电力电子课程设计

合集下载

电力电子类课程设计

电力电子类课程设计

电力电子类课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理,掌握各类电力电子器件的构造、工作原理及应用场合。

2. 掌握电力电子变换器的基本电路拓扑,了解其功能、性能及在实际应用中的优缺点。

3. 学会分析电力电子电路的静态和动态特性,能够对简单电路进行设计和计算。

技能目标:1. 培养学生运用所学知识分析和解决实际电力电子问题的能力。

2. 提高学生动手实践能力,能够正确搭建和调试基本的电力电子实验电路。

3. 培养学生团队协作能力和沟通表达能力,能够就电力电子技术问题进行有效讨论。

情感态度价值观目标:1. 激发学生对电力电子技术领域的兴趣,培养其探索精神和创新意识。

2. 培养学生严谨、认真、负责的学习态度,使其养成良好的学习习惯。

3. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要作用,培养其社会责任感。

课程性质:本课程为电力电子类课程的实践性教学环节,旨在培养学生的实际操作能力和创新能力。

学生特点:学生已具备一定的电力电子基础知识,对实际应用有较高的兴趣,动手实践能力较强。

教学要求:结合课本内容,注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性,提高其分析和解决问题的能力。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 电力电子器件:包括二极管、晶体管、晶闸管、场效应晶体管等基本器件的原理、特性及应用。

2. 电力电子变换器:介绍升压、降压、逆变、斩波等基本变换器的工作原理、电路拓扑及控制方法。

3. 电力电子电路分析与设计:学习静态和动态分析方法,对简单电力电子电路进行设计和计算。

4. 电力电子技术应用:分析电力电子技术在电力系统、新能源、电力传动等领域的应用实例。

教学大纲安排如下:第一周:电力电子器件原理与特性第二周:电力电子器件的应用及选型第三周:电力电子变换器的工作原理及电路拓扑第四周:电力电子变换器的控制方法第五周:电力电子电路的静态分析第六周:电力电子电路的动态分析第七周:电力电子电路设计与计算第八周:电力电子技术应用及发展趋势教学内容与课本关联性:参照教材《电力电子技术》相关章节,结合课程目标,对教学内容进行选择和组织,确保科学性和系统性。

基于电力电子的课程设计

基于电力电子的课程设计

基于电力电子的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本原理和分类,理解不同器件的工作特点及应用场景。

2. 学习并掌握基本的电力电子变换电路原理,包括AC-DC、DC-AC、DC-DC 等变换技术。

3. 了解电力电子装置的控制策略,包括PWM调制原理及其在电力电子设备中的应用。

技能目标:1. 能够分析并设计简单的电力电子电路,进行电路仿真和实验操作。

2. 能够运用电力电子技术解决实际问题,如设计一个小型的电力调节器。

3. 能够通过实际操作,验证理论知识,并培养动手能力和问题解决能力。

情感态度价值观目标:1. 培养学生对电力电子技术领域的兴趣,激发探索精神和创新意识。

2. 强化学生的团队合作意识,通过小组讨论和项目实施,培养协作解决问题的能力。

3. 增强学生的环保意识,理解电力电子技术在节能减排中的重要作用,培养社会责任感。

分析课程性质、学生特点和教学要求,本课程旨在通过理论讲授与实践操作相结合的方式,使学生在理解电力电子基础知识的同时,能够掌握一定的应用技能,并培养积极的情感态度价值观。

课程目标具体且可衡量,便于学生和教师明确课程预期成果,并为后续的教学设计和评估提供依据。

二、教学内容1. 电力电子器件原理及分类- 教材章节:第一章 电力电子器件- 内容:PN结、晶闸管、GTO、MOSFET、IGBT等器件的工作原理和特性。

2. 电力电子变换电路- 教材章节:第二章 电力电子变换技术- 内容:AC-DC、DC-AC、DC-DC变换电路的原理、电路结构及其应用。

3. 电力电子装置控制策略- 教材章节:第三章 电力电子装置的控制- 内容:PWM调制原理、调制方法及其在电力电子装置中的应用。

4. 电力电子技术应用案例分析- 教材章节:第四章 电力电子技术应用- 内容:电力调节器、逆变器、变频器等实际案例分析,探讨电力电子技术在实际工程中的应用。

5. 实践操作与电路仿真- 教材章节:第五章 实践操作与电路仿真- 内容:结合Multisim、LTspice等软件进行电路仿真,动手搭建和调试简单电力电子电路。

电力电子技术的课程设计

电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。

技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。

课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。

通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。

教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。

教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。

教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。

教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。

电力电子的课程设计

电力电子的课程设计

电力电子的课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理和分类,掌握其工作特性和应用范围。

2. 学习电力电子变换器的基本电路拓扑,理解其工作原理和转换过程。

3. 掌握电力电子器件的驱动与保护方法,了解其在实际电路中的应用。

技能目标:1. 能够运用电力电子器件设计简单的电力变换电路,并进行仿真分析。

2. 学会使用相关软件工具对电力电子电路进行性能评估和故障诊断。

3. 培养动手实践能力,能搭建简单的电力电子实验装置,并进行调试。

情感态度价值观目标:1. 培养学生对电力电子技术的好奇心和探索精神,激发学习兴趣。

2. 增强学生的团队合作意识,培养在小组讨论和实验中积极沟通、协作的能力。

3. 培养学生的节能环保意识,理解电力电子技术在节能减排中的重要作用。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握电力电子基础知识的同时,提高实践操作能力,培养创新思维和团队协作精神。

通过具体的学习成果分解,教师可进行针对性的教学设计和评估,确保课程目标的实现。

二、教学内容本章节教学内容围绕以下三个方面展开:1. 电力电子器件:- 基本原理与分类:讲解电力电子器件的工作原理,如晶闸管、IGBT等,并介绍各类器件的应用范围。

- 工作特性:分析电力电子器件的主要参数,如静态特性、动态特性等。

2. 电力电子变换器:- 基本电路拓扑:介绍常用的电力电子变换器拓扑结构,如AC-DC、DC-AC、DC-DC等,并分析其工作原理。

- 转换过程:讲解不同变换器的工作过程,包括能量转换、电压电流波形等。

3. 器件驱动与保护:- 驱动方法:介绍电力电子器件的驱动技术,如光耦隔离驱动、磁隔离驱动等。

- 保护方法:分析器件保护措施,如过压保护、过流保护等。

教学内容安排与进度:1. 第一周:电力电子器件基本原理与分类,工作特性分析。

2. 第二周:电力电子变换器基本电路拓扑,工作原理讲解。

3. 第三周:器件驱动与保护方法,实际应用案例分析。

电力电子方向课程设计

电力电子方向课程设计

电力电子方向课程设计一、课程目标知识目标:1. 理解电力电子器件的基本工作原理,掌握其特性参数及应用场合;2. 掌握基本的电力电子变换电路,如整流、逆变、斩波和调压电路;3. 了解电力电子装置的设计原则和调试方法;4. 掌握电力电子装置在能源转换、电力系统和电力调节中的应用。

技能目标:1. 能够运用所学知识分析和设计简单的电力电子电路;2. 能够利用仿真软件对电力电子电路进行仿真测试,验证设计方案的可行性;3. 能够根据实际需求,选择合适的电力电子器件和变换电路,进行系统集成;4. 能够通过实际操作,对电力电子装置进行调试和故障排查。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发其创新意识和探索精神;2. 增强学生的团队合作意识,使其在项目实施过程中学会相互协作、共同解决问题;3. 培养学生严谨的科学态度和良好的工程素养,注重实践操作的安全性和环保意识;4. 引导学生关注电力电子技术在新能源、节能减排等领域的应用,提高其社会责任感。

课程性质:本课程为电力电子方向的实践性课程,注重理论知识与实际应用的学生特点:学生具备一定的电子技术基础,具有较强的动手能力和求知欲。

教学要求:结合课本内容,以实际项目为载体,注重培养学生的实践能力和创新能力。

在教学过程中,分解课程目标为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. 电力电子器件原理与特性:包括半导体器件的工作原理、电力电子器件的分类及特性参数,重点介绍晶闸管、IGBT等常用器件。

相关教材章节:第一章《电力电子器件》2. 电力电子变换电路:讲解整流、逆变、斩波和调压电路的工作原理、电路拓扑及控制策略。

相关教材章节:第二章《电力电子变换技术》3. 电力电子装置设计:介绍电力电子装置的设计原则、电路设计方法、器件选型和系统调试。

相关教材章节:第三章《电力电子装置设计》4. 电力电子技术应用:分析电力电子技术在新能源、电力系统和电力调节等领域的应用案例。

电力电子课程设计课本

电力电子课程设计课本

电力电子课程设计课本一、教学目标本节课的教学目标是使学生掌握电力电子学的基本概念、原理和应用,培养学生对电力电子技术的兴趣和热情,提高学生的科学素养和创新能力。

具体目标如下:1.知识目标:学生能够了解电力电子学的基本概念、原理和主要器件,理解电力电子电路的工作原理和性能,掌握电力电子技术的应用领域。

2.技能目标:学生能够分析简单的电力电子电路,进行电力电子器件的选择和应用,具备设计简单的电力电子电路的能力。

3.情感态度价值观目标:学生能够认识电力电子技术在现代社会中的重要性和地位,培养对电力电子技术的兴趣和热情,提高科学素养和创新能力。

二、教学内容本节课的教学内容主要包括电力电子学的基本概念、原理和应用。

具体安排如下:1.电力电子学的基本概念和原理:介绍电力电子学的定义、特点和基本原理,讲解电力电子器件的分类、特性和应用。

2.电力电子电路:分析电力电子电路的工作原理和性能,介绍电力电子电路的常见应用领域,如电力变换、电力控制等。

3.电力电子技术的应用:介绍电力电子技术在现代社会中的应用案例,如变频调速、电动汽车、智能电网等,强调电力电子技术对现代社会的重要性和影响。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法相结合的方式进行教学。

具体方法如下:1.讲授法:通过讲解电力电子学的基本概念、原理和应用,使学生掌握电力电子技术的基本知识。

2.案例分析法:通过分析具体的电力电子应用案例,使学生了解电力电子技术在实际工程中的应用和价值。

3.实验法:学生进行电力电子实验,使学生亲自操作和观察电力电子电路的工作原理和性能,提高学生的实践能力和创新能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课将采用以下教学资源:1.教材:选用权威、实用的电力电子学教材,为学生提供系统、科学的学习材料。

2.参考书:推荐学生阅读电力电子学相关的参考书籍,拓展学生的知识面。

3.多媒体资料:制作精美的PPT、视频等多媒体资料,为学生提供直观、生动的学习资源。

电力电子控制课程设计

电力电子控制课程设计

电力电子控制课程设计一、教学目标本课程的教学目标是使学生掌握电力电子控制的基本原理、方法和应用,提高学生的理论水平和实际操作能力。

具体目标如下:1.知识目标:(1)掌握电力电子器件的工作原理和特性;(2)了解电力电子电路的组成和功能;(3)熟悉电力电子控制技术的应用领域。

2.技能目标:(1)能够分析电力电子电路的工作原理;(2)具备设计简单的电力电子控制电路的能力;(3)学会使用相关仪器仪表进行实验操作。

3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对电力电子控制技术的兴趣和责任感;(3)提高学生运用所学知识解决实际问题的能力。

二、教学内容本课程的教学内容主要包括以下几个方面:1.电力电子器件:介绍电力电子器件的类型、工作原理和特性,如晶闸管、GTO、IGBT等;2.电力电子电路:分析电力电子电路的组成、功能和工作原理,如整流电路、逆变电路、斩波电路等;3.电力电子控制技术:讲解电力电子控制技术的基本原理、方法及其在各个领域的应用,如变频调速、电力电子变压器等。

教学大纲安排如下:第1-2周:电力电子器件;第3-4周:电力电子电路;第5-6周:电力电子控制技术及应用。

三、教学方法为了提高教学效果,本课程采用多种教学方法相结合的方式,包括:1.讲授法:通过讲解电力电子控制的基本概念、原理和应用,使学生掌握相关知识;2.讨论法:学生针对电力电子控制技术的热点问题进行讨论,培养学生的思考能力和团队协作精神;3.案例分析法:分析具体的电力电子控制实例,使学生了解电力电子控制技术在实际工程中的应用;4.实验法:安排学生进行电力电子控制实验,提高学生的实际操作能力和创新能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将采用以下教学资源:1.教材:选用国内权威出版社出版的电力电子控制教材,为学生提供系统的理论知识;2.参考书:推荐学生阅读相关领域的经典著作和最新研究论文,拓展知识视野;3.多媒体资料:制作精美的PPT课件,为学生提供直观的学习材料;4.实验设备:配置电力电子控制实验装置,让学生亲自动手操作,提高实际操作能力。

电力电子技术课程设计

电力电子技术课程设计

电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。

具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。

2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。

3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。

二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。

具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。

2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。

3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。

4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。

主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。

多媒体资料包括教学PPT、视频动画等。

实验设备包括晶闸管、整流器、逆变器等实验装置。

这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告目录一.基本现状及意义1.1国内外的研究现状和发展趋势:1.2三相逆变器研究设计的意义:二.任务书要求、设计目的:、设计任务:三.基本原理.三相电压型逆变电路工作原理.控制电路的设计四.系统硬件设计系统总体介绍系统参数计算五.仿真电路六.仿真波形分析七.实验总结一.基本现状及意义国内外的研究现状和发展趋势?逆变技术的发展可以分为如下两个阶段:?1956-1980年为传统发展阶段,这个阶段的特点是,开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加法为主,体积重量较大,逆变效率低。

1980年到现在为高频化新技术阶段,开关器件以高速器件为主,逆变器开关频率高,波形改善以脉宽调制为主,体积重量小,逆变效率高。

在PWM逆变器中,为了减小其体积重量,提高其功率密度,高频化是主要发展方向之一,但高频化也存在一些问题,如增加开关损耗和电磁干扰。

为此提出两个解决办法,一是提高开关器件的速度,二是使逆变开关工作在软开关状态。

20世纪80年代初,美国弗吉尼亚电力电子技术中心提出了准谐振变换技术,使软开关与PWM技术的结合成为可能。

它的研究对于逆变器性能的提高和进一步推广应用,以及电力电子学技术的发展,都有十分重要的意义,是当前逆变器的发展方向之一。

高频软开关逆变技术产生的背景是为了克服传统逆变器的输出波形差,开关应力和EMI较大的缺点。

在相同背景下,于1981年提出了多电平逆变技术,成为当前高压大功率逆变器的发展方向。

它通过主电路改进,使所有逆变开关都工作在基频或低频,以达到减小开关应力,改善输出电压或电流波形的目的。

总之,逆变技术的发展是在提高波形质量的背景下,随着电力电子技术、微电子技术和现代控制理论的发展而发展,进入二十一世纪,逆变技术正朝着高功率密度、高变换效率、高可靠性、无污染、智能化和集成化的方向发展。

三相逆变器研究设计的意义(1)促进新能源的开发和利用?随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航天、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。

特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。

利用新能源的关键技术----逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。

因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。

(2)提高供电质量?国民经济的高速发展和国内外能源供应日益紧张,电能的开发和利用显得更为重要。

目前,国内外都在大力开发新能源,如太阳能发电、风力发电、潮汐发电等。

一般情况下,这些新型发电装置输出不稳定的直流电,不能直接供给需要交流电的用户使用。

为此,需要将直流电变换成交流电,需要时可并入市电电网。

这种DC-AC变换需要逆变技术来完成。

用电设备对市电电网造成严重的污染,反过来,被污染的市电电网也会使用电设备工作不正常,用电设备之间通过市电电网相互干扰。

为解决此问题,必须提高市电电网的供电质量,以逆变技术为基础的电力有源滤波器和电能质量综合补偿器可以净化市电电网,使其为用电设备提供高质量电能。

逆变器是一种重要的DC/AC变换装置,而衡量其性能的一个重要指标就是输出电压波形质量,通过本项目的研究与实践,研究逆变器波形产生的方法、调制规律、以及其波形的评价指标,寻求高质量的脉宽波形的获得方法,对所学知识进行纵深挖掘,加深相关知识的理解。

二.任务书要求、设计目的:图1出了三相逆变器主电路,通过本课题的分析设计,可以加深学生对三相逆变电路的认识和理解。

要求学生掌握三相逆变电路基本工作原理,功率器件、LC滤波器的参数设计并学会分析该电路的各种工作模态,要求学生熟悉三相逆变器的SPWM调制方案,并且学会用模拟电路或单片机实现三相逆变器的驱动信号的输出,熟悉桥式逆变器的驱动电路,建立硬件电路并进行开关调试。

输入:220V DC,输出:100Vac/、设计任务:1、给出符合输入输出要求的电路方案,给出各个模块的基本框图,并能设计其主要参数;2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级,并给出所选器件的型号,设计变换器的脉冲变压器及滤波电容。

3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。

4、应用protel软件作出线路图,建立硬件电路并调试。

N图1三相逆变器主电路三.基本原理三相电压型逆变电路工作原理逆变电路根据直流侧电源的性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路。

在本文中,我们主要讨论三相电压型逆变电路的基本构成、工作原理和特性,图为其电路。

三相电压型逆变电路下面,我们讨论一下三相全桥电压型逆变电路。

在图所示电路中,电路的直流侧通常只有一个电容器就可以了,但为了方便分析,画作串联的两个电容器并标出假想中点。

和单相半桥、全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是180°导电方式,即每个桥臂的导电角度为180°,同一相(即同一半桥)上下两个臂交替导电,各相开始导电的角度以此相差120°。

这样,在任一瞬间,将有三个桥臂同时导通。

可能是上面一个臂下面两个臂,也可能是上面两个臂下面一个臂同时导通。

因为每次换流都是在同一相上下两个桥臂之间进行,因此也被称为纵向换流。

控制电路的设计SPWM控制的基本原理如图(a)所示,我们将一个正弦波半波电压分成N等分,并把正弦曲线每一等份所包围的面积都用一个与其面积相等的等幅矩形脉冲来代替,且矩形脉冲N的中点与相应正弦等份的中点重合,得到如图(b)所示得脉冲列,这就SPWM波形。

正弦波得另外半波可以用相同得办法来等效。

可以看出,该PWM波形的脉冲宽度是按正弦规律变化,称为SPWM波形。

图 SPWM波形根据采样控制理论,脉冲频率越高,SPWM波形便越接近正弦波。

逆变器的输出电压为SPWM波形时,其低次谐波得到很好地抑制和消除,高次谐波又能很容易滤去,从而可得到崎变率极低的正弦波输出电压。

SPWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或者其他所需要的波形。

从理论上讲,在给出了正弦半波频率、幅值和半个周期内的脉冲数后,脉冲波形的宽度和间隔便可以准确计算出来。

然后按照计算的结果控制电路中各开关器件的通断,就可以得到所需要的波形。

但在实际应用中,人们常采用正弦波与等腰三角波相交的办法来确定各矩形脉冲的宽度。

等腰三角波上下宽度与高度成线性关系且左右对称,当它与任何一个光滑曲线相交时,即得到一组等幅而脉冲宽度正比该曲线函数值的矩形脉冲,这种方法称为调制方法。

希望输出的信号为调制信号,把接受调制的三角波称为载波。

当调制信号是正弦波时,所得到的便是SPWM波形。

当调制信号不是正弦波时,也能得到与调制信号等效的PWM波形。

单极性和双极性SPWM控制方式单极性是指载波和调制波始终保持同极性的关系,在调制波信号的一个周期里,同一桥臂的上下两个功率管工作状态相互切换,分别工作在正弦调制波的半个周期。

单极性SPWM调制原理图如图所示:图单极性调制原理图双极性SPWM的载波极性随时间而正负变化,和调制波的极性变化没有关系,载波信号的一个周期里,同一桥臂的上下两个功率管互相切换,在调制波的半个周期里始终处于按正弦脉宽调制规律互补开关的工作状态。

双极性SPWM调制原理图如图所示:图双极性调至原理图四.系统硬件设计系统总体介绍本次设计的目的是研制一种输入为220V的直流稳定电压,输出为100V,的交流稳定电压,输出功率较大的三相稳压电源。

考虑到所设计的系统为大功率电源,所以我们在这考虑使用SPWM逆变技术,下图为所设计的系统框图。

直流输入全桥逆变输出滤波交流输出控制电路驱动电路220V的直流电压,然后经SPWM全桥逆变,变成100V 的SPWM电压,再经输出滤波电路滤波为100V,正弦波交流电压输出,另外,系统中CPU根据输出采样电压值来控制SPWM波发生器输出的SPWM波形参数,SPWM 发生器产生的SPWM波经四个驱动隔离电路去驱动逆变电路,从而把整流滤波后得到的直流电逆变成稳定交流电。

系统参数计算五.仿真电路MATLAB软件语言系统是当今流行的第四代计算机语言,由于它在科学计算、数据分析、系统建模与仿真、图形图像处理等不同领域的广泛应用以及自身的独特优势,目前MATLAB受到个研究领域的推崇和关注。

本文也采用MATLAB软件对研究结果进行仿真,以验证结果是否正确。

建立仿真模型的步骤:1)建立主电路的仿真模型2)构造控制部分3)完成波形观测及分析部分最终完成仿真模型如下图所示:500W三相逆变器开环主电路相开环控制电路500W三相逆变器闭环电路六.仿真波形分析上图为电路开环输入时输出的交流电压为110V上图为电路开环输入时输出有效值上图为电路闭环输入时输出的交流电压为110V七.实验总结本次课程设计,主要是进行仿真,做实物,学习了MATLAB软件构图,提升理论知识。

在这次课程设计中,通过理论的学习理解和对原理图的仿真,自己对逆变器有一定的了解。

在构造原理图时候,原件的不熟悉给我带来了很大的困扰,我一个个在百度上查找,最终构成了原理图,当然收获也是巨大的,明白了一些原件在哪里可以寻找,也为以后能熟练使用MATLAB有了很大的帮助。

制作完原理图,最难得莫过于计算参数,查阅了各种资料,慢慢知道了基本公式,参数算出来后,我们开始在MATLAB仿真,而参数值还是需需要有点调整,经过调整后,输出的波形也接近完美。

经过了这些天,我明白了要去做好一个东西最重要的是心态,也许在你拿到题目时会觉得很困难,但是只要你充满信心,认真去思考,一步一个脚印去实现它,你就肯定会完成课程实践的。

在实践的过程中,我也遇到了很多困难,发现我自己在学习课本上知识的时候并没有深刻的去理解,掌握的只是很浅显的东西,所以在时遇到很多以前在书本上没有遇到过的实际的问题,我就不知道该如何做了,尤其是画图的时候,只要一个小小的错误,就无法成功的完成实践的要求。

我在以后的学习过程中一定会注意不能仅仅局限于书本上的知识,要懂得知识的扩展。

同时我也认识到了理论与实际相结合的重要性,只有把所学的理论知识成功的应用到实践中去,我们才能学到很多课本上没有的知识,才能了解的更多的知识,那么我们的知识面才会拓宽,我们才能成功的提高自己的实际应用能力。

在这次课程设计中,我也真正体会到合作的是非常重要的,当遇到问题时,可以找同学讨论一下,如果太难的问题还可以去问老师,我们会有很大收获的。

我觉得做每一件事一定要持之以恒,不能遇到困难就轻易放弃,半途而废,我们要正视这些困难,用科学的态度去解决这些困难,获得属于自己的成功。

相关文档
最新文档