概率论与数理统计学1至7章课后答案
概率论与数理统计学1至7章课后答案

一、习题详解:3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0,(,)0,x y x y x y F x y ----⎧--+≥≥=⎨⎩其他求}{12,35P X Y <≤<≤.解:因为 257(2,5)1222F ---=--+,6512221)5,1(---+--=F5322221)3,2(---+--=F ,4312221)3,1(---+--=F所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤<==+--=----745672322220.02343.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1)且 0)1,2(===Y X P ,6.053)2,2(452223=====C C C Y X P 4.052)1,3(451233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3)且 81)21()3,0(3====Y X P ,83)21()21()1,1(2113====C Y X P 83)21()21()1,2(1223====C Y X P ,81)21()3,3(3====Y X P故(X ,Y )3.4设二维随机向量(,)X Y 的概率密度函数为:(6),01,02,(,)0,a x y x y f x y --≤≤≤≤⎧=⎨⎩其他 (1) 确定常数a ;(2) 求}{0.5, 1.5P X Y ≤≤(3) 求{(,)}P X Y D ∈,这里D 是由0,0,1x y x y ==+=这三条直线所围成的三角形区域.解:(1)因为dxdy y x a dxdy y x f ⎰⎰⎰⎰--=+∞∞-+∞∞-102)6(),(dx x x a dx y x a ⎰⎰---=---=10221022])4()6[(2])6(21[a dx x a 9)5(210=-=⎰由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,得9a =1,故a =1/9.(2) dxdy y x Y X P ⎰⎰--=≤≤5.005.10)6(91)5.1,5.0( dx x dx y y x ⎰⎰--=--=5.005.005.102]89)6(23[91]21)6([91 125)687(5.00=-=⎰dx x (3) 1101{(,)}(,)(6)9xDP X Y D f x y dxdy dx x y dy -∈==--⎰⎰⎰⎰278)1211(181]21)6([9110210102=--=--=⎰⎰-dx x x dx y y x x3.5 设二维随机向量(,)X Y 的概率密度函数为:(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其他(1) 求分布函数(,)F x y ; (2) 求}{P Y X ≤解:(1) 求分布函数(,)F x y ; 当0,0x y >>,(2)220(,)(,)22(1)(1)yxyxx yu v u v x y F x y f u v dudv e dudv e du e dv e e -+-----∞-∞====--⎰⎰⎰⎰⎰⎰其他情形,由于(,)f x y =0,显然有(,)F x y =0。
概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥ 不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i iXX 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201kk V V==∑,求(105)P V >的近似值。
概率论与数理统计教程第四版课后答案

1i jk n
若事件 A1 , A2 ,, An 互不相容,则
PA1 A2 An PA1 PA2 PAn 3
2.条件概率及乘法定理
条件概率
PA
|
B
PAB PB
,
PB
|
A
PAB PA
.
乘法定理 PAB PB PA| B PA PB | A
PA1 A2 An PA1 PA2 | A1PA3 | A1A2 PAn | A1A2 An1
N
P10 10
设事件A 表示指定的3本放在一起,
则A所包含的基本事件的数: M P33 P88
∴
P(A)
M N
P33 P88 P10
10
8!3! 1 0.067 10! 15
11
6. 为减少比赛场次,把20个球队任意分成两组(每组10队)进行 比赛,求最强的两队分在不同组内的概率。
解
解 基本事件的总数:N 9 105
设事件A 表示电话号码是由完全不同的数字组成, 则A所包含的基本事件的数: M 9 P95
∴
P( A) M N
9 P95 9 105
189 1250
0.1512
10
5. 把10本书任意地放在书架上, 求其中指定的3本放在一起的概率。
解
基本事件的总数:
C
1 4
C
2 3
C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。
解
P( A)
C
50 95
C
1 5
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计学1至7章课后答案

第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。
概率论与数理统计统计课后习题答案(有过程)

概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。
2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。
3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。
223由题设可知样本点总数,。
2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。
表示按逆时针方向乙在甲的第i个位置,。
则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。
《概率论与数理统计》第三版王松桂科学出版社课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃ 3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A = (2)AB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC 解 : (1) 成立,因为B A B B B A B B A ==))((。
概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201k k V V ==∑,求(105)P V >的近似值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于 解:设应配备m 名设备维修人员。
又设发生故障的设备数为X ,则)01.0,180(~B X 。
依题意,设备发生故障能及时维修的概率应不小于,即99.0)(≥≤m X P ,也即01.0)1(≤+≥m X P因为n =180较大,p =较小,所以X 近似服从参数为8.101.0180=⨯=λ的泊松分布。
查泊松分布表,得,当m +1=7时上式成立,得m =6。
故应至少配备6名设备维修人员。
某种元件的寿命X (单位:小时) 的概率密度函数为:21000,1000()0,1000x f x x x ⎧≥⎪=⎨⎪⎩ 求5 个元件在使用1500 小时后, 恰有2 个元件失效的概率。
解:一个元件使用1500小时失效的概率为3110001000)15001000(15001000150010002=-==≤≤⎰x dx x X P 设5个元件使用1500小时失效的元件数为Y ,则)31,5(~B Y 。
所求的概率为22351280(2)()()33243P Y C ==⨯=。
设某地区每天的用电量X (单位:百万千瓦•时) 是一连续型随机变量, 概率密度函数为:212(1),01,()0,x x x f x ⎧-=⎨⎩其他假设该地区每天的供电量仅有80万千瓦•时, 求该地区每天供电量不足的概率. 若每天的供电量上升到90万千瓦•时, 每天供电量不足的概率是多少解:求每天的供电量仅有80万千瓦•时, 该地区每天供电量不足的概率,只需要求出该地区用电量X 超过80万千瓦•时(亦即≥百万千瓦•时)的概率:0.80.8202340.8(0.8=1-P(X 0.8=1-()112(1)1(683)0.0272P Xf x dx x x dxx x x -∞≤=--=--+=⎰⎰))若每天的供电量上升到90万千瓦•时, 每天供电量不足的概率为:0.90.9202340.9(0.9=1-P(X 0.9=1-()112(1)1(683)0.0037P Xf x dx x x dxx x x -∞≤=--=--+=⎰⎰))设随机变量~(2,4),K U -求方程22230x Kx K +++=有实根的概率.解:方程22230x Kx K +++=有实根,亦即248124(3)(1)0K K K K ∆=--=-+≥,显然,当31K K ≥⋃≤-时,方程22230x Kx K +++=有实根;又由于~(2,4),K U -所求概率为:1(2)4314(2)3---+-=--。
某型号的飞机雷达发射管的寿命X (单位:小时) 服从参数为 的指数分布, 求下列事件的概率:(1) 发射管寿命不超过100 小时; (2) 发射管的寿命超过300 小时;(3) 一只发射管的寿命不超过100 小时, 另一只发射管的寿命在100 至300 小时之间.解:(1) 发射管寿命不超过100 小时的概率:1001000.0050.0050.50(100)0.0051x xP X e dx e e ---<==-=-⎰=(2) 发射管的寿命超过300 小时的概率:1.5 1.5(300)1(300)1(1)0.223P X P x e e -->=-<=--==(3) 一只发射管的寿命不超过100 小时, 另一只发射管的寿命在100 至300 小时之间.0.50.5 1.5(1)()0.15e e e -----=。
设每人每次打电话的时间(单位:分钟) 服从参数为 的指数分布. 求282 人次所打 的电话中, 有两次或两次以上超过10 分钟的概率.解:设每人每次打电话的时间为X ,X ~E ,则一个人打电话超过10分钟的概率为5105.0105.05.0)10(-+∞-+∞-=-==>⎰e edx eX P x x又设282人中打电话超过10分钟的人数为Y ,则),282(~5-e B Y 。
因为n =282较大,p 较小,所以Y 近似服从参数为9.12825≈⨯=-eλ的泊松分布。
所求的概率为)1()0(1)2(=-=-=≥Y P Y P Y P56625.09.219.119.19.19.1=-=--=---e e e某高校女生的收缩压X (单位:毫米汞柱) 服2(110,12)N , 求该校某名女生: (1) 收缩压不超过105 的概率;(2) 收缩压在100 至120 之间的概率. 解:(1))42.0(1)42.0()12110105()105(Φ-=-Φ=-Φ=≤X P 3372.06628.01=-=(2))12110100()12110120()120100(-Φ--Φ=≤≤X P5934.017967.021)83.0(2)83.0()83.0(=-⨯=-Φ=-Φ-Φ=。
公共汽车门的高度是按成年男性与车门碰头的机会不超过 设计的, 设成年男性的 身高X (单位:厘米) 服从正态分布N (170,262), 问车门的最低高度应为多少 解:设车门高度分别为x 。
则:170()10.010.99()6x P X x -≤=-==Φ 查表得,(2.33)0.99Φ=,因此1702.336x -=,由此求得车门的最低高度应为184厘米。
已知20 件同类型的产品中有2 件次品, 其余为正品. 今从这20 件产品中任意抽取4 次, 每次只取一件, 取后不放回. 以X 表示4 次共取出次品的件数, 求X 的概率分布与分布函数.解:X 的可能取值为0,1,2。
因为1817161512(0),2019181719P X ===; 2184203(2)95C P X C ===; 12332(1)1199595P X ==--= 所以XX 的分布函数为0120119()92129512x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩袋中有同型号小球5 只, 编号分别为1,2,3,4,5. 今在袋中任取小球3 只, 以X 表示取 出的3只中的最小号码, 求随机变量X 的概率分布和分布函数. 解:X 的可能取值为1,2,3。
因为6.0106)1(3524====C C X P ; 1.01011)3(35====C X P ; 3.01.06.01)2(=--==X P所以X 的分布律为X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31329.0216.010)(x x x x x F设连续型随机变量X 的分布函数为:0,1,()ln ,1,1,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩求(1){2}P X <,{03}P X <<,{2 2.5}.P X <≤ (2)求X 的概率密度函数()f x 。