水质监测与评价

合集下载

如何进行水环境质量监测与评价

如何进行水环境质量监测与评价

如何进行水环境质量监测与评价水是我们生活和社会发展不可或缺的重要资源,而水环境质量的监测与评价对于保护水资源、维护人民生活和社会经济的可持续发展具有重要意义。

本文将探讨如何进行水环境质量监测与评价的方法和步骤。

一、水环境质量监测的目的水环境质量监测旨在了解水体的污染状况,评估水体是否适合特定的用途,为制定污染控制策略提供科学依据。

其主要目的包括:1.了解水环境的污染负荷和污染源;2.监测和控制水污染物的浓度和分布;3.评估水体是否达到特定的水质标准;4.提供科学数据支持,为水环境治理和资源保护提供参考。

二、水环境质量监测的方法1.采样与分析水环境质量监测的第一步是采集水样品,并对样品进行分析。

采样要选择具有代表性的样点,确保样品能够反映整个水体的污染情况。

常见的水样品采集方法包括虹吸法、自动水样器和人工采样等。

而水样品的分析方法包括化学分析、生物学分析和物理学分析等。

2.指标选择根据水体的用途和当地的环境法规,针对不同的水环境目标,选择适当的监测指标是至关重要的。

常用的指标包括水中溶解氧、COD(化学需氧量)、BOD(生化需氧量)、氨氮和总磷等。

选择合适的指标能够反映污染物的浓度和对水体的影响,为评估水质提供重要依据。

3.监测技术与仪器随着科技的发展,水环境质量监测技术和仪器也得到了不断的改善和创新。

例如,光谱分析技术、质谱技术和电化学分析技术等。

这些先进的仪器能够提高监测的准确性和精度,同时缩短监测的时间和成本。

三、水环境质量评价的方法1.参考水质标准水环境质量评价的基础是参考水质标准。

根据不同的用途和当地的法规,制定相应的水质标准是评价水体是否合格的依据。

水质标准通常包括水中污染物浓度限值,以及对于水中生物多样性和生态系统健康的要求等。

2.综合评估方法水环境质量评价需要综合考虑多个因素,如化学污染物、生物指标、水质标准等。

常用的评价方法包括目标达成度评价、综合污染指数评价和生态系统健康评价等。

污水处理中的水质监测与评估

污水处理中的水质监测与评估

污水处理中的水质监测与评估随着城市化进程的不断加快,污水处理成为了现代社会中一项重要的环境保护工作。

在污水处理过程中,水质监测与评估是确保处理效果和水环境健康的关键步骤。

本文将就污水处理中的水质监测与评估进行探讨,并介绍一些常用的监测技术和评估方法。

一、水质监测水质监测是对污水处理过程中水质变化进行定期观测和测试的过程。

通过水质监测,可以了解处理厂内各处理单元的运行情况,及时发现问题并采取措施解决。

常用的水质监测指标有悬浮物、化学需氧量(COD)、生化需氧量(BOD)、氨氮、总磷等。

1.1 悬浮物监测悬浮物是指污水中悬浮在水体中的固体颗粒,包括悬浮颗粒物和浊度。

测量悬浮物的含量可以通过测定浊度来反映。

现代污水处理厂中通常使用濁度仪来测量水体的浑浊程度,从而判断悬浮物的含量。

悬浮物的监测能够直观地了解水的透明度和浑浊状况。

1.2 化学需氧量(COD)监测化学需氧量(COD)是指单位体积水中的有机物氧化所需的化学物质量。

COD监测是评价污水处理厂进水和出水中有机物含量的重要指标之一。

常用的COD监测方法包括高温氧化法、紫外分光光度法等。

COD的监测可以帮助判断废水处理效果和污染物的去除程度。

1.3 生化需氧量(BOD)监测生化需氧量(BOD)是指微生物在有氧条件下降解有机物所需的氧量。

BOD的监测是评估污水中有机物降解能力和水体自净能力的重要手段。

常用的BOD监测方法有溶解氧法、亚氧条件法等。

通过定期监测BOD,可以判断废水处理厂的处理效能以及水环境的健康程度。

1.4 氨氮和总磷监测氨氮和总磷是污水中的重要营养盐,对水体的富营养化和水质恶化起到重要作用。

氨氮和总磷的监测可以通过分光光度法、电极法等方法来测定。

监测氨氮和总磷的含量,有助于及时评估污水处理效果和采取相应的调控措施。

二、水质评估水质评估是根据监测数据对处理效果和水体环境质量进行综合评价的过程。

通过水质评估,可以及时发现和解决问题,保障水环境的健康和可持续发展。

水质监测与评价标准

水质监测与评价标准

水质监测与评价标准随着环境问题的日益凸显,水质监测与评价成为了保护水资源的重要手段。

本文将分为四个小节,分别探讨水质监测的意义、常见的水质监测指标、水质评价标准以及水质改善措施,以期为相关行业提供参考和指导。

一、水质监测的意义水是人类生存不可或缺的资源之一,保障水资源的质量对于人类的生活和健康至关重要。

水质监测旨在及时了解水的各项指标,全面评估水的质量状况,为制定科学的水资源管理政策和环境保护措施提供依据。

通过水质监测,可以及时发现并应对水源地污染、日常生活用水和工业用水中出现的问题,保护水质,确保人民的饮水安全。

二、常见的水质监测指标水质监测需要从物理、化学和生物学等多个方面进行全面分析和评估。

以下是常见的水质监测指标:1. 温度:水的温度对于水中的生态系统和水中生物的生存与繁殖都有重要影响。

2. pH值:pH值反映了水的酸碱程度,对于生物的生存和水体的化学反应有着重要影响。

3. 溶解氧:溶解氧是水中生物生存所必需的,对于水体中的有机质分解和水体的富营养化状况具有指示作用。

4. 化学需氧量(COD)和生化需氧量(BOD):COD和BOD指示了水体中可被氧化的有机物质的含量,这些有机物质是水体中的污染源。

5. 总悬浮物、总溶解固体和悬浮颗粒物:这些参数反映了水体中的固体颗粒物质的含量,对于水体浑浊度和污染物的承载和传输具有重要意义。

6. 营养盐含量:水体中过量的氮、磷等营养盐对于水体的富营养化和藻类过度生长会导致水质恶化。

7. 重金属和有机污染物:重金属和有机污染物对水体的毒性和生态环境有严重影响,需要进行定期的监测。

三、水质评价标准水质评价标准是对水质监测结果进行评估和判定的依据。

以下是一些常见的水质评价标准:1. 饮用水质量标准:针对不同的水源和用途,国家和地方制定了一系列的饮用水质量标准,用于评估水源是否适合饮用。

2. 地表水环境质量标准:为保护地表水资源和生态环境,制定了地表水环境质量标准,用于评估水体的质量状况。

环境水质监测与评价标准

环境水质监测与评价标准

环境水质监测与评价标准一、引言在现代社会中,对环境水质的监测与评价非常重要。

水是我们生活和生产中必不可少的资源,对水质进行科学准确的监测和评价,有助于保护水资源,维护生态平衡,保障人类健康。

本文将就环境水质监测与评价的一些标准进行论述。

二、环境水质监测标准1. 水质监测的基本原则水质监测是指对水体的环境影响因素进行动态监控和评估,以确定其对生态系统和人类健康的风险程度。

水质监测应当坚持科学、客观、公正、准确的原则,确保监测结果具有代表性、可比性和可信度,便于与环境质量标准进行对比与分析。

2. 监测项目的选择水质监测应根据水环境的特点和实际需求,选择合适的监测项目。

监测项目应涵盖水体的理化性质、生物学指标和污染物的监测。

其中理化性质包括温度、pH值、溶解氧、浊度、电导率等指标;生物学指标包括藻类、浮游生物、底栖动物等指标;污染物监测应包括重金属、有机物、营养物质等污染物。

3. 监测样品的采集与处理监测样品的采集应具有代表性和可重复性。

采集时应选择合适的采样点,避免受到人为因素的干扰。

不同类型的水体应根据其特点选择相应的采样方法。

采样完成后,应严格按照相关标准对样品进行保存、处理和分析。

4. 检测方法和仪器设备为了确保监测结果的准确性和可靠性,必须采用科学的检测方法和先进的仪器设备。

监测人员应接受专门的培训,掌握各种检测方法的原理和操作技能。

同时,应确保检测仪器设备的精度和可靠性,定期进行校准和维护。

三、环境水质评价标准1. 水质类别和评价标准根据水质的不同用途,可以将水体分为饮用水、鱼类水域、游泳区域等不同类别。

针对不同类别的水体,应制定相应的评价标准。

评价标准通常包括对于各项监测指标的限值要求,如pH值、溶解氧、总氮、总磷等。

2. 水质污染指数计算方法水质污染指数是一种综合评价水质的方法,可以通过多种指标的综合计算得出。

常见的水质污染指数计算方法有德尔塔指数法、综合污染指数法等。

这些方法可以反映水质状况的综合情况,方便进行水质的对比和评价。

水利工程中的水质监测与评价

水利工程中的水质监测与评价

评价结果:包 括水质等级、 污染物浓度、
水质标准等
评价报告:包 括评价目的、 评价方法、评 价结果、结论
和建议等
评价结果的应 用:用于指导 水利工程的设 计和施工,确
保水质安全
评价报告的格 式和规范:符 合相关标准和 规范,便于理
解和交流
水质评价在环境保护中的重要性 水质评价的方法和标准 水质评价在实际工程中的应用案例 水质评价的改进方向和趋势
通过水质监测与评价,可 以及时发现和处理水质问 题,保障人民的饮水安全
和健康。
水质监测与评价可以为水 资源的合理开发和利用提 供科学依据,促进水资源
的可持续利用。
水质监测与评价还可以为 水利工程的设计和施工提 供参考,提高工程的质量
和效益。
水质监测与评价是水环境保护和治理的重要手段 通过水质监测与评价,可以了解水质状况,为水环境保护和治理提供科学依据 水质监测与评价可以帮助我们及时发现水质问题,采取有效措施进行治理 水质监测与评价可以为水环境保护和治理提供数据支持,为决策提供科学依据
5
智能化和自动化监测技术 的发展历程
智能化和自动化监测技术 的优点和特点
智能化和自动化监测技术 在水利工程中的应用案例
智能化和自动化监测技术 未来的发展趋势和挑战
研发目标:开发出更加精准、 高效、便捷的监测仪器和设 备
研发背景:随着环境污染的 加剧,对水质监测的要求越 来越高
研发成果:包括但不限于传 感器、分析仪、自动化监测
供数据支持
指标:pH值、电导率、悬浮物、 重金属等
方法:化学分析法、物理分析 法、生物分析法等
监测频率:根据工程规模、水 质变化情况等因素确定
数据处理:对监测根据工程规模、水质变化情 况等因素确定监测频率

污水处理中的水质监测与评估方法

污水处理中的水质监测与评估方法

污水处理中的水质监测与评估方法随着城市化进程的推进和人口的增长,污水处理成为解决水环境问题的重要手段。

而为了确保污水处理的效果和水环境的健康,水质监测与评估方法成为至关重要的一环。

本文将介绍污水处理中常用的水质监测与评估方法,并探讨其优缺点。

一、常用的水质监测方法1. 采样与分析:采样是水质监测的第一步,包括在污水处理系统中不同阶段的采样,例如进水口、出水口和处理单元等。

采样方法通常包括现场采样和实验室分析。

现场采样应遵循严格的操作规范,以确保水样的代表性。

实验室分析则涉及到水质指标的测量,例如悬浮物、有机物含量、COD(化学需氧量)、BOD(生化需氧量)和氮磷含量等。

2. 在线监测技术:在线监测是指利用自动监测仪器对水质参数进行实时监测。

这种方法可以提供更加连续、全面的数据,减少了人为因素的干扰。

常用的在线监测参数包括pH值、溶解氧、浊度、温度等。

这些参数的实时监测有助于快速发现和解决水处理过程中的问题。

3. 生物监测:生物监测是通过观察和记录水体中的生物多样性情况来评估水质状况。

这种方法能够反映出水体中可能存在的毒物、有害物质以及生态系统的健康状况。

常用的生物指标包括鱼类、浮游生物和底栖动物的种类、数量和生长情况等。

二、常用的水质评估方法1. 水质指标法:水质指标法是根据一系列水质参数的测量结果来评估水体的水质状况。

常用的水质指标包括化学需氧量(COD)、生化需氧量(BOD)、氨氮、总磷、总氮、溶解氧等。

通过将测得的参数数值与相关的水质标准进行对比,可以评估水体的优劣。

2. 污染指数法:污染指数法是将多个水质参数的数值综合计算得出一个综合指数,用于评估水体的污染程度。

常用的污染指数包括水质状况指数(WQI)、污染指数(PI)等。

这些指数综合了多个水质参数,能够更全面地反映水体的污染程度。

3. 生态风险评估:生态风险评估是评估水体健康状况和生态系统对环境影响的方法。

通过对水体中有害物质的分析和鉴定,结合生物监测的结果,可以评估水体是否存在生态风险,并确定可能的影响程度。

水质监测评价标准

水质监测评价标准

⽔质监测评价标准⼀、概述⽔质监测评价标准是保障⽔环境健康,维护⽣态平衡的重要⼯具。

通过对⽔体的物理、化学、⽣物等指标进⾏监测,对照相应的评价标准,可以判断⽔体的质量状况,为环境保护和⽔资源管理提供科学依据。

本标准旨在规范⽔质监测与评价⼯作,提⾼⽔质监测数据的准确性和可靠性,为⽔资源的可持续利⽤提供有⼒保障。

⼆、⽔质监测评价标准的主要内容1.⽔质监测指标⽔质监测指标主要包括:pH值、溶解氧、浊度、总悬浮物、⾼锰酸盐指数、化学需氧量、⽣物需氧量、氨氮、总氮、总磷、铜、锌、镉、铅、汞、砷等重⾦属元素以及多种有机污染物等。

这些指标涵盖了⽔体的物理、化学和⽣物特征,能全⾯反映⽔质状况。

2.⽔质评价标准⽔质评价标准是判断⽔体质量优劣的依据。

根据不同⽤途,⽔质评价标准可分为以下⼏类:(1)饮⽤⽔⽔质标准:规定了饮⽤⽔源地⽔质要求和供⽔⽔质要求。

对于饮⽤⽔源地,⽔质应符合《地表⽔环境质量标准》和《地下⽔环境质量标准》中的Ⅰ类或Ⅱ类标准;对于供⽔⽔质,应符合《⽣活饮⽤⽔卫⽣标准》的各项指标。

(2)⼯业⽤⽔⽔质标准:根据不同⼯业⽤途,对⽔质的要求也不尽相同。

⼀般来说,⼯业⽤⽔的⽔质应满⾜⽣产⼯艺要求,不得对⽣产设备造成腐蚀和结垢,同时应尽可能减少对环境的污染。

(3)渔业⽤⽔⽔质标准:规定了渔业养殖⽤⽔的质量要求。

渔业⽤⽔的⽔质应符合《渔业⽔质标准》的要求,以保证⻥类的正常⽣⻓和繁殖,同时不对⼈体健康造成危害。

(4)景观娱乐⽤⽔⽔质标准:适⽤于公园、景区等地的景观娱乐⽤⽔。

此类⽔体的⽔质应保持清澈透明,⽆异臭异味,同时不得对游客造成健康危害。

三、⽔质监测评价标准的制定与实施1.制定原则制定⽔质监测评价标准应遵循以下原则:科学性、实⽤性、可操作性和前瞻性。

在制定标准时,应充分考虑⽔体的⾃然条件、环境状况和社会需求等因素,以确保标准的合理性和有效性。

2.实施要求各部⻔应加强⽔质监测与评价⼯作的组织领导,建⽴健全⽔质监测⽹络和评价体系。

水质监测与评价规定

水质监测与评价规定

水质监测与评价规定一、引言水是人类赖以生存的重要资源,保护水资源,维护水质的健康成为现代社会的重要任务之一。

为了确保水资源的可持续利用和保护人类的健康,制定并严格执行水质监测与评价规定是必要的。

本文将从水质监测的目的、监测指标、监测方法、评价标准等方面进行全面探讨。

二、水质监测的目的水质监测主要目的在于掌握水体中有害污染物质的浓度,评价水资源的安全性,为水环境管理者提供决策依据。

根据监测数据的获取方式和用途,水质监测可以分为定点监测和流域监测两种类型。

定点监测是指在特定区域内设置监测站点,对特定水体进行定时定点的监测。

流域监测是对整个水域内的水体进行连续监测,以掌握水体的全面污染状况。

三、监测指标1. 有机物污染指标(1)化学需氧量(COD):COD是水中有机物氧化释放的化学需氧量。

通过监测COD可以评价水体中的有机物污染程度。

(2)生化需氧量(BOD):BOD指水中有机物被微生物降解释放的需氧量。

BOD是评价水体的生物群落状况的重要指标。

2. 无机物污染指标(1)总磷(TP)和总氮(TN):TP和TN是评价水体营养状况的两个重要指标。

过量的TP和TN会导致水体富营养化,引发水华等问题。

(2)重金属:如汞、铅、铬等。

监测重金属的含量可以评估水体的重金属污染状况,判断水质是否适合人类生活和生态系统的需求。

3. 微生物污染指标(1)大肠菌群:监测水体中大肠菌群的含量可以评价水体是否受到粪便污染,判断水体是否存在致病微生物的潜在风险。

(2)肠道出血性埃希氏菌:监测肠道出血性埃希氏菌的含量可以评价水体是否存在病原微生物的污染,判断水质是否符合饮用水卫生标准。

四、监测方法1. 野外监测野外监测是在实际水体环境中进行的监测工作。

监测人员需要准备适当的监测设备,如采样瓶、温度计等,并遵循采样规程进行现场采样。

野外监测需要准确记录采样点位、日期、时间等信息,并妥善保存样品,确保后续实验室分析的准确性。

2. 实验室分析采样回实验室后,需要选用适当的分析方法进行样品处理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. t 检验法—平均值与标准值的比较 用于检验分析方法或操作过程是否存在系 统误差。用待检验的分析方法对已知准确含量 的标样进行测定,然后用t检验法判断测定平均 值与标样的标准值之间是否存在显著性差异。
检验步骤: x A.计算t t计 n s B.根据给定α 和 f 查tα ,f值; C.判断:如果 t计>tα ,f,认为平均值与标准值间 存在显著性差异,否则认为平均值与标准值间不 存在显著性差异。
(三)显著性检验
分析化学中,常常由于系统误差和随机误差 混杂在一起,导致测量值之间的差异难以分辨出 是何种因素引起,显著性检验是解决这类问题的 一个科学方法。如果分析结果间的差异是由随机 误差引起,就认为它们之间“无显著性差异”; 若分析结果间的差异由系统误差所致,就认为存 在“显著性差异”。分析化学中,应用最多的显 著性检验方法是 t 检验法和 F 检验法。
1. 水 分 析 方 法
化 学 分 析
重量分析
酸碱滴定 配位滴定
滴定分析
氧化还原滴定 沉淀滴定
电化学分析
仪 器 分 析
电导、电位、电解、库仑 极谱、伏安 光度、发射、吸收,荧光 气相、液相、离子、超临 界、薄层、毛细管电泳 红外、核磁、质谱
光化学分析 色谱分析
波谱分析
滴定分析法 ● 1. 标准溶液(滴定剂):
3 准确度和精密度的关系
(一)50.33% (二) 50.30% (三) 50.28% (四) 50.27%
平均值 甲 50.29%
(一)50.40% (二) 50.30% (三) 50.25% (四) 50.23%
乙 50.30%
(一)50.36% (二) 50.35% (三) 50.34% (四) 50.33%
(二)生活饮用水监测项目 常规检验项目 肉眼可见物、色、嗅和味、浑浊度、pH、 总硬度、铝、铁、锰、铜、锌、挥发酚类、阴 离子合成洗涤剂、硫酸盐、氯化物、溶解性总 固体、耗氧量、砷、镉、铬(六价)、氰化物、 氟化物、铅、汞、硒、硝酸盐、氯仿、四氯化 碳、细菌总数、总大肠菌群、粪大肠菌群、游 离余氯、总α放射性、总β放射性。
7 极差(R)和公差
● 极差:衡量一组数据的分散性。一组测量数据中最大
值和最小值之差,也称全距或范围误差。 R = x max — x min
● 公差:生产部门对于分析结果允许误差表示法,超出 此误差范围为超差,分析组分越复杂,公差的范围也大
● 精密度: 用相同的方法对同一个试样平行测定多次,得到结果 的相互接近程度。以偏差来衡量其好坏。 重复性:同一分析人员在同一条件下所得分析结果的 精密度。 再现性:不同分析人员或不同实验室之间各自的条件 下所得分析结果得精密度。
续前 ● 偏差: 一组数据中个别测量值与平均值之间的差值,一组 数据分析结果的精密度可以用平均偏差和标准偏差来表 示。
续前
● 标准加入法(加入标准回收法):取两份等量试样,在其 中一份中加入已知量的待测组分并同时进行测定,由加入 待测组分的量是否定量回收来判断有无系统误差。如下表 所示。
● 内检法:在生产单位,为定期检查分析人员是否存在 操作误差或主观误差,在试样分析时,将一些已经准确 浓度的试样(内部管理样)重复安排在分析任务中进行 对照分析,以检查分析人员有无操作误差。
SO 2 4 x m BaSO 4
1.2数据处理
一. 误差的概念 二. 有效数字及其运算规则
一.误差的概念
1 准确度和误差
真值(xT): 某一物理量本身具有的客观存在的真 实数值,即为该量的真值。 ※ 理论真值:如某化合物的理论组成等。计量学约 定真值:国际计量大会上确定的长度、质量、物质的 量单位等。 ※ 相对真值:认定精度高一个数量级的测定值作为低 一级的测量值的真值。例如科研中使用的标准样品 及管理样品中组分的含量等。
方法误差:分析方法本身不完善而引起的。 仪器和试剂误差:仪器本身不够精确,试剂不纯引起误
差。
续前
操作误差:分析人员操作与正确操作差别引起的。
● 随机误差: 由一些随机偶然原因造成的、可变的、无法 避免,符合“正态分布”。 ● 过失误差(显著误差) :由于不小心引起,例如运算和记 录错误。
绝对偏差: di xi x 平均偏差:
x1 x2 x3 .... xn 1 n x xi n n i 1
d
d1 d 2 .... d n n
续前
相对平均偏差
d d r (%) 100% x

标准偏差
s
(x
i
x)2
n 1
重量分析法
采用适当的方法,使被测组分与试样其他组分 分离后,转化为另一种称量形式,再通过称量其质 量,可计算出被测组分的含量。
测SO42- 加过量BaCl2 Vs(ml) 称量 BaSO4↓ 过滤洗涤灼烧 冷却 BaSO4↓
BaSO4↓ SO42SO
2 4
m(g) x(g)
SO 2 4 m 1000 BaSO 4 1000 mg/L Vs
2ቤተ መጻሕፍቲ ባይዱF检验法
通过比较两组数据的方差,确定两组数据的精密 度是否存在显著性差异。 A: 计算F值:F=s2大/s 2小; B: 判断:如果F计>F表 ,则认为两组数据的精密度存在 显著性差异,相反,不存在显著性差异。查阅F值表是 单边的,可直接按给定的置信度对单边检验作出判断; 如把单边表用于双边检验,则其显著性水准为单 边检验的2倍,即2α ,置信度为1-2α 。
标准中要求控制、在环境中难以降解; 危害大、毒性大、影响范围广; 出现频率高 有可靠检测方法。
(一)地表水监测项目 基本项目:
水温、pH值、溶解氧、氟化物、氰化物、硫化 物、氨氮、总氮(湖、库)、总磷、高锰酸盐指数、 化学需氧量、五日生化需氧量、挥发酚、石油类、 阴离子表面活性剂、铜、锌、硒、砷、汞、镉、铅、 铬(六价)、粪大肠菌群。 集中式生活饮用水水源地补充项目:硫酸盐、氯化 物、硝酸盐、铁、锰 集中式生活饮用水水源地特定项目:三氯甲烷、四 氯化碳等
(3) 对水环境污染事故进行应急监测,为分析判断事 故原因、危害及制订对策提供依据。
(4) 为国家政府部门制定水环境保护标准、法规和规 划提供有关数据和资料。 (5) 为开展水环境质量评价和预测预报及进行环境科 学研究提供基础数据和技术手段。
3、监测项目
监测项目受人力、物力、财力的限制,不可能将
所有的监测项目都加以测定,只能是对那些优先监测 污染物加以监测。 优先监测污染物:
97.5
102.5
105.0 98.8 100.0 93.3
平均加标回收率/%:
6 平均值的置信区间
● 一个分析结果的“置信区间”表明在一 定的置信度(置信水平)下,以x 为中心,包 括真值在内的可能范围。
s xt x tsx n
t为置信系数, 随不同的置信度和测定次数 中 不同,通常置信度P取95%。
补充:水质监测相关知识
1、 水质监测的对象 环境水体:地表水(江、河、湖、库、海水) 地下水 水污染源:工业废水 生活污水和医院污水等
2、水质监测的目的:
(1) 对江、河、水库、湖泊等地表水和地下水中的污 染因子进行经常性的监测,以掌握水质现状及其变化趋势。
(2) 对生产、生活等废(污)水排放源排放的废(污) 水进行监视性监测,掌握废(污)水排放量及其污染物浓 度和排放总量,评价是否符合排放标准,为污染源管理提 供依据。
丙 50.33%
续前
关系:
● 精密度是保证准确度的先决条件。精密度差,所测 结果不可靠,就失去了衡量准确度的前提。 ● 高的精密度不一定能保证高的准确度。
4 误差的来源(系统误差、偶然误差)
● 系统误差: 由固定的原因造成的,使测定结果系统偏高 或偏低,重复出现,其大小可测,具有“单向性”。可用 校正法消除。根据其产生的原因分为以下4种。
续前
平均值:n 次测量值的算术平均值虽不是真值,但比单次 测量结果更接近真值,它表示一组测定数据的集中趋势。
中位数(xM ) : 一组测量数据按大小顺序排列,中间一个数 据即为中位数xM,当测量值的个数位偶数时,中位数为中 间相临两个测量值的平均值。优点:能简单直观说明一组测 量数据的结果,且不受两端具有过大误差数据的影响;缺 点:不能充分利用数据,因而不如平均值准确。

相对标准偏差RSD(又称变异系数CV)
s RSD 100% x
● 偏差和标准偏差关系
例如:求下列三组数据的 d 和s
第一组 10.02,10.02,9.98, 9.98 平均值= 10.00 d = 0.02 s = 0.02 RSD = 0.2% 第二组 10.01, 10.01, 10.02, 9.96 平均值= 10.00 d = 0.02 s = 0.027 RSD = 0.27% 第三组 10.02, 10.02, 9.98, 9.98, 10.02, 10.02, 9.98, 9.98 平均值= 10.00 d = 0.02 s = 0.021 RSD = 0.21%
续前
在报告分析结果时,要报出该组数
据的集中趋势和精密度: * 平均值x (数据集中趋势) * 测量次数n * RSD(RD) (3至4次) (精密度)
5 系统误差的检查方法
● 标准样品对照试验法:选用其组成与试样相近的标准 试样,或用纯物质配成的试液按同样的方法进行分析 对照。如验证新的分析方法有无系统误差。若分析结 果总是偏高或偏低,则表示方法有系统误差。 ● 标准方法对照试验法:选用国家规定的标准方法或公认 的可靠分析方法对同一试样进行对照试验,如结果与所 用的新方法结果比较一致,则新方法无系统误差。
(三)废(污)水 监测项目 第一类: 是在车间或车间处理设施排放口采样测定的污染 物,包括总汞、烷基汞、总镉、总铬、六价铬、总砷、 总铅、总镍、苯并(a)芘、总铍、总银、总α放射性、 总β放射性。 第二类: 是在排污单位排放口采样测定的污染物,包括pH、 色度、悬浮物、生化需氧量、化学需氧量、石油类、 动植物油、挥发性酚、总氰化物、硫化物、氨氮、氟 化物、磷酸盐、甲醛、苯胺类、硝基苯类、阴离子表 面活性剂、总铜、总锌、总锰 。
相关文档
最新文档