温度传感器的温度特性测量和研究
大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。
本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。
热电偶的温差电动势关于温度有很好的线性性质。
PN节作为常用的测温元件,线性性质也较好。
本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。
关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。
温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。
作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。
2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。
利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。
铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。
按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。
Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×10−3℃−1;B=-5.802×10−7℃−2;C=-4.274×10−12℃−4。
温度传感器特性研究--实验报告

沈阳城市学院物理实验报告实验题目温度传感器特性研究姓名学号专业班级实验室号实验成绩指导教师实验时间年月日物理实验室制请认真填写实验原理(注意:原理图、测试公式)一、直流电桥法测Pt100铂电阻温度特性直流电桥的原理图如图,根据直流电桥的基本 原理有:312t R R R R =,因为R1=R2,所以R3=Rt ,Rt 即为铂电阻。
Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器,在0~100℃范围内Rt 的表达式可近似线性为:01(1)t R R A t =+ 。
二、恒流源法测NTC 热敏电阻温度特性恒流源法电路原理图如图,根据串联电路原理11R RtO Rt t U U R I U R ==,Rt 即为热敏电阻。
热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,在一定的温度范围内(小于450℃)热敏电阻的电阻Rt 与温度T 之间有如下关系:)11(00T T B T eR R -=三、PN 结温度传感器特性PN 结温度传感器实验电路如图,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo 式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
请认真填写请在两周内完成,交教师批阅附录110115120125130135电阻/Ω温度/℃直流电桥法测Pt100铂电阻的温度特性图100200300400500600700800900电阻/Ω温度/℃电压/m V温度/℃。
实验1.4温度传感器温度特性的测量[1]
![实验1.4温度传感器温度特性的测量[1]](https://img.taocdn.com/s3/m/dd7f4c3dcaaedd3382c4d35c.png)
智能型致冷/加热温度控制仪
1
直流稳压稳流电源
1
数字万用表
1
LCR Meter
1
温度传感器
8
导线
若干
[ 原理概述 ] 温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。常用的温度
传感器的类型、测温范围和特点请翻阅教材的§6.2 节-温度计。本实验将通过测量几种
常用的温度传感器的特征物理量随温度的变化,来学习这些传感器的工作原理。
实验 1.4 温度传感器温度特性的测量
2. 数据处理 (1)作 Cu50 的 RCu ~t(℃)关系曲线并拟合求出电阻温度系数 A。要求写出最小二 乘法拟合的中间过程,而不是用数据处理软件直接得出结果。
中山大学理工学院物理实验教学中心编制
Page学《基础物理实验(I)》课程报告模板
中山大学《基础物理实验(I)》课程报告模板
3. 传感器测量设备
实验 1.4 温度传感器温度特性的测量
图 1.4. 5 JK-31 型直流稳压稳流电源
图 1.4. 6 DM3051 型数字万用表
图 1.4. 7 TH2811D 型 LCR Meter 直流稳压稳流电源提供了三组电源,一个是 0-30V 连续可调的稳压电源,一个是 0-250mA 连续 可调的稳流电源,第三个为集成电路工作电源,输出电压为±(3.3,5,8,12,15)V。DM3051 数字万用表 的使用方法请查阅教材的第 4-15 页,TH2811D 型 LCR Meter 的使用方法请查阅第 4-24 页。
EX =f (t) f (t0 )
(5)
EX 仅与两种导体的材料和两接点处的温度有关,而与导体的粗细、长短及两种导体的
接触面积无关。 EX 和两接点的温度差 t (t t0 ) 一般是非线性的,但温差不大时,可
大学物理实验集成电路温度传感器的特性测量及应用实验报告

大学物理实验,集成电路温度传感器的特性测量及应用实验报告标题:大学物理实验:集成电路温度传感器的特性测量及应用实验报告一、实验目的本实验旨在通过大学物理实验的方法,研究和理解集成电路温度传感器的特性和应用。
我们会对温度传感器进行基本特性的测量,如灵敏度、线性度、迟滞等,并探讨其在现实生活中的应用。
二、实验原理集成电路温度传感器是一种将温度变化转化为电信号的装置。
其基本原理是热电效应,即不同材料之间的温度差异会导致电荷的转移。
这种电荷的转移可以用来测量温度。
一般来说,温度传感器都具有较好的线性,使得输出的电信号与温度变化成正比。
三、实验步骤与数据记录1.准备器材:本实验需要用到数字万用表、恒温水槽、冰水混合物、热水、温度传感器、数据记录本等。
2.连接传感器:将温度传感器正确地连接到数字万用表上。
3.设定恒温水槽温度:首先设定恒温水槽的温度,分别为0℃、25℃、50℃、75℃、100℃。
4.测量并记录数据:在每个设定的温度下,用数字万用表记录下温度传感器的输出电压,共进行五次测量求平均值。
实验数据如下表:根据实验数据,我们发现温度传感器输出电压与温度之间存在明显的线性关系。
通过线性拟合,我们可以得到输出电压与温度之间的数学关系。
灵敏度是衡量传感器对温度变化响应能力的一个重要指标。
我们可以通过求出斜率来计算灵敏度。
计算结果表明,我们的温度传感器在25℃时的灵敏度为25mV/℃。
迟滞是反映传感器在正向和反向温度变化时响应差异的另一个重要指标。
在本实验中,我们对恒温水槽进行了五次先加热再冷却的操作,以测量迟滞。
我们发现,在±10℃的范围内,传感器的迟滞小于±1mV。
根据实验结果,我们可以得出以下结论:该集成电路温度传感器具有良好的线性、高灵敏度和低迟滞。
这些特性使得它非常适合用于各种需要精确测量温度的场合,如医疗、工业生产、科研等。
五、实验应用与感想通过本次实验,我们深入理解了集成电路温度传感器的特性和工作原理,并学会了如何使用物理实验方法对其进行研究。
温度特性实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。
2. 掌握热电偶、热敏电阻等常用温度传感器的温度特性测量方法。
3. 研究不同温度传感器在不同温度范围内的响应特性。
4. 分析实验数据,评估温度传感器的准确性和可靠性。
二、实验原理温度传感器是将温度信号转换为电信号的装置,常用的温度传感器有热电偶、热敏电阻、热敏晶体管等。
本实验主要研究热电偶和热敏电阻的温度特性。
1. 热电偶测温原理热电偶是一种基于塞贝克效应的温度传感器,由两种不同材料的导体构成。
当两种导体的自由端分别处于不同温度时,会产生热电势,其大小与温度有关。
通过测量热电势,可以确定温度。
2. 热敏电阻测温原理热敏电阻是一种基于半导体材料的电阻值随温度变化的温度传感器。
根据电阻值随温度变化的规律,可以将温度信号转换为电信号。
热敏电阻分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。
三、实验仪器与设备1. 热电偶(K型、E型)2. 热敏电阻(NTC、PTC)3. 温度控制器4. 数字多用表(万用表)5. 数据采集器6. 实验平台7. 温度传感器实验装置四、实验步骤1. 热电偶温度特性测量(1)将K型热电偶和E型热电偶分别接入实验装置,调节温度控制器,使温度逐渐升高。
(2)使用数字多用表测量热电偶两端的热电势,记录数据。
(3)将热电势与温度对应,绘制热电偶的温度特性曲线。
2. 热敏电阻温度特性测量(1)将NTC热敏电阻和PTC热敏电阻分别接入实验装置,调节温度控制器,使温度逐渐升高。
(2)使用数字多用表测量热敏电阻的电阻值,记录数据。
(3)将电阻值与温度对应,绘制热敏电阻的温度特性曲线。
五、实验结果与分析1. 热电偶温度特性曲线通过实验数据绘制出K型和E型热电偶的温度特性曲线,可以看出热电偶的温度特性与温度之间呈线性关系,但在低温区域可能存在非线性。
2. 热敏电阻温度特性曲线通过实验数据绘制出NTC和PTC热敏电阻的温度特性曲线,可以看出热敏电阻的温度特性与温度之间呈非线性关系,且NTC热敏电阻的电阻值随温度升高而减小,PTC热敏电阻的电阻值随温度升高而增大。
温度传感器特性研究报告--实验报告

城市学院
物理实验报告
物理实验室制
请认真填写
3
12t R R R R =
,因为R1=R2,所以R3=Rt ,Rt 即为铂电阻。
Pt100铂电阻是一种利用铂金属导体电阻随温度变
化的特性制成的温度传感器,在0~100℃围Rt 的表达式
可近似线性为:
01(1)
t R R A t =+ 。
二、恒流源法测NTC 热敏电阻温度特性
恒流源法电路原理图如图,根据串联电路原理
11R Rt
O Rt t U U R I U R =
=,Rt 即为热敏电阻。
热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,在一定的温度围〔小于450℃〕热敏电阻的电阻Rt 与温度T 之间有如下关系:
)11(
00
T T B T e
R R -=
三、PN 结温度传感器特性
PN 结温度传感器实验电路如图,PN 结的正向电压U 和温度t 近似满足以下线性关系
U=Kt+Ugo 式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
请认真填写
请在两周完成,交教师批阅
附录。
温度传感器的温度特性研究

温度传感器的温度特性研究
温度传感器的温度特性研究涉及到温度传感器在不同温度条件下的工作性能和输出特性的变化。
这类研究通常包括以下方面:
1. 精度和准确性:研究温度传感器在不同温度范围内的测量精度和准确性,以了解其在不同温度条件下的误差和偏差。
2. 线性性:研究温度传感器输出信号与温度之间的线性关系,确定其在不同温度范围内是否能够提供稳定的线性输出。
3. 灵敏度和响应时间:研究温度传感器对温度变化的敏感程度和响应时间,以评估其对快速温度变化的适应性和实时性。
4. 稳定性和长期稳定性:研究温度传感器在长期使用中的稳定性和性能变化情况,以确定其在实际应用中的可靠性和持久性。
5. 温度补偿和校准:研究温度传感器的温度补偿算法和校准方法,以优化其在不同温度环境下的测量精度和稳定性。
温度传感器的温度特性研究可以通过实验室测试和仿真模拟等方法进行。
研究的结果可以用于指导温度传感器的设计、制造和应用,以满足不同行业和领域对温度监测和控制的需求。
温度传感器特性研究实验报告

温度传感器特性研究实验报告摘要:本实验通过研究温度传感器的特性,使用不同温度下的校准器对传感器进行校准,得到不同温度下传感器的输出电压,进而建立传感器输出电压与温度之间的关系。
实验结果表明,在一定范围内,温度传感器的输出电压与温度呈线性关系,并且可以通过简单的线性拟合方程进行温度的测量。
1.引言2.实验目的-研究温度传感器的特性,了解其输出电压与温度之间的关系。
-通过实验校准温度传感器,获得传感器的输出电压与温度的关系方程。
3.实验装置与方法-实验装置:温度传感器、温度校准器、数字万用表、温控槽等。
-实验步骤:1.将温度传感器和校准器连接起来,校准器设置为不同的温度。
2.使用数字万用表测量传感器的输出电压。
3.记录不同温度下传感器的输出电压。
4.将实验数据进行整理和分析,得出传感器的特性。
4.实验结果与分析通过实验我们得到了不同温度下传感器的输出电压,如下表所示:温度(℃)输出电压(V)-100.200.5100.8201.0301.3401.6根据实验数据,我们可以得到传感器的输出电压与温度之间的关系。
通过绘制散点图,并进行线性拟合,我们得到下面的结果:传感器输出电压(V)=0.05*温度(℃)+0.5可以发现,传感器的输出电压与温度之间呈线性关系,且经过简单的线性拟合,我们可以得到传感器输出电压与温度之间的关系方程。
这为后续的温度测量提供了便利。
5.总结与展望本实验通过研究温度传感器的特性,得到了传感器输出电压与温度之间的关系。
实验结果表明,温度传感器在一定范围内可以通过线性拟合得到与温度相关的输出电压方程。
这为后续的温度测量提供了便利。
未来的研究可以进一步探索不同类型的温度传感器的特性,并进行更加精确的测量与分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验室1215:温度传感器的温度特性测量和研究(FD-TTT-A型温度传感器温度特性实验仪)【目的要求】1、学习用恒电流法和直流电桥法测量热电阻;2、测量铂电阻和热敏电阻温度传感器的温度特性;3、测量电压型、电流型和PN结温度传感器的温度特性;【实验仪器】FD-TTT-A温度传感器温度特性实验仪一台十进制电阻箱一个FD-TTT-A温度传感器温度特性实验仪面板图【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点见表1。
本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理.表1常用的温度传感器的类型和特点一、直流电桥法测量热电阻直流平衡电桥(惠斯通电桥)的电路如图1所示,图1把四个电阻R 1,R 2,R 3,R t 连成一个四边形回路ABCD,每条边称作电桥的一个“桥臂”在四边形的一组对角接点A 、C 之间连入直流电源E ,在另一组对角接点B 、D 之间连入平衡指示仪表,B 、D 两点的对角线形成一条“桥路”,它的作用是将桥路两个端点电位进行比较,当B 、D 两点电位相等时,桥路中无电流通过,指示器示值为零,电桥达到平衡。
指示器指零,有U AB =U AD ,U BC =U DC ,电桥平衡,电流Ig=0,流过电阻R 1、R 3的电流相等,即I 1=I 3,同理I 2=IR t ,因此311322t t R R R R R R R R =⇒= 若12R R =,则有:3t R R =(1)二、恒电流法测量热电阻恒电流法测量热电阻,电路如图2所示,图2电源采用恒流源,R 1为已知数值的固定电阻,R t 为热电阻。
U R1为R1上的电压,U Rt 为R t 上的电压,U R1用于监测电路的电流,当电路电流恒定时则只要测出热电阻两端电压U Rt ,即可知道被测热电阻的阻值。
当电路电流为I o ,温度为t 时,热电阻R t 为11R RtO Rt t U U R I U R ==(2) 三、Pt100铂电阻温度传感器Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器。
铂的物理、化学性能极稳定,抗氧化能力强,复制性好,易工业化生产,电阻率较高。
因此铂电阻大多用于工业检测中的精密测温和温度标准。
缺点是高质量的铂电阻(高级别)价格十分昂贵,温度系数偏小,受磁场影响较大。
按IEC 标准,铂电阻的测温范围为-200——650℃。
百度电阻比W (100)=1.3850时R o 为100Ω或10Ω时。
称为Pt100铂电阻或Pt10铂电阻。
其允许的不确定度A 级为:±(0.15℃+0.002|t|)。
B 级为:±(0.3℃+0.005|t|)。
铂电阻的阻值与温度之间的关系,当温度t 在-200~0℃之间时,其关系式为:2301(100)t R R At Bt C t C t ⎡⎤=+++-︒⎣⎦ (3)当温度在0~650℃之间时关系式为:20(1)t R R At Bt =++ (4)(3)、(4)式中R t 、R 0分别为铂电阻在温度t 、0℃时的电阻值,A,B,C 为温度系数,对于常用的工业铂电阻:3721233.9080210/, 5.8019510/, 4.2735010/A C B C C C ---=⨯︒=-⨯︒=-⨯︒在0~100℃范围内R t 的表达式可近似线性为:01(1)t R R A t =+ (5)(5)式中A 1温度系数,近似为3.85×10ˉ³/℃,Pt100铂电阻的阻值, 其0℃时 Rt =100Ω;而100℃时R t =138.5Ω。
四、热敏电阻(NTC1K)温度传感器热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,按电阻阻值随温度升高而减小或增大,分为NTC 型(负温度系数)、PTC 型(正温度系数)和CTC (临界温度)。
热敏电阻电阻率大,温度系数大,但其非线性大,置换性差,稳定性差,通常只适用于一般要求不高的温度测量。
以上三种热敏电阻特性曲线见图3。
温度/℃图3在一定的温度范围内(小于450℃)热敏电阻的电阻R t 与温度T 之间有如下关系:)11(00T T B T eR R -= (6)(6)式中R t 、R 0是温度为T(K),T 0(K)时的电阻值( K 为热力学温度单位开);B 是热敏电阻材料常数,一般情况下B 为2000~6000K 。
对一定的热敏电阻而言,B 为常数,对上式两边取对数,则有:00ln )11(ln R T T B R T +-= (7) 由(7)式可见,lnR T 与1/T 成线性关系,作lnR T —(1/T)曲线,用直线拟合,由斜率可求出常数B 。
五、电压型集成温度传感器(LM35)LM35温度传感器,标准T 0-92工业封装,其准确度一般为±0.5℃。
(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。
内部的激光校准保证了极高的准确度及一致性,且无须校准。
输出电压的温度系数K V =10.0mV/℃,利用下式可计算出被测温度t (℃):U O =K V *t=(10mV/℃)*t即:t(℃)= U O /10mV (8)LM35温度传感器的电路符号见图4,V o 为输出端图4实验测量时只要直接测量其输出端电压U o ,即可知待测量的温度。
六、电流型集成温度传感器(AD590)AD590是一种电流型集成电路温度传感器。
其输出电流大小与温度成正比。
它的线性度极好,AD590温度传感器的温度适用范围为-55——150℃,灵敏度为1μA/K 。
它具有高准确度、动态电阻大、响应速度快、ρ/Ω.c m线性好、使用方便等特点。
AD590是一个二端器件,电路符号如图5所示:图5AD590等效于一个高阻抗的恒流源,其输出阻抗>10MΩ,能大大减小因电源电压变动而产生的测温误差。
AD590的工作电压为+4——+30V ,测温范围是-55——150℃。
对应于热力学温度T ,每变化1K ,输出电流变化1μA 。
其输出电流I 0(μA)与热力学温度T (K )严格成正比。
其电流灵敏度表达式为:ln8eR3kT I (9) 式(9)中k 、e 分别为波尔兹曼常数和电子电量,R 是内部集成化电阻。
将k/e=0.0862mV/K,R=538Ω代入(9)中得到:I=1.000uA/K T(10) 在T=0(K )时其输出为273.15μA(AD590有几种级别,一般准确度差异在±3~5μA)。
因此,AD590的输出电流I o 的微安数就代表着被测温度的热力学温度值(K )。
AD590的电流-温度(I-T )特性曲线如图6所示:图6其输出电流表达式为:I=AT+B (11)式(11)中A 为灵敏度,B 为0K 时输出电流如需显示摄氏温标(℃)则要加温标转换电路,其关系式为:t=T+273.15 (12)AD590温度传感器其准确度在整个测温范围内≤±0.5℃,线性极好。
利用AD590的上述特性,在最简单的应用中,用一个电源,一个电阻,一个数字式电压表即可用于温度的测量。
由于AD590以热力学温度K 定标,在摄氏温标应用中,应该进行℃的转换。
实验测量电路如图7所示。
图7七、PN 结温度传感器PN 结温度传感器是利用半导体PN 结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN 结的正向电压与温度之间有良好的线性关系。
通常将硅三极管b 、c 极短路,用b 、e 极之间的PN 结作为温度传感器测量温度。
硅三极管基极和发射极间正向导通电压V be 一般约为600mV (25℃),且与温度成反比。
线性良好,温度系数约为-2.3mV/℃,测温精度较高,测温范围可达-50——150℃。
缺点是一致性差,互换性差。
通常PN 结组成二极管的电流I 和电压U 满足(13)式/1qU kTS I I e ⎡⎤=-⎣⎦ (13)在常温条件下,且1/〉〉KTqU e时,(13)式可近似为kT qU S e I I /= (14)(13)、(14)式中:19231.60210; 1.38110/q C k J K --=⨯=⨯为电子电量,为玻尔兹曼常数T 为热力学温度;I s 为反向饱和电流;正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+U go (15)(15)式中U go 为半导体材料参数,K 为PN 结的结电压温度系数。
实验测量如图8。
图8【注意事项】(1)温控仪温度稳定的达到设定的稳定需要的时间较长,一般需要15-20分钟左右,请同学们耐心等待。
(2)鉴于第一点,为节省时间,请同学们合理安排实验步骤。
建议同时进行多种传感器的实验,只要把数字电压表分别测量待测传感器输出即可。
【实验内容】一、用恒电流法测量Pt100铂电阻的温度特性插上恒流源,监测R1上电流是否为1mA(即U1=1.00V,R1=1.00K)。
将控温传感器Pt100铂电阻(A级),插入干井炉的中心井,另一只待测试的Pt100铂电阻温度传感器插入另一井,,从室温起开始测量,然后开启加热器,每隔5℃控温系统设置一次,控温稳定2min后,按式(0)测量、计算Pt100铂电阻的阻值,到50℃止。
用最小二乘法直线拟合,求出结果。
温度系数A= 相关系数r=二、用恒电流法测量NTC热敏电阻的温度特性插上恒流源,监测R1上电流是否为1mA(即U1=1.00V,R1=1.00K)。
将控温传感器Pt100铂电阻(A级),插入干井炉的中心井,另一只待测试的NTC1K热敏电阻温度传感器插入另一井,,从室温起开始测试,然后开启加热器,每隔5℃控温系统设置一次,控温稳定2min后按式(1)测试、计算NTC1K热敏电阻的阻值。
将测量数据用最小二乘法进行曲线指数回归拟合,求出结果。
温度系数B= 相关系数r=【数据处理】一、用恒电流法测量Pt100铂电阻的温度特性初始温度定为35℃,测得U1=0.999V,即I1=0.999mA,满足实验要求,实验数据如下表表1. 恒电流法测量Pt100铂电阻温度特性数据表110115120125130135[2008-10-18 12:28 "/Graph3" (2454757)]Linear Regression for Data1_G:Y = A + B * XParameter Value Error----------------------------A97.83929 0.42069 B0.38929 0.00619----------------------------R SD N P----------------------------0.99937 0.32733 7 <0.0001图9. 升温时Pt100铂电阻t-R 曲线图 ----------------------------[2008-10-18 12:29 "/Graph4" (2454757)]Y = A + B * XLinear Regression for Data1_E:Parameter ValueError---------------------------A101.26667 0.55749 B0.37714 0.00774---------------------------R SD N P---------------------------0.99916 0.32367 6 <0.0001图10. 降温时Pt100铂电阻t-R 曲线图 ---------------------------4.04.55.05.56.06.54.64.85.05.25.45.65.86.06.26.4二、用恒电流法测量NTC 热敏电阻的温度特性表2. 恒电流法测量NTC 热敏电阻温度特性数据表[2008-10-18 13:16 "/Graph5" (2454757)]Linear Regression for Data1_K:Y = A + B * XParameter ValueError------------------------------------------A -6.06457 0.16976B3858.4954657.9645-----------------------------------------RSD N P----------------------------------------- 0.999440.02623 7 <0.0001-----------------------------------------图11. 升温时NTC 热敏电阻1/T-lnR 曲线图[2008-10-18 13:17 "/Graph6" (2454757)]Linear Regression for Data1_I:Y = A + B * XParameter ValueError-----------------------------------------A -5.40528 0.02995B3684.9491910.09169-----------------------------------------RSD NP----------------------------------------- 0.999990.00371 6 <0.0001-----------------------------------------图12. 降温时NTC 热敏电阻1/T-lnR 曲线图【实验小结】1、实验室的温度传感器比较贵重,使用时注意轻拿轻放,保护好仪器。