荷的有功功率—频率静态特性
描述系统有功负荷随频率变化的关系曲线称为负荷的有功功率-频
率静态特性。简称负荷频率特性。
电力系统中各种用电设备与频率的关系大致如下
1)与频率变化无关的负荷,如照明,电阻炉等电阻性负荷
2)与频率变化成正比的负荷,如拖动金属切削机床的异步电动机
PL PLN
—系统频率为 —系统频率为
(2)运行中不宜承担急剧变化的负荷。 (3)一次投资大,运行费用小。
(应二指)出各: 类发电厂的合理组合 原则(枯1水)充季分节利往用往水由源系。统中的大型水电厂承担调频任务;洪水季
节(这2)任降务低火就电转机移组给的中单位温煤中耗压,火发电挥厂高.效抽机水组蓄的作能用电。厂在其发电 期间也可参加调频.但低温低压火电厂则因容量不足,设备
束条件如下:
F1 4 0.3PG1 0.0007PG21 100MW PG1 200MW
F2 3 0.32PG2 0.0004PG22 120MW PG2 250MW
电力系统的三种调频方式

电力系统一次、二次、三次调频的特点
频率调整,又称频率控制,是电力系统中维持有功功率供需平衡的主要措施,其根本目的是保证电力系统的频率稳定。
电力系统频率调整的主要方法是调整发电功率和进行负荷管理。
按照调整范围和调节能力的不同,频率调整可分为一次调频、二次调频和三次调频。
一次调频是指当电力系统频率偏离目标频率时,发电机组通过调速系统的自动反应,由发电机组调速器自动实现的不改变变速机构位置的调节过程,调整有功出力以维持电力系统频率稳定。
一次调频的特点是响应速度快,但是只能做到有差控制,是对第一种负荷变动引起的频率偏差进行调节。
二次调频也称为自动发电控制(AGC),是指发电机组提供足够的可调整容量及一定
的调节速率,在允许的调节偏差下实时跟踪频率,以满足系统频率稳定的要求。
需要运行人员手动或者自动操作调速器,使发电机的频率特性平行地上下移动,进而调整负荷,使频率保持不变。
二次调频可以做到频率的无差调节,且能够对联络线功率进行监视和调整。
三次调频即有功功率经济分配,其实质是完成在线经济调度,其目的是在满足电力系
统频率稳定和系统安全的前提下合理利用能源和设备,以最低的发电成本或费用获得更多
的、优质的电能。
电力系统频率调整也是电力市场的重要组成部分。
简述电力系统频率一次调整和二次调整的基本原理。

简述电力系统频率一次调整和二次调整的基
本原理。
电力系统频率一次调整是指在电网负荷发生突变时,通过控制发电机组的输出功率来维持电力系统的频率稳定。
其基本原理是根据频率与负荷之间的关系,通过调节负荷和发电机组的输出来平衡供需关系,从而使得系统频率保持恒定。
一次调整中,当负荷增加时,电力系统频率下降。
为了使频率恢复到额定值,需要增加发电机组的输出功率。
系统通过频率保护装置检测频率下降,然后发出信号给发电机组调速器,调整发电机的机械输入。
如果频率下降较小,则调速器使发电机提供更多的功率;如果频率下降较大,则调速器使发电机提供最大功率。
电力系统频率二次调整是指在电力系统频率下降或上升到一定范围内时,通过发电机组与负荷之间的功率交换来调整频率。
其基本原理是利用电力系统的惯性效应和动态响应特性来实现频率的稳定。
二次调整中,当频率下降时,发电机组的机械输入超过负荷需求,此时就有多余的功率可以反馈到电力系统中。
这些功率会使频率上升,直到达到额定频率为止。
同样地,当频率上升时,发电机组的机械输入小于负荷需求,此时电力系统需要额外的功率。
这些功率由电力系统中负荷释放,从而使频率下降,直到达到额定频率为止。
总体而言,一次调整通过控制发电机组的输出功率来维持电力系统的频率稳定,二次调整则通过发电机组与负荷之间的功率交换来调整频率。
两者相互配合,使得电力系统能够在负荷变化时保持频率稳定。
电力系统的频率稳定与调节

电力系统的频率稳定与调节电力系统是现代社会中至关重要的基础设施之一。
为了保证电力系统的稳定运行,频率的稳定与调节是最为关键的因素之一。
本文将探讨电力系统频率的稳定与调节机制,并分析影响频率稳定的因素以及调节的方法和技术。
一、频率稳定的重要性频率是电力系统中最基本的参数之一,通常以赫兹(Hz)为单位表示。
电力系统的稳定运行需要保持合适的频率范围,一般为50Hz或60Hz。
频率的稳定性直接影响到电力系统的供电质量和用户的正常用电。
如果频率不稳定,会导致电压波动、设备故障以及电力系统的不可靠性,甚至可能引发停电事故,给社会经济发展带来严重影响。
二、频率稳定的主要因素1. 负荷变化:负荷的增加或减少将直接影响到电力系统的频率。
当负荷增加时,电力需求增大,如果供电能力无法满足需求,则会导致频率下降。
反之,当负荷减少时,供电能力大于需求,可能会导致频率上升。
因此,负荷变化是影响频率稳定的主要因素之一。
2. 发电机调节能力:发电机作为电力系统的核心组成部分,其调节能力对频率稳定至关重要。
通过调整发电机的励磁和机械控制,可以控制输出功率和频率。
发电机的调节能力越强,频率调节越稳定。
3. 动力系统的机械阻尼:电力系统中的机械阻尼是通过转子惯性和机械负载实现的。
机械阻尼能够吸收短期负荷波动对频率的影响,提高系统的稳定性。
4. 频率调节器的准确性:频率调节器是用来监测并调节电力系统的频率的重要设备。
调节器的准确性越高,调节频率的效果越好。
三、频率调节的方法和技术1. 发电机速度调整:通过调整发电机的转速来改变其输出频率。
这需要精确的发电机控制系统,并配备高效的调速装置,以实现快速而准确的频率调节。
2. 发电机励磁调整:通过调整发电机的励磁电流来改变其输出频率。
励磁系统的优化设计和高精度的励磁调节装置可以实现精确的频率控制。
3. 负荷控制:通过调整负荷的供电方式和运行模式,实现对电力系统频率的调节。
例如,在面临频率下降的情况下,可以通过优化负荷分配和控制负荷的投入时间,来保持频率稳定。
电力系统自动调频方法

电力系统自动调频方法
电力系统自动调频是指通过控制发电机的发电频率,使其与负荷需求保持平衡的方法。
常见的电力系统自动调频方法包括以下几种:
1. 频率响应机制:根据系统频率变化情况,自动调整发电机的发电频率。
当系统频率下降时,调频机构会自动增加发电机输出功率,以保持频率稳定。
当系统频率升高时,调频机构会自动减少发电机输出功率。
2. 负荷跟随机制:根据系统负荷需求的变化情况,自动调整发电机的发电频率。
当负荷需求增加时,调频机构会自动增加发电机输出功率,以满足负荷需求。
当负荷需求减少时,调频机构会自动减少发电机输出功率。
3. 频率和功率协调机制:综合考虑系统频率和负荷需求的变化情况,自动调整发电机的发电频率和输出功率。
通过使用预测模型和优化算法,调频机构可以实时计算出最优的发电机输出功率,以实现系统频率稳定和负荷需求满足的双重目标。
通过这些自动调频方法,电力系统可以实现频率的稳定和负荷需求的平衡,提高系统的可靠性和稳定性。
同时,这些方法还可以减少系统频率的波动,降低供电误差,提高电网的能效和经济性。
电力系统频率调节策略

电力系统频率调节策略电力系统是现代社会重要的基础设施之一,其稳定运行对保障社会经济的正常运转至关重要。
而电力系统中频率的稳定调节也是确保电力供应质量的重要因素之一。
本文将探讨电力系统频率调节的策略,并介绍一些常见的应用方法。
一、电力系统频率调节的重要性电力系统的频率是指电力系统运行时交流电的频率,通常为50Hz 或60Hz。
频率的稳定对于电力系统中用户电器设备的正常运行至关重要。
若频率偏离正常值,会导致电器设备损坏甚至故障,对整个社会经济活动造成巨大影响。
二、1.燃煤电厂调节策略燃煤电厂是电力系统中常见的发电方式之一,其频率调节策略通常通过调整燃烧过程来实现。
具体来说,可以通过控制煤粉的供给量、风门的开度等参数来调节发电量,从而实现频率的调节。
2.水电站调节策略水电站是另一种常见的发电方式,其频率调节策略通常通过调整水流量来实现。
当电力系统频率偏高时,可以增大水电站的出力,增加发电量;当频率偏低时,可以减小水电站的出力,降低发电量,从而实现频率的调节。
3.新能源发电调节策略随着新能源的快速发展,如风力发电、光伏发电等,其频率调节面临着一定的挑战。
为了确保新能源的并网稳定,可采取将新能源与传统发电方式相结合的方式。
这样,当频率偏离正常值时,可通过调节传统发电方式来实现频率的调节。
三、电力系统频率调节的应用方法1.频率响应频率响应是电力系统中常用的一种频率调节方法。
当系统频率偏离正常值时,电力系统会启动调频控制,通过调整发电机的机械输出功率来调节发电量,从而实现频率的稳定。
2.备用容量除了频率响应外,备用容量也是一种重要的频率调节手段。
备用容量包括机组快速启动和备用发电机组等,当系统频率偏离正常值时,可以通过调用备用容量来增加或减少发电量,从而实现频率的调节。
3.电力市场调节电力市场调节是一种经济调节方法,通过设置电力市场价格,引导发电企业调整发电量,从而实现频率的调节。
当频率偏高时,提高电力市场价格,吸引发电企业增加发电量;当频率偏低时,降低电力市场价格,鼓励发电企业减少发电量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统负荷可分为三种。
第一种变动幅度很小,周期又很短,这种负荷变动由很大的偶然性。
第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲击性的负荷。
第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变化引起的负荷变动。
电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。
一次调整或频率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。
二次调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调整。
三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。
在潮流计算中除平衡节点外其他节点的注入有功功率之所以可以给定,就是由于系统中大部分电厂属于这种类型。
这类发电厂又称为负荷监视。
至于潮流计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频任务的发电厂母线。
一:调整频率的必要性电力系统频率变动时,对用户的影响:用户使用的电动机的转速与系统频率有关。
系统频率的不稳定将会影响电子设备的工作。
频率变动地发电厂和系统本身也有影响:火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少,影响锅炉的正常运行。
低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片断裂。
低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使发电机定子和转子的温升都将增加。
为了不超越温升限额,不得不降低发电机所发功率。
低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。
也为了不超越温升限额,不得不降低变压器的负荷。
频率降低时,系统中的无功功率负荷将增大。
而无功功率负荷的增大又将促使系统电压水平的下降。
频率过低时,甚至会使整个系统瓦解,造成大面积停电。
调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统,特别时其中的调速器和调频器(又称同步器)。
二:发电机原动机有功功率静态频率特性电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。
原动机未配置自动调速时,其机械功率与角速度或频率的关系:221212m P C C C f C f ωω=-=-式中各变量都是标幺值;通常122C C =。
解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩都适中,它们的乘积最大,功率输出最大。
调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,使有一次调整的静态频率特性曲线平行移动,有调频器的二次调整后,原动机的运行点就从一根仅有一次调整的静态频率特性曲线过渡到另一根曲线。
三:频率的一次调整/G G K P f =-∆∆称为发电机的单位调节功率,以MW/Hz 或MW/(0.1Hz )为单位。
它的标幺值则是 */G N G G N GN GN P f K K f P P f∆=-=∆ 发电机的单位调节功率标志了随频率的升降发电机组发出功率较少或增加的多少。
这个单位调节功率和机组的调差系数σ互为倒数。
1100%GN G N P K f σσ==⨯ 或 *1100%G K σ=⨯ 调差系数%σ或与之对应的发电机的单位调节功率是可以整定的,一般整定为: 汽轮机组 *%3533.320G K σ==::或水轮机组 *%245025G K σ==::或综合负荷的静态频率特性/L L K P f =-∆∆称为负荷的单位调节功率,也以MW/Hz 或MW/(0.1Hz )为单位。
它的标幺值则是 */L N L L N LN LN P f K K f P P f∆=-=∆ 负荷的单位调节功率标志了随频率的升降负荷消耗功率增加或较少的多少。
它的标幺值在数值上就等于额定条件下负荷的频率调节效应。
所谓负荷的频率调节效应系数系指一定频率下负荷随频率变化的变化率*****/L L L dP P f K df =∆∆= 显然,负荷的单位调节功率不能整定。
电力系统综合负荷的单位调节功率*L K 大致为1.5。
发电机组原动机的频率特性和负荷频率特性的交点就是系统的原始运行点。
设负荷突然增加LO P ∆,则由于负荷突增时发电机功率不能即使随之变动,机组将减速,系统频率将下降。
而在系统频率下降的同时,发电机组的功率将因它的调速器的一次调整作用而增大,负荷的功率将因本身的调节效应而减少。
前者沿原动机的频率特性向上增加,后者沿负荷的频率特性向下减少,经过一个衰减的振荡过程抵达一个新的平衡点。
()LO G L P K K f ∆=-+∆或/LO G L S P f K K K -∆∆=+=S K 称为系统的单位调节功率,也以MW/Hz 或MW/(0.1Hz)为单位。
系统的单位调节功率也可以用标幺值来表示。
以标幺值表示时的基准功率通常就取系统原始运行状态下的总负荷。
系统的单位调节功率标志了系统负荷增加或减少时,在原动机调速器和负荷本身的调节效应共同作用下系统频率下降或上升的多少。
因此,从这个系统的单位调节功率S K 可求取在允许的频率偏移范围内系统能承受多少负荷增减。
可见,系统的单位调节功率取决于两个方面,即发电机的单位调节功率和负荷的单位调节功率。
因为负荷的单位调节功率不可调,要控制、调节系统的单位调节功率只能从控制、调节发电机的单位调节功率或调速器的调差系统入手。
看来主要将调差系数整定得小些或发电机的单位调节功率整定得大些就可以保证频率质量。
但从实际上,系统中不止一台发电机组,调差系统不能整定得过小。
如某台机组已经满载,可认为该机组已不能参加调整,它的调差系数无穷大。
系统的单位调节功率S K 不可能很大,所以依靠调速器进行的一次调整只能限制周期较短、幅度较小的负荷变动引起的频率偏移。
负荷变动周期更长、幅度更大的调频任务自然落到了二次调整上。
四:频率的二次调整频率的二次调整就是手动或自动地操作调频器使发电机的频率特性平行地上下移动,从而使负荷变动引起的频率偏移可保持在允许范围内。
在一次调整的基础上进行二次调整就是在负荷变动引起的频率下降越出允许范围时,操作调频器,增加发电机组发出的功率,使频率特性向上移动。
只进行一次调整时,负荷的增量LO P ∆可分解为两部分:一部分是因调速器的调整作用而增大的发电机组功率'G K f -∆,另一部分是因负荷本身的调节效应而减少的负荷功率'L K f ∆。
不仅进行一次调整而且进行二次调整时,这个负荷增量LO P ∆可分解为三个部分:一部分是由于进行了二次调整,发电机组增发的功率GO P ∆;另一部分仍是由于调速器的调整而增发的发电机功率''G K f -∆;第三部分仍是由于负荷本身的调节效应而减少的负荷功率''L K f ∆。
则: ()LO GO G L P P K K f ∆-∆=-+∆LO GO G L S P P K K K f∆-∆-=+=∆ 如LO GO P P ∆=∆,即发电机组如数增发了负荷功率的原始增量LO P ∆,则0f ∆=,亦即实现了所谓的无差调节。
进行二次调整时,系统中负荷的增减基本上要靠调频机组或调频厂承担。
虽可适当增加其他机组或电厂的单位调节功率以减少调频机组或调频厂的负担,但数值毕竟有限。
这就使调频厂的功率变动幅度远大于其他电厂。
如调频厂不位于负荷中心,则这种情况可能使调频厂与系统其他部分联系的联络线上流通的功率超出允许值。
这样,就出现了在调整频率的同时控制联络线上流通功率的问题。
图中,A B K K 分别为联合前A 、B 两系统的单位调节功率。
设A 、B 两系统中都设有二次调整的电厂,它们的功率变量分别为,GA GB P P ∆∆;A 、B 两系统的负荷变量则分别为,LA LB P P ∆∆。
设联合线上的交换功率AB P ∆,由A 流向B 为正值。
联合前,对A 系统LA GA A A P P K f ∆-∆=-∆对B 系统 LB GB B B P P K f ∆-∆=-∆联合后,通过联络线A 流向B 的交流功率,对A 来说,可以看做一个负荷LA AB GA A A P P P K f ∆+∆-∆=-∆对B 来说,这交换功率看做一个电源LB AB GB B B P P P K f ∆-∆-∆=-∆联合后,系统频率一致, A B f f f ∆=∆=∆ 可得,()()()LA GA LB GB A B P P P P K K f ∆-∆+∆-∆=-+∆或 ()()()LA GA LB GB A B P P P P f K K ∆-∆+∆-∆∆=-+代入上式,()()A LB GB B LA GA AB A B K P P K P P P K K ∆-∆-∆-∆∆=+ 令:,LA GA A LB GB B P P P P P P ∆-∆=∆∆-∆=∆,A B P P ∆∆分别为两系统的功率缺额,则:()A B A B P P f K K ∆+∆∆=-+ A B B A AB A B K P K P P K K ∆-∆∆=+ 可见,联合系统频率的变化取决于这系统总的功率缺额和总的系统单位调节功率。
这理应如此,因两系统联合后,应看做一个系统。
且如A 系统没有功率缺额,即0A P ∆=,则联络线由A 流向B 的功率要增大;而如果B 系统的功率缺额完全由A 系统增发的功率所抵偿,即B A P P ∆=-∆,则0f ∆=,AB B A P P P ∆=∆=-∆。
这种情况下,虽可保持系统频率不变,B 系统的功率缺额B P ∆或A 系统增发的功率A P -∆却要如数通过联络线由A 流向B 传输。
这就是调频厂设在远离负荷中心而且要实现无差调节的情况。
五:频率调整厂的选择这种调频厂必须满足一定的要求,如调整容量应足够大,调整速度应足够快,调整范围内的经济性好,调整时不至引起系统内部或系统间联络线工作的困难,等。
调整速度也是一个重要的问题。
一个容量为5000MW 的系统中,负荷上升的速度可达15-20MW/min 。
但急剧的负荷变动将使火电厂的锅炉、汽轮机受损伤或因燃烧不稳定而熄火。
一般,高温高压锅炉从70%-80%额定负荷上升至满负荷约1-5min ;中温中压锅炉从50%额定负荷上升至满负荷仅需1min ,比较快;汽轮机很慢,在50%-100%额定负荷范围内,每分钟仅达2%-5%。
因此,火电厂中限制调整速度的主要是汽轮机。