质谱发展史
质谱技术与质谱仪

名称
简称
类型
离子化试剂
应用年代
电子轰击离子化 (Elextron Bomb Ionization)
EI
气相
高能电子
1920
化学电离 (Chemical Ionization)
CI
气相
试剂离子
1965
场电离 (Field Ionization)
FI
气相
高电势电极
1970
场解吸 (Field Desorption)
特点: 分子离子峰(或准分子离子峰)强度较大,而碎片离子峰很少; 图谱较简单。
+
+
气体分子
试样分子
+
准分子离子
电子
(M+1)+、(M+17) +、(M+29) +
与FI类似的有场解吸源,它把样品溶液置于阳极发射器的表面,并将溶剂蒸发除去,在强电场中,样品离子直接从固体表面解吸并奔向阴极。FD是一种软电离技术。
质谱仪器较为精密,价格昂贵,工作环境要求较高。
由于分子离子峰可以提供样品分子的相对分子量的信息,所以质谱法也是测定分子量的常用方法。
分析速度快、灵敏度高、高分辨率的质谱仪可以提供分子或离子的精密测定。
4
3
二、质谱技术的基本原理
化合物通过汽化引入离子化室;
在离子化室,组分分子被一束加速电子碰撞(能量约70eV),撞击使分子电离形成正离子; M —— M+ + e 或与电子结合,形成负离子 M + e —— M—
式中Rc为离子在电场分析器的运动曲率半径,E为分析器的电场强度。则 离子运动的轨道半径可以通过外加静电场加以控制。只有能动相同的离子才能通过中间狭缝,实现能量聚焦,然后再进行方向聚焦。
质谱发展史

质谱分析法1.质谱仪的发展史•1911年: 世界第一台质谱装置(J.J. Thomson)•40年代: 用于同位素测定和无机元素分析•50年代:开始有机物分析(分析石油)•60年代:研究GC-MS联用技术•70年代:计算机引入•80年代:新的质谱技术出现:快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源;LC-MS联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。
2、质谱分析法是按照离子的质核比(m/z)大小对离子进行分离和测定从而对样品进行定性和定量分析的一种方法。
质谱法的主要作用是:(1)准确测定物质的分子量(2)根据碎片特征进行化合物的结构分析分析时,首先将分子离子化,然后利用离子在电场或磁场中运动的性质,把离子按质核比大小排列成谱,此即为质谱。
有机质谱中的各种离子1)分子离子(molecular ion)样品分子失去一个电子而电离所产生的离子,记为M+。
2)准分子离子(quasi-molecular ion)准分子离子常由软电离产生,一般为M+H +、M-H +。
3)碎片离子(fragment ion)泛指由分子离子破裂而产生的一切离子。
狭义的碎片离子指由简单断裂产生的离子。
4)重排离子(rearrangement ion)经重排反应产生的离子,其结构不是原分子结构单元。
5)母离子(parent ion)与子离子(daughter ion)任何一离子进一步产生某离子,前者称为母离子,后者称为子离子。
6)亚稳离子(metastable ion)是从离子源出口到检测器之间产生的离子。
7)奇电子与偶电子离子(odd- and even-electron ion)具有未配对电子的离子称为奇电子离子,不具有未配对电子的离子称为偶电子离子。
8)多电荷离子(multiply-charged ion)失掉两个以上电子的离子称为多电荷离子。
质谱仪发展史

质谱仪发展史质谱仪是一种用于分析物质成分的仪器,它的发展历程经历了多个阶段。
以下是对质谱仪发展史的简要概述:1.早期发展质谱仪的概念最早可以追溯到19世纪末期,当时英国科学家汤姆逊提出了将气体引入磁场中,利用不同粒子的质量与速度的差异实现粒子分离的方法。
这种方法后来被称为“质谱仪”。
然而,早期的质谱仪技术存在很多局限性,例如无法实现对复杂样品的分析等。
2.第二次世界大战时期在第二次世界大战期间,质谱仪得到了进一步的发展和应用。
战争的需求推动了分析技术的发展,质谱仪开始被广泛应用于对军需品的检测和研究中。
在战争期间,一些科学家对质谱仪进行了改进和优化,提高了其准确性和灵敏度。
3.1945年以后的发展1945年以后,随着科技的进步和实验室设备的改进,质谱仪的技术得到了进一步的发展。
新型的质谱仪开始出现,例如双聚焦质谱仪和飞行时间质谱仪等。
这些新型质谱仪具有更高的分辨率、灵敏度和准确性。
此外,计算机技术的进步也为质谱数据的处理和分析提供了便利。
4.现代质谱仪技术现代质谱仪技术采用了多种新型技术和方法,例如电喷雾离子化、大气压化学电离和基质辅助激光解吸电离等。
这些方法的应用使得质谱仪可以实现对更多样品的准确分析,尤其适用于复杂样品的分析。
同时,现代质谱仪技术的操作也更加简便和自动化。
5.应用领域扩展随着质谱仪技术的不断发展和完善,其应用领域也在不断扩展。
如今,质谱仪被广泛应用于化学、生物学、医学、环境科学、地球科学、材料科学等多个领域。
例如,在化学领域中,质谱仪被用于研究化学反应的机理和合成产物的结构;在生物学领域中,质谱仪被用于蛋白质组学和代谢组学的研究;在医学领域中,质谱仪被用于药物开发和疾病诊断等。
6.未来发展趋势未来,质谱仪技术的发展将更加注重高灵敏度、高分辨率和高度自动化的方向。
随着人工智能和机器学习技术的发展,智能化和自动化程度更高的新型质谱仪将陆续出现。
此外,随着环境问题和健康问题的日益突出,质谱仪在环境监测和医学诊断等领域的应用也将更加广泛。
质谱仪发展历史

质谱仪发展历史质谱仪是一种高精度的分析仪器,能够通过分析物质的质量来研究物质的成分、结构和性质。
本文将介绍质谱仪的发展历史,主要涵盖以下方面:起源及早期发展、1910年、1912年、质谱学领域里程碑、1934年、1943年、技术进步与新应用、20世纪50年代、20世纪60年代末、20世纪90年代、新时代的技术突破与应用扩展、2002年以及现代发展与趋势。
一、起源及早期发展质谱仪的起源可以追溯到19世纪末期,当时科学家们开始研究如何通过分析物质的质量来研究物质的成分和结构。
英国物理学家汤姆森(J.J.Thomson)在1897年发现了电子,为质谱仪的发展奠定了基础。
随后,英国物理学家阿斯顿(F.W.Aston)在20世纪初期发明了第一台真正意义上的质谱仪。
二、1910年第一台实用质谱仪诞生,由阿斯顿在剑桥大学研制成功。
这台仪器被用于分析有机化合物的成分,为有机化学领域的研究提供了强有力的工具。
三、1912年英国物理学家道布森(F.W.Dobbson)发现了质谱学中的重要原理——道布森效应,为质谱仪的发展作出了重要贡献。
这一发现揭示了离子在电场中的运动轨迹与质量有关,为质谱仪的进一步发展提供了理论基础。
四、质谱学领域里程碑随着时间的推移,质谱学领域不断取得突破性进展。
1927年,阿斯顿研制出第一台单聚焦质谱仪;1946年,第一台双聚焦质谱仪问世;1952年,电子捕获检测器(ECD)被应用于质谱分析;1955年,离子源被引入到质谱分析中,为后续质谱技术的发展奠定了基础。
五、1934年在工业和化学领域,质谱仪得到了广泛应用。
这一时期,人们开始利用质谱仪分析各种有机化合物和无机化合物,为化学工业的发展提供了强有力的支持。
六、1943年质谱仪的快速检测技术取得了重要进展。
美国科学家科克伦(W.H.Cochrane)发明了飞行时间质谱仪(TOF),使得质谱仪的检测速度得到了极大的提升。
这一技术至今仍在广泛应用。
质谱简介

电子对较易失去一个电子而带正电荷。所以正电荷在杂原子上;如果分
子无杂原子,但有π键,则π电子较易失去一个电子,所以正电荷在π
键上;如果分子中既无杂原子,也无π键则正电荷一般在分支的碳原子
上;对于复杂分子,电荷位置不易确定的,则“
”表示。
2. 亚稳定离子峰
当样品分子在电离室生成 (或 )后,一部分离子被电场加速经质 量分析器到达检测器。另一部分在电离室内进一步被裂解为低质量的离 子,还可能一部分经电场加速进入质量分析器后,在到达检测器前的飞 行途中裂解为离子 ,这种离子称为亚稳定离子,由于它是在飞行途 中裂解产生的,所以失去一部分动能,因此其质谱峰不在正常的 位 置上,而是在 较低质量的位置上,这种质谱峰称为亚稳定离子峰, 此峰所对应的质量称为表观质量m*:
第四章 质谱
质谱法是通过对样品的分子电量后所 产生离子的质荷比 及其强度的测量来 进行成分的结构分析的一种仪器分析方法。
首先,被分析样品的气态分子,在高 真空中受到高速电子流或其它能量形式的 作用, 失去外层电子生成分子离子,或 进一步发生化学键的断裂或重排,生成多 种碎片离子 。然后,将各种离子导入质 量分析器,利用离子在电场或磁场中的运 动性质,使多种离子按不同质荷比的大小 次序分开,并对多种的离子流进行控制、 记录,得到质谱图。最后,得到谱图中的 各种离子及其强度实现对样品成分及结构 的分析。
旋共振质谱等。
不管何种质谱仪, 其基本结构都为六个 部分组成,为右图所 示。
即进样系统、离子源、质量分析器、检测系统、记录(数据处理)系统、高真空系统。
2. 基本原理和过程
具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电 子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离 子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/ze) 的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。 由此可见质谱最简单形式的三项基本功能是: (1)气化挥发度范围很广的化合物; (2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生 离子的化合物); (3)根据质荷比(m/ze)将它们分开,并进行检测、记录。由于多电荷离子 产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的 电荷),因而就表征了离子的质量。这样,质谱就成为了产生并称量离子 的装置。
质谱的发展历程

质谱的发展历程
质谱的发展历程可以追溯到19世纪末,当时科学家们开始研究如何将物质分解成更小的粒子并测量其质量。
以下是质谱技术的主要发展历程:
1.1910年:英国物理学家J.J. Thomson成功研制出世界上第一台质谱仪,这台仪器能够测量出带电粒子的质量。
2.1919年:Francis William Aston在剑桥大学卡文迪实验室设计出第一台速度聚焦型质谱仪,该仪器能够测量出同位素的质量,并发现了许多元素的同位素。
3.1920年代:质谱技术开始应用于有机化合物分析,特别是高分子化合物的分析。
4.1930年代:质谱技术开始应用于气体分析,包括气体混合物的分离和鉴定。
5.1940年代:质谱技术开始应用于生物样品的分析,如氨基酸、蛋白质和糖类的分析。
6.1950年代:质谱技术开始应用于生物大分子的分析,如DNA和RNA的分析。
7.1960年代:质谱技术开始应用于环境样品的分析,如土壤、水和空气中的污染物的分析。
8.1970年代:质谱技术开始应用于临床医学领域,如血
液和尿液中代谢产物的分析。
9.1980年代:质谱技术开始应用于药物代谢和药物动力学的研究。
10.1990年代至今:质谱技术不断发展,出现了许多新的技术,如电喷雾离子化质谱、基质辅助激光解吸离子化质谱等。
这些新技术使得质谱技术在生命科学、医学、环境科学等领域的应用更加广泛。
总之,质谱技术的发展历程是一个不断创新和发展的过程,其应用范围也在不断扩大。
质谱介绍.ppt

分子质量精确测定与化合物结构分析的重要工具
质谱仪的发展史
1911年:
世界第一台质谱装置(J. J. Thomson)早期应用:
原子质量、同位素相对丰度等
40年代:
用于同位素测定和无机元素分析
50年代: 开始有机物分析(分析石油)
60年代: 研究GC-MS联用技术
70年代: 计算机引入
80年代: 新的质谱技术出现:快原子轰击电离子源,基质辅助
OH R
γ
RC
α
β
OH
R
RC
OH
R
C
+
R CH2
O
C R CH3
R=H(醛 ) : m/z =44 R=CH3(酮 ):m/z =58 R=OH(羧 酸 ) : m/z=60
5 . 多电荷离子
失掉两个以上电子的离子是多电荷离子。
离子丰度的影响因素
❖ 1.产物离子的稳定性 ❖ 2.Stevenson规则 ❖ 3.质子亲合能(PA) ❖ 4.最大烷基丢失 ❖ 5.中性产物的稳定性
一般,离子从离子源到达检测器的时间为105s数量级, 若离子M1,质量m1 ①离子寿命>105s,足以到达检测器,测的其本身m1/z
②当离子寿命< 106 s 的离子在离子源内进一步裂解 M1→M2(m2) 若M2的寿命>105s,测的是m2/z
③10-6s<离子寿命< 105 s M1→M2(m2)此时M2与M1速度相同,
最轻同位素-天然丰度最大 分子离子峰 M+
同位素离子峰 M+1 或 M+2 峰
一些同位素的自然丰度
常见同位素及其丰度
元素 C
H N O S Cl Br
质谱

3.
了基础。
4.
1943年,出现了第一台商品质谱仪,主要用于石油工业。
5
50年代是质谱技术飞速发展的一个时代。在质量分析器方面出现了四
极滤质器,脉冲飞行时间分析器。离子源方面出现了火花离子源和二 次离子源。特别值得一提的是,成功的实现了气相和质谱的联用,从 而使质谱质谱在分析复杂的有机混合物占有独特的优势。
失去21~25个质量单位的碎片。因此,待确定的分子离子峰与左
侧的离子峰的质量差,不能等于4~13,21~25等的质量单位。
季戊烷的质谱图:
上图为一烷烃的图谱,每m/z57与m/z41的离子相距16个质量数,而完整的有机
化合物分子不可能丢失一个· 4离子,所以m/z57不是分子离子峰,而是由m/z CH 72的离子失去甲基(M-15)形成的。经过谱图解析,证明这个化合物是季戊烷
A+1 % 质量 2 0.05
A+2 质量 %
元素类型
13 15 17 33 29
1.1 0.37 0.04 0.80 5.1
18 34 30 37 81
0.20 4.4 3.4 32.5 98.0
“A” “A” “A” “A” “A+1” “A+1” “A+2” “A+2” “A+2” “A+2” “A+2”
生成一个中性分子和一个自由基阳离子。
H
rH
Y
α
+
HY
H Y
H Y
i +
H Y
R4
CH CH
H
Z C R1
R4
CH CH HC R2
ZH C R1
R3
CH R2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.质谱发展简史
1886年,G o l d s t e i n发现正电荷离子
1898年,W i e n利用电场和磁场使正电荷离子偏转
1912年,T h o m s o n研制第世界上一台质谱仪,氖同位素的发现
1918年,D e m p s t e r电子轰击电离(E l e c t r o n i o n i z a t i o n)及磁聚焦1919年,A s t o n精密仪器,测定50多种同位素,第一张同位素表
1934年,S t e p h e n s均匀扇形磁场,球差和质量色散公式H e r z o g和
H i n t e n b e r g e r电磁场组合,离子光学系统
1940年,N i e r扇形磁场偏转质谱计,双聚集系统商品仪器的雏形235U,电磁制备方法,第二次世界大战期间在石油、化工等领域的应用1946年,S t e p h e n s飞行时间质谱(T i m e-o f f l i g h t m a s s a n a l y s i s) 1952年,M a r t i n气相色谱方法
1953年,P a u l等四极杆分析器(Q u a d r u p o l e a n a l y z e r s)
1956年,G o h l k e a n d M c L a f f e r t y气相色谱-质谱联用(G C/M S)B e y n o n 高分辨质谱仪(H i g h-r e s o l u t i o n M S)
1965年,H i p p l e等离子回旋共振(I o n C y c l o t r o n R e s o n a n c e)
1966年,M u n s o n a n d F i e l d化学电离(C h e m i c a l i o n i z a t i o n)
1966年,M c L a f f e r t y a n d J e n n i n g s串联质谱(T a n d e m m a s s s p e c t r o m e t r y) 1973年,M c L a f f e r t y液相色谱-质谱联用(L C/M S),热喷雾方法
1974年,C o m i s a r o w和M a r s h a l l傅立叶变换离子回旋共振质谱
(F T-I C R-M S)
1981年,B a r b e r等快原子轰击电离质谱(F A B M S),生物中,小分子,2000以内
1989年,J.B.F e n n电喷雾电离K o i c h i T a n a k a基质辅助激光解吸电离。
1990年,K a t t a a n d C h a i t电喷雾电离质谱观察蛋白质构象改变
1993年,商品电喷雾质谱仪
1995年,付立叶变换离子回旋共振质谱仪(与E S I和M A L D I联用)1998年,高分辨飞行时间质谱仪(D e l a y E x t r a c t,R e f l e c t r o n技术)2002年,J.B.P e n n和田中耕一因电喷雾电离(e l e c t r o n s p r a y i o n i z a-
t i o n,E S I)质谱和基质辅助激光解吸电离(m a t r i x-a s s i s t e d l a
s e r d e s o r p t i o n i o n i z a t i o n,M A L D I)质谱获诺贝尔化学奖。
2.液质联用仪发展简史
从“接口”技术发展史来看,液质“接口”技术的难度要大于气质的,这是因为液相色谱中的流动相是液体,而质谱检测的是气体离子,所以“接口”技术必须要解决液体离子化难题。
伴随这一难题的解决,液质联用的发展也日新月异,并广泛的应用于各领域。
1977年,L C/M S开始投放市场;
1978年,L C/M S首次用于生物样品分析;
1989年,L C/M S/M S研究成功;
1991年,A P I L C/M S用于药物开发;
1997年,L C/M S/M S用于药物动力学高通量筛选;
2002年美国质谱协会统计的药物色谱分析各种不同方法所占的比例:1990年,H P L C高达85%,而2000年下降到15%,相反,L C/M S所占的份额从提高到大约80%。