单模光纤传输特性及光纤中非线性效应

合集下载

单模光纤特征

单模光纤特征

单模光纤是一种光纤类型,其只能传输单一模式的激光束。

与多模光纤相比,单模光纤具有更高的传输速度和更低的衰减,因此通常用于需要高速、长距离的数据传输和通信应用。

以下是单模光纤的主要特征:
1. 传输速率高:单模光纤能够以极高的速度传输数据,这是由于其低衰减和窄的光束宽度。

这使得单模光纤成为光纤通信和数据传输的理想选择。

2. 传输距离长:由于单模光纤只传输单一模式的激光束,这意味着它不会受到模式色散的影响,这是多模光纤中常见的问题。

因此,单模光纤具有更长的传输距离,这对于需要远距离通信的应用非常重要。

3. 稳定性高:单模光纤具有很高的稳定性,因为它对温度、湿度和机械应力的变化不太敏感。

这使得单模光纤在恶劣环境和移动应用中具有很高的可靠性。

4. 制造精度高:单模光纤的制造需要极高的精度,因为任何小的偏差都可能导致光的散射和衰减。

这通常需要高级的光纤制造技术和设备。

5. 成本较高:由于单模光纤需要高级的光纤制造技术和设备,因此其成本相对较高。

这也限制了单模光纤在某些应用中的普及。

6. 色散管理:虽然单模光纤避免了模式色散的问题,但在高数据率传输中,非模式色散和波导色散会有影响。

这是需要采取一些措施来管理色散问题。

总的来说,单模光纤在高速、长距离数据传输和通信应用中具有很高的优势,但也需要注意色散管理等问题。

随着技术的发展,单模光纤的性能和成本也在不断改进,使其在更多领域得到应用。

单模光纤最短传输距离

单模光纤最短传输距离

单模光纤最短传输距离1.引言1.1 概述引言部分的概述应该简要介绍单模光纤最短传输距离的话题,并指出该话题的重要性和研究现状。

以下是可能的概述内容:概述:单模光纤作为一种重要的光传输介质,其在通信和数据传输领域有着广泛的应用。

传输距离是单模光纤性能的重要指标之一,对于保证光纤通信的可靠性和稳定性十分关键。

随着通信技术的发展和应用需求的不断增加,人们对于单模光纤传输距离的研究也日益重视。

本文将重点探讨单模光纤的最短传输距离,即单模光纤在理论和实际应用中所能够实现的最短传输距离。

了解和确定单模光纤的最短传输距离对于设计和优化光纤通信系统、提高传输效率和降低成本具有重要意义。

目前,关于单模光纤最短传输距离的研究已经取得了一些重要进展。

一方面,研究者们通过理论模型和实验方法探索了单模光纤传输距离的影响因素,包括光衰减、色散、非线性效应等。

另一方面,在光模块、光纤材料、光纤连接技术等方面也进行了持续的技术创新和改进,为单模光纤传输距离的提升提供了基础条件。

本文将系统地解析单模光纤的基本原理和传输距离的影响因素,并探究确定单模光纤最短传输距离的方法和技术。

此外,还将展望单模光纤最短传输距离在通信、数据传输和其他领域的应用前景,以期为相关研究和应用提供参考和启示。

通过对单模光纤最短传输距离的深入研究,我们可以更好地理解和应用单模光纤,提高光传输效率和质量,推动信息通信技术的发展。

1.2文章结构文章结构部分的内容:本文共分为三个部分,分别是引言、正文和结论。

下面将对每个部分进行详细介绍。

引言部分将首先对单模光纤最短传输距离的重要性进行概述。

随着通信技术的不断发展,人们对高速、远距离的数据传输需求日益增加。

然而,单模光纤的最短传输距离是实现高速、远距离光纤通信的基本限制因素之一。

因此,研究单模光纤最短传输距离的影响因素和确定方法对于推动光纤通信技术的发展具有重要意义。

接下来,文章将介绍本文的结构安排。

正文部分将分为两个小节,分别介绍单模光纤的基本原理和单模光纤传输距离的影响因素。

光纤通信中光纤特性分析

光纤通信中光纤特性分析

光纤通信中光纤特性分析光纤通信技术自1970年在我国开始用于通信传输,发展到现在只有短短的三十年时间,但是却已经取得了极其惊人的发展。

由于光纤通信较之其他通信方式具有通信容量大、中继距离长、保密性好且适应能力强等优点,且是选用带宽极宽的光波作为传送信息的载体,为光纤通信技术在我国的推广和使用提供了必要的前提条件。

为了能够更好的认识光纤通信技术,让光纤通信技术向着更高水平的、更高阶段的方向发展,我们可以从光纤的几个特性开始入手。

经过多年的研究和发展,相关工作人员发现光纤的特性主要体现在三个方面,分别是在几何方面的特性、光学方面的特性与传输方面的特性,这三方面特性中又有着极具代表性的特性,分别是非线性特性、色散以及衰耗系数。

一、光纤通信技术第一,光纤通信技术的概述。

从光纤通信的组成结构上来看,主要是由光纤、光源和光检测器这三种通信的基本物质要素构成的,由于是以一种光导纤维为传输媒介的“有线”光通信,所以又可以称之为光导纤维通信。

其中光纤又是包含了内芯和包层两个主要部分。

内芯一般为几十微米直至几微米,所占用的体积非常小,而外面层主要是起保护光纤的作用,因为光纤通信系统所使用的光缆不同于普通的使用单根的光纤的光缆,它使用的是由许多光纤聚集在一起的组成的一组光缆,很有效的杜绝了信息在传播过程中出现信息泄露的现象。

其中在实际应用中,不仅根据光纤自身的制造工艺进行分类,还可以按照光纤的组成材料和光学特性进行分类。

总之,光纤通信技术在我国的发展正在不断的完善过程中。

第二,光纤通信技术的特点:首先是拥有相比于铜线或电缆的极宽频带和超大容量的通信存储空间,科学技术快速发展的今天,我们已经能够使用密集波分复用技术最大化地增添了了光纤的传输容量,解决因终端设备的电子瓶颈效导致光纤自身的巨大优势未被使用的问题,尤其是对于单波长光纤通信系统。

然后是合适的长中继距离,传输损耗比其它任何传输介质的损耗都要低出很多,而且如果将来能够采用非石英系统极低损耗光纤,将让光纤通信技术的低损耗更上一层楼。

(2021年整理)光纤中的非线性效应的研究

(2021年整理)光纤中的非线性效应的研究

(完整版)光纤中的非线性效应的研究编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)光纤中的非线性效应的研究)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)光纤中的非线性效应的研究的全部内容。

(完整版)光纤中的非线性效应的研究编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)光纤中的非线性效应的研究这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)光纤中的非线性效应的研究〉这篇文档的全部内容。

光纤中的非线性效应研究一、引言进入21世纪以来,随着语音、图像和数据等信息量爆炸式的增长, 尤其是因特网的迅速崛起,人们对于信息获取的需求呈现出供不应求的态势。

这对通信系统容量和多业务平台的服务质量提出了新的挑战,也反过来推动了通信技术的快速发展.1966年,美籍华人高锟博士提出可以通过去杂质降低光纤损耗至20dB/km ,使光纤用于通信成为可能,从而开启了人类通信史的新纪元。

与传统的电通信相比,光纤通信以其损耗低、传输频带宽、容量大、抗电磁干扰等优势备受业界青睐,已成为一种不可替代的支撑性传输技术。

光纤通信自从问世以来,就一直向着两个目标不断发展,一是延长无电中继距离;二是提高传输速率(容量). 随着掺铒光纤放大器(EDFA)的大量商用,大大增加了无电中继的传输距离;同时,密集波分复用(DWDM )技术的成熟,极大地增加了光纤中可传输信息的容量,降低了成本。

光纤传输系统中的信号损耗与衰减机制

光纤传输系统中的信号损耗与衰减机制

光纤传输系统中的信号损耗与衰减机制光纤传输系统是一种高速、高带宽的数据传输技术,广泛应用于通信、互联网和数据中心等领域。

在光纤传输过程中,信号损耗与衰减是必然存在的,它们对传输质量和距离限制产生了重要影响。

本文将重点讨论光纤传输系统中的信号损耗与衰减机制,以及如何降低信号损耗和保证传输质量。

信号损耗是光纤传输过程中信号功率降低的现象,主要由以下几个因素引起。

首先,光纤材料自身的吸收和散射会导致信号功率的减少。

其次,光纤连接器和耦合器的损耗,以及光纤连接点的损坏或污染也会导致信号损耗的增加。

此外,光纤传输过程中光的色散和扩散也会引起信号损耗。

衰减是指信号强度在传输过程中逐渐减弱的现象。

在光纤传输系统中,主要的衰减机制有衰减、色散和非线性效应。

衰减是信号强度随传输距离增加而逐渐减弱的现象,造成衰减的主要原因是光纤材料本身的特性。

不同类型的光纤有不同的衰减特性,例如多模光纤的衰减通常比单模光纤高。

色散是光信号在光纤中传输时由于不同频率成分的光速不同而引起的扩展现象。

色散会使信号的波形产生变形,影响传输的带宽和距离限制。

非线性效应主要包括光纤中的光学非线性、色散补偿和分子吸收等,会导致信号失真和功率损耗。

在光纤传输系统中,减小信号损耗和衰减是保证传输质量的关键。

以下是一些降低信号损耗和衰减的方法:1. 优化光纤材料:选择具有较低损耗和较小色散的光纤材料。

常用的光纤材料有单模光纤和非线性光纤等,它们有不同的传输特性和应用场景,根据实际需求选择合适的光纤材料。

2. 光纤连接技术:采用高质量的光纤连接器和耦合器,保证连接点的稳定性和损耗最小化。

定期检查和清洁光纤连接点,避免污染和损坏。

3. 光纤整理技术:采用光纤整理技术可以减小光纤的弯曲和扭曲,避免光纤在传输过程中产生额外的损耗和衰减。

4. 色散补偿技术:使用色散补偿器件来消除光信号在传输过程中产生的色散效应,保持信号的波形和相位。

5. 增加信号功率:通过增加光源的功率来弥补传输过程中的信号损耗和衰减。

光纤的传输特性

光纤的传输特性

光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。

光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。

衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。

其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。

(1)光纤的损耗特性曲线•损耗直接关系到光纤通信系统的传输距离,是光纤最重要的传输特性之一。

自光纤问世以来,人们在降低光纤损耗方面做了大量的工作,1.31μm光纤的损耗值在0.5dB/km以下,而1.55μm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。

总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。

•从图中可以看到三个低损耗“窗口〞:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。

目前光纤通信系统主要工作在1310nm波段和1550nm波段上。

(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。

这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。

包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。

2、光纤的散射损耗光纤部的散射,会减小传输的功率,产生损耗。

散射中最重要的是瑞利散射,它是由光纤材料部的密度和成份变化而引起的。

物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。

光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。

另外,光纤中含有的氧化物浓度不均匀以与掺杂不均匀也会引起散射,产生损耗。

《光纤的传输特性》PPT课件

《光纤的传输特性》PPT课件

5
精选ppt
非本征吸收
原材料将在光纤的制造过程中引入杂质,带来较 强的非本征吸收。有害杂质主要有过渡金属离子, 如铁、钴、镍、铜、锰、铬等金属离子和OH-。
OH-吸收峰
6
解决方法: (1)对制造光纤的材料进 行严格的化学提纯,比 如材料达到 99.9999999%的纯度 (2)制造工艺上改进,如 避免使用氢氧焰加热(汽 相轴向沉积法)
0.26
因此可以算出在1320 nm处, 波导色散为:
D w()n c2Vdd 2(V V 2)b1.9
24
精选ppt
标准单模光纤总的模内色散
一般来说材料色散的影响大于波导色散: |Dm| > |Dw|
DDmDw
1320
25
精选ppt
模间色散
多模光纤中不同导模具有不同的传播路径和速度导致了 模间色散。
导致的后果: 造成能量辐射损耗
低阶模功率耦合到高阶模
高阶模功率损耗
减小微弯的一种办法是在光纤外面一层弹性保护套
12
精选ppt
宏弯和微弯对损耗的附加影响
基本损耗 宏弯损耗
微弯 损耗
光纤弯曲带来额外损耗
V2 an1 2n2 21/22 aNA
增加,V减少
13
弯曲损耗随模场直径增加显著增加
精选ppt
27
精选ppt
PMD 对传输的影响
28
精选ppt
色散对传输带宽的影响:宽谱光源
比较大的时候,单模光纤带宽:
BSMF1 /T 41D /4L GH z
例:考虑一个工作在1550 nm的系统,光源谱宽为15 nm,使用 标准单模光纤D = 17 ps/km·nm,那么系统带宽和距离乘积:

第三章 单模光纤传输特性及光纤中非线性效应

第三章  单模光纤传输特性及光纤中非线性效应

第三章单模光纤的传输特性及光纤中的非线性效应3.1.2 单模工作模特性及光功率分布 (3)3.1.3单模光纤中LP01模的高斯近似 (4)3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6)3.2.1双折射概念 (6)3.2.2 偏振模色散概念 (8)3.2.3 单模光纤中偏振状态的演化 (9)3.2.4 单模单偏振光纤 (10)3.3单模光纤色散 (11)3.3.1 色散概述 (11)3.3.2 单模光纤的色散系数 (13)3.4 单模光纤中的非线性效应 (15)3.4.1 受激拉曼散射(SRS) (16)3.4.2 受激布里渊散射(SBS) (19)3.5 非线性折射率及相关非线性现象 (21)3.5.1 光纤的非线性折射率 (21)3.5.2 与非线性折射率有关的非线性现象 (22)3.5.3 自相位调制 (23)第三章单模光纤的传输特性及光纤中的非线性效应3.1 单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。

例如在阶跃型光纤只传播HE11模(或LP01)的光纤。

由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。

长途光纤通信系统都无例外的采用单模光纤作为传输介质。

由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。

单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。

3.1.1 单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。

单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<2.405。

单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ按上式计算截止波长只有理论意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 单模光纤的传输特性及光纤中的非线性效应单模工作模特性及光功率分布 .............................. 错误!未定义书签。

单模光纤中LP 01模的高斯近似 ............................... 错误!未定义书签。

单模光纤的双折射(单模光纤中的偏振态传输特性) .............. 错误!未定义书签。

双折射概念 ............................................... 错误!未定义书签。

偏振模色散概念 .......................................... 错误!未定义书签。

单模光纤中偏振状态的演化 ................................ 错误!未定义书签。

单模单偏振光纤 .......................................... 错误!未定义书签。

单模光纤色散 ................................................. 错误!未定义书签。

色散概述 ................................................ 错误!未定义书签。

单模光纤的色散系数 ...................................... 错误!未定义书签。

单模光纤中的非线性效应 ...................................... 错误!未定义书签。

受激拉曼散射(SRS ) ..................................... 错误!未定义书签。

受激布里渊散射(SBS ) ................................... 错误!未定义书签。

非线性折射率及相关非线性现象 ................................ 错误!未定义书签。

光纤的非线性折射率 ...................................... 错误!未定义书签。

与非线性折射率有关的非线性现象 .......................... 错误!未定义书签。

自相位调制 .............................................. 错误!未定义书签。

第三章 单模光纤的传输特性及光纤中的非线性效应单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。

例如在阶跃型光纤只传播HE 11模(或LP 01)的光纤。

由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。

长途光纤通信系统都无例外的采用单模光纤作为传输介质。

由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。

单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。

单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为。

单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<。

单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ 按上式计算截止波长只有理论意义。

这是因为在实际工程中使用单模光纤,其纤芯半径a 往往并不是作为光纤的参数直接给出,而只给出更有实际意义的模场直径。

工程中单模光纤的截止波长是由实验直接测量的。

单模光纤的截止波长的测试方法在ITU-T 的有关建议中规定的非常详细,读者可以查阅相关数据。

工程最常用的单模光纤,其工作波长为微米,ITU-T的建议规定,其截止波长范围为:微米<λc <微米。

规定最大截止波长为微米,是为了保证所传输的信号中波长最短的成分,也是满足单模传输条件的。

但也不能将截止波长取的过小,太小了,LP 01模的功率将部分进入包层,使得传输过程中弯曲损耗增大,所以规定截止波长的下限在微米。

还需说明,规定的截止波长是指在光纤的始端激励起来各种模式,经一定长度的被测光纤(2m 长的一次涂覆光纤并带有28cm 直径的环,或22m 长的成缆光纤并带有80mm 直径的环)传播以后,各个高阶模所携带的总功率与主模式功率之比降为所对应的波长。

单模工作模特性及光功率分布单模光纤的工作模式就是主模式LP 01模,LP 01模的横向电磁场解为: a r r a W K W K Z An H a r r a U J U J Z An H a r r a W K W K A E a r r a U J U J A E x x y y >⎪⎭⎫ ⎝⎛-=≤⎪⎭⎫ ⎝⎛=>⎪⎭⎫ ⎝⎛=≤⎪⎭⎫ ⎝⎛=,)(,)(,)(,)(0002200011002001 由于对于弱导光纤,纵向场量E z 和H z 都比横向场量E y 和H x 都小的多,所以略去纵向场量。

将m =0代入LP 模的特征方程,得到工作模式的特征方程: )()()()(0101W K W WK U J U UJ =,式中U 、W 满足方程:)(2221220222n n a k V W U -==+ 在0<V<范围内,特征方程只有唯一一组解U 、W ,这就是主模式的特征参数,它决定了场量在半径方向的分布特点。

LP 01模的横向电磁场解是一个超越方程,只能求得数值解。

在V =时可解得U =,W =。

在V =,U =,W =的条件下,可以计算得到LP 01模所传输的总功率中,纤芯中功率占84%,包层中的功率占16%。

V 越小,包层中的功率就越多,例如:V =1时,纤芯中的功率仅占30%,70%的功率都转移到包层中了。

所以实际的单模光纤,归一化工作频率应选在~,这样既可以保证LP 01模单模传输,又可以保证大部分的光功率是在纤芯中传播的。

功率强度是电场强度的平方,利用前面电场向量解可以得到在纤芯中光功率强度分布为: a r r a U J r P y ≤⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∝,)(20 如图所示LP 01模在纤芯中的光功率分布,图中以半径r=a 处的功率P y (a)为参考,表示了在不同r/a 处的功率比R 为:200)()()(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛==U J r a U J a P r P R y yLP 01模在纤芯内的光功率分布(V =)因为在包层中有相当的功率传输,为了得到低衰减,单模光纤必须要有足够厚度的沉积内包层,内包层厚度的大小取决于包层中场强沿r 的分布及剖面的结构。

同样依据电场向量的解可以得到包层中LP 01模的电场强度为: a r r a W K W K A E y >⎪⎭⎫ ⎝⎛=,)(002根据变态贝塞尔函数的近似式:x m e x x K -⎪⎭⎫ ⎝⎛≈212)(π 在相对径向位置t=r/a 及r=a 处的场强比为: ω)1(1)1()(--=t y y e t E t E 包层中LP 01模的光功率强度分布为:a r a r K r P y >⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∝,)(20ω 在相对径向位置t=r/a 及r=a 处的功率强度之比为: ω)1(21)1()(--=t y y e tP t P 如果包层厚度r=6a ,那里的光功率密度小于10-8,在这以外的总光功率可以忽略不计。

V 值不同,电场渗透进入包层的厚度也不同,在保证单模传输的情况下,V 值越大越好,V 值大,沉积内包层的厚度可以薄一些。

单模光纤中LP 01模的高斯近似在阶跃光纤中,LP 01模的场在纤芯中取零阶贝塞尔函数的形式。

由于对贝塞尔函数的处理复杂,而高斯函数与贝塞尔函数接近,人们就设想能否利用高斯函数来取代贝塞尔函数以简化对基模的分析。

阶跃光纤中的主模LP 01模场量,定性上与高斯分布相近。

因而可以用高斯函数去逼近贝塞尔函数分布,这样可以简化对LP 01模的分布。

也就是说,可以将其电磁场量写成 2222/0/w r g xg w rg yg e Z nA H e A E --==这里的W 称为LP 01模的模场半径,2W 就是单模光纤的一个重要参量模场直径在r=w 时,场量下降至中心轴处的1/e 处。

用高斯分布去逼近或代替横向电磁场的解的分布,关键是寻找合适的模场半径w ,使得用上式代替解所引起的误差尽可能小。

这个适当的模场半径我们称为最佳模场半径,记为w opt ,可以按下述方法求得。

假设我们用高斯场去激励阶跃单模光纤,则LP 01模与激励场之间的耦合系数为:220021⎥⎦⎤⎢⎣⎡=⎰⎰∞πϕρrdrd H E xg y 式中H xg 是由前式给出的高斯分布的磁场,而E y 则是由前面场解给出的LP 01模的电场。

适当选择常数A g 和A ,使得高斯场和LP 01模的传输总功率是归一化的,即: 12121202000==⎰⎰⎰⎰∞∞ππϕϕrdrd H E rdrd H E xg yg x y 则由耦合系数公式给出的耦合系数最大值为1。

当H xg 与实际场量H x 有较大差异时,ρ比起1来将有较大的差异。

由此可知,w opt 应是使耦合系数取最大值的w 值。

由于耦合系数公式计算所得的耦合系数ρ是参量w 的函数,即ρ=ρ(w)。

因而最佳模场半径应是方程:0)(=ωωρd d 的解。

在0.28.0<<cλλ范围内,归一化模场半径可以用下面的经验公式计算,其误差不超过1%,即:6236230149.0434.065.0879.2619.165.0⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=++=---c copt V Va λλλλω 一个更简捷的公式是:V aopt6.2=ω。

用高斯场来等效精确场的最大限制是不能用来等效光纤包层中的场,这是因为精确场的衰减比高斯场缓慢。

因而包层中的场要寻找另外的近似方法。

当wr/a>2时,包层中的场可用下式近似: ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛a r r a r a WK ωωπex p 221210 利用高斯近似法我们来计算LP 01模在光纤中的功率分布,在高斯近似下,它们具有简单的形式: ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-≈⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--≈20202exp 2exp 1ωωa P P a P P total cl total core单模光纤的双折射(单模光纤中的偏振态传输特性)双折射概念在单模光纤中,LP 01模有两种正交的偏振状态,其横向电场分别沿x 轴方向和y 轴方向,分别记为LP 01x 模和LP 01y 模。

相关文档
最新文档