DS18B20温度传感器实验
温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言温度传感器在现代生活中扮演着重要的角色,它们被广泛应用于各种领域,包括工业、医疗、农业等。
DS18B20是一种数字温度传感器,具有精准的测量能力和数字输出,因此备受青睐。
本实验旨在通过对DS18B20温度传感器的测试和分析,探讨其性能和应用。
实验目的1. 了解DS18B20温度传感器的工作原理和特性。
2. 测试DS18B20温度传感器的测量精度和响应速度。
3. 探讨DS18B20温度传感器在实际应用中的优缺点。
实验器材1. DS18B20温度传感器2. Arduino开发板3. 4.7kΩ电阻4. 连接线5. 电脑实验步骤1. 将DS18B20温度传感器连接到Arduino开发板上,并接入4.7kΩ电阻。
2. 编写Arduino程序,通过串口监视器输出DS18B20传感器的温度数据。
3. 将DS18B20传感器置于不同的温度环境中,记录其输出的温度数据。
4. 分析DS18B20传感器的测量精度和响应速度。
5. 探讨DS18B20传感器在实际应用中的优缺点。
实验结果经过实验测试,DS18B20温度传感器表现出了较高的测量精度和响应速度。
在不同温度环境下,其输出的温度数据与实际温度基本吻合,误差较小。
此外,DS18B20传感器具有数字输出,易于与各种微控制器和单片机进行连接,应用范围广泛。
然而,DS18B20传感器在极端温度环境下可能出现测量误差,且价格较高,需要根据实际需求进行选择。
结论DS18B20温度传感器具有较高的测量精度和响应速度,适用于各种温度测量场景。
然而,在选择和应用时需要考虑其价格和适用范围,以确保满足实际需求。
希望本实验能够为DS18B20温度传感器的应用提供参考和借鉴,推动其在各个领域的发展和应用。
温度通信系统实验报告(3篇)

第1篇一、实验目的1. 了解温度通信系统的基本组成和工作原理。
2. 掌握温度传感器的使用方法和信号采集技术。
3. 熟悉温度信号的传输和通信协议。
4. 分析温度通信系统的性能,优化系统设计。
二、实验原理温度通信系统主要由温度传感器、信号采集电路、通信模块和数据终端组成。
温度传感器用于测量环境温度,信号采集电路将温度信号转换为标准信号,通信模块负责将信号传输到数据终端,数据终端则对温度数据进行处理和分析。
三、实验仪器与设备1. 温度传感器:DS18B202. 信号采集电路:包括电阻、电容、运算放大器等3. 通信模块:ESP8266 Wi-Fi模块4. 数据终端:PC或智能手机5. 连接线、电源等四、实验步骤1. 搭建实验平台:将温度传感器、信号采集电路和ESP8266 Wi-Fi模块连接到PC 或开发板上。
2. 编程:使用C语言编写程序,实现以下功能:- 温度传感器数据采集- 信号处理与转换- Wi-Fi模块连接与数据传输3. 测试:- 连接Wi-Fi模块到路由器,测试通信是否正常。
- 通过数据终端接收温度数据,观察数据是否准确。
4. 性能分析:- 分析温度通信系统的延迟、带宽和稳定性。
- 优化系统设计,提高通信效率和可靠性。
五、实验结果与分析1. 数据采集:通过实验,成功采集到温度传感器数据,并将其转换为标准信号。
2. 通信测试:通过Wi-Fi模块,成功将温度数据传输到数据终端,通信稳定可靠。
3. 性能分析:- 延迟:实验中温度数据传输延迟约为1秒,满足实际应用需求。
- 带宽:根据实验条件,通信带宽约为500kbps,可满足数据传输需求。
- 稳定性:在测试过程中,通信系统表现出良好的稳定性,未出现中断或数据丢失现象。
六、实验结论1. 温度通信系统可以有效地将温度数据传输到数据终端,实现远程监控和控制。
2. 实验中使用的DS18B20温度传感器具有高精度、低功耗等优点,适用于温度监测领域。
3. ESP8266 Wi-Fi模块具有良好的通信性能,可满足实际应用需求。
DS18B20温度测量与控制实验报告

课程实训报告《单片机技术开发》专业:机电一体化技术班级: 104201学号: 10420134姓名:杨泽润浙江交通职业技术学院机电学院2012年5月29日目录一、DS18B20温度测量与控制实验目的……………………二、DS18B20温度测量与控制实验说明……………………三、DS18B20温度测量与控制实验框图与步骤……………………四、DS18B20温度测量与控制实验清单……………………五、DS18B20温度测量与控制实验原理图…………………六、DS18B20温度测量与控制实验实训小结………………一、实验目的1.了解单总线器件的编程方法。
2.了解温度测量的原理,掌握 DS18B20 的使用。
二、实验说明本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。
Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。
现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。
适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。
与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。
DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。
DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。
DS18B20 内部结构DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。
DS18B20 的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。
光刻 ROM 中的 64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。
数字温度传感器DS18B20在体温检测中的应用

收稿日期:2005-02-08数字温度传感器DS18B20在体温检测中的应用韦 哲,程自峰(兰州军区兰州总医院器械科,甘肃兰州730050)〔中图分类号〕T N79 〔文献标识码〕A 〔文章编号〕1002-2376(2005)04-00010-03 〔摘 要〕本文主要介绍美国DA LLAS公司的一线数字温度传感器DS18B20结构原理及特点,并给出了与单片微机较详细的接口电路及读写时序,结合它在体温检测系统中的应用,对出现的硬件和软件的有关问题给出解决方法。
〔关键词〕DS18B20;体温检测;单片微机1 DS18B20结构特点DS18B20是DA LLAS公司生产的一线式数字温度传感器,具有3引脚T O-92小体积封装形式;温度测量范围为-55~+125℃,可编程为9~12位A/D 转换精度,测温分辨率可达010625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
以上特点使DS18B20适合于多点温度检测系统中。
本系统将其引入人体温度检测。
(1)DS18B20的性能参数(a)可用数据线供电,电压范围:310~515V;(b)测温范围:-55~+125℃,在-10~+85℃时精度为±015℃;(c)可编程的分辨率为9~12位,对应的可分辨温度分别为015℃、0125℃、01125℃和010625℃;(d)12位分辨率时最多在750ms内把温度值转换为数字;(e)负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
(2)DS18B20的外形及引脚说明外形如图1所示。
其体积只有DS1820的一半,引脚定义相同。
(3)DS18B20内部结构(a)DS18B20的内部结构如图2所示。
温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言:温度传感器是一种用于测量环境温度的设备,它在许多领域都有广泛的应用,如气象学、工业控制、冷链物流等。
本实验报告将介绍DS18B20温度传感器的原理、实验装置和实验结果,并对其性能进行评估。
一、实验原理DS18B20温度传感器是一种数字温度传感器,采用单总线接口进行通信。
它采用了最新的数字温度传感器技术,具有高精度、低功耗、抗干扰等特点。
其工作原理是利用温度对半导体材料电阻值的影响,通过测量电阻值的变化来确定温度。
二、实验装置本实验使用的实验装置包括DS18B20温度传感器、Arduino开发板、杜邦线和计算机。
Arduino开发板用于读取传感器的温度数据,并通过串口将数据传输到计算机上进行处理和显示。
三、实验步骤1. 连接电路:将DS18B20温度传感器的VCC引脚连接到Arduino开发板的5V 引脚,GND引脚连接到GND引脚,DQ引脚连接到Arduino开发板的数字引脚2。
2. 编写代码:使用Arduino开发环境编写代码,通过OneWire库和DallasTemperature库读取DS18B20传感器的温度数据。
3. 上传代码:将编写好的代码上传到Arduino开发板上。
4. 监测温度:打开串口监视器,可以看到DS18B20传感器实时的温度数据。
四、实验结果在实验过程中,我们将DS18B20温度传感器放置在不同的环境中,记录了其测得的温度数据。
实验结果显示,DS18B20温度传感器具有较高的精度和稳定性,能够准确地测量环境温度。
五、实验评估本实验评估了DS18B20温度传感器的性能,包括精度、响应时间和抗干扰能力。
实验结果表明,DS18B20温度传感器具有较高的精度,能够在0.5℃的误差范围内测量温度。
响应时间较快,能够在毫秒级别内完成温度测量。
同时,DS18B20温度传感器具有较好的抗干扰能力,能够在干扰环境下保持稳定的测量结果。
温度传感器实验报告

一、实验原理DS18B20 测温原理如图 1.2 所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。
高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器 1 和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器 1 的预置值减到0时,温度寄存器的值将加 1,计数器 1 的预置将重新被装入,计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器 2 计数到 0 时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器 1 的预置值。
图 1.1 测温原理图二、测温系统硬件电路图本测温系统选择体积小、成本低、内带2KEEPROM的89C2051作为控制芯片,晶振采用12MHZ,用74LS07驱动四个LED数码管和一个继电器线圈从而驱动电加热设备。
P3.5口作为采集温度信号线,P1口作为显示数据线,与P3.3,P3.4组成显示的个位、十位及符号位,采用动态扫描显示。
在本系统中测控一路温度信号,DS18B20通过单总线方式连接在单片机的P3.5引脚上,可设定所需的温度测定值(包括上限值和下限值),P3.1引脚控制电热设备启动与停止,从而达到控制温度效果。
整个系统的硬件原理图如图2.1所示:图2.1 测温系统硬件原理图二、实验过程记录3.1 DS18B20控制过程DS18B20的操作是通过执行操作命令实现的,其中包含复位脉冲、响应脉冲、读、写时序,时序的具体要求如下:(1)复位脉冲:单片机发出一个宽为480—960μs的负脉冲之后再发出5—60μs的正脉冲,此时DS18B20会发出一个60—240μs的响应脉冲,复位时序结束。
也就是呼应阶段。
(2)写时间片:写一位二进制的信息,周期至少为61μS,其中含1μS的恢复时间,单片机启动写程序后15—60μs期间DS18B20自动采样数据线,低电平为“0”,高电平为“1”。
温度传感器实验报告
温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。
二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。
2. 使用Arduino软件编写读取温度传感器数据的程序。
3. 通过串口监视器读取传感器采集到的温度数据。
4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。
四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。
五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。
在不同环境温
度下,传感器能够稳定地输出准确的温度数据。
六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。
温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。
通过本次实验,我们对温度传感器的性能
有了更深入的了解。
七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。
温度控制DS18B20器实验
温度控制DS18B20器实验DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。
一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。
DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。
DS1822的精度较差为±2°C 。
现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。
适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。
与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。
而且新一代产品更便宜,体积更小。
DS18B20、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。
可选更小的封装方式,更宽的电压适用范围。
分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。
DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B 20的简化版本。
省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。
继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。
DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。
DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20温度传感器使用方法以及代码
第7章DS18B20温度传感器7.1 温度传感器概述温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。
随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。
随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。
美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。
7.2 DS18B20温度传感器介绍DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。
与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。
因而使用DS18B20可使系统结构更趋简单,可靠性更高。
他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。
1.DS18B20温度传感器的特性①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
②在使用中不需要任何外围元件。
③可用数据线供电,电压范围:+3.0~ +5.5 V。
④测温范围:-55 ~+125 ℃。
固有测温分辨率为0.5 ℃。
⑤通过编程可实现9~12位的数字读数方式。
DS18B20温度传感器实训教程
(2)程序编写、编译。
a.编写主函数程序main.c如下:
#include "reg52.h"
#include"temp.h"
typedef unsigned int u16;
typedef unsigned char u8;
sbit LSA=P2^2;
sbit LSB=P2^3;
2硬件连接3程序烧入芯片1选择单片机型号串口号打开程序文件关闭单片机电源再点击下载程序然后打开电源程序显示下载操作成功即可
DS18B20
1、
1、掌握DS18B20温度传感器设计与制作及其特性;
2、熟练KeiluVision5软件及程序烧入软件基础运用;
3、了解并使用单片机开发试验仪做基础实验。
4、学会基础的C51单片机程序编写并看懂较为复杂的程序。
{
Ds18b20Init();
Delay1ms(1);
Ds18b20WriteByte(0xcc);//跳过ROM操作命令
Ds18b20WriteByte(0xbe);//发送读取温度命令
}
/*******************************************************************************
for(j=8; j>0; j--)
{
DSPORT = 0;//先将总线拉低1us
i++;
DSPORT = 1;//然后释放总线
i++;
i++;//延时6us等待数据稳定
bi = DSPORT;//读取数据,从最低位开始读取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DS18B20温度传感器实验Proteus仿真原理图:DS18B20内部结构:/************************* 源程序 ****************************/ #include <reg51.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned char#define delayNOP() {_nop_();_nop_();_nop_();_nop_();}sbit DQ = P3^3;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;uchar code Temp_Disp_Title[]={"Current Temp : "};uchar Current_Temp_Display_Buffer[]={" TEMP: "};uchar code Temperature_Char[8] ={0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0};uchar code df_Table[]={0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9};uchar CurrentT = 0;uchar Temp_Value[]={0x00,0x00};uchar Display_Digit[]={0,0,0,0};bit DS18B20_IS_OK = 1;void DelayXus(uint x){uchar i;while(x--){for(i=0;i<200;i++);}}bit LCD_Busy_Check(){bit result;LCD_RS = 0;LCD_RW = 1;LCD_EN = 1;delayNOP();result = (bit)(P0&0x80);LCD_EN=0;return result;}void Write_LCD_Command(uchar cmd) {while(LCD_Busy_Check());LCD_RS = 0;LCD_RW = 0;LCD_EN = 0;_nop_();_nop_();P0 = cmd;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void Write_LCD_Data(uchar dat){while(LCD_Busy_Check());LCD_RS = 1;LCD_RW = 0;LCD_EN = 0;P0 = dat;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void LCD_Initialise(){Write_LCD_Command(0x01);DelayXus(5);Write_LCD_Command(0x38);DelayXus(5);Write_LCD_Command(0x0c);DelayXus(5);Write_LCD_Command(0x06);DelayXus(5);}void Set_LCD_POS(uchar pos){Write_LCD_Command(pos|0x80); }void Delay(uint x){while(--x);}uchar Init_DS18B20(){uchar status;DQ = 1;Delay(8);DQ = 0;Delay(90);DQ = 1;Delay(8);DQ = 1;return status;}uchar ReadOneByte(){uchar i,dat=0;DQ = 1;_nop_();for(i=0;i<8;i++){DQ = 0;dat >>= 1;DQ = 1;_nop_();_nop_();if(DQ)dat |= 0X80;Delay(30);DQ = 1;}return dat;}void WriteOneByte(uchar dat) {uchar i;for(i=0;i<8;i++){DQ = 0;DQ = dat& 0x01;Delay(5);DQ = 1;dat >>= 1;}}void Read_Temperature(){if(Init_DS18B20()==1)DS18B20_IS_OK=0;else{WriteOneByte(0xcc);WriteOneByte(0x44);Init_DS18B20();WriteOneByte(0xcc);WriteOneByte(0xbe);Temp_Value[0] = ReadOneByte();Temp_Value[1] = ReadOneByte();DS18B20_IS_OK=1;}}void Display_Temperature(){uchar i;uchar t = 150, ng = 0;if((Temp_Value[1]&0xf8)==0xf8){Temp_Value[1] = ~Temp_Value[1];Temp_Value[0] = ~Temp_Value[0]+1;if(Temp_Value[0]==0x00)Temp_Value[1]++;ng = 1;}Display_Digit[0] = df_Table[Temp_Value[0]&0x0f];CurrentT = ((Temp_Value[0]&0xf0)>>4) | ((Temp_Value[1]&0x07)<<4);Display_Digit[3] = CurrentT/100;Display_Digit[2] = CurrentT%100/10;Display_Digit[1] = CurrentT%10;Current_Temp_Display_Buffer[11] = Display_Digit[0] + '0';Current_Temp_Display_Buffer[10] = '.';Current_Temp_Display_Buffer[9] = Display_Digit[1] + '0';Current_Temp_Display_Buffer[8] = Display_Digit[2] + '0';Current_Temp_Display_Buffer[7] = Display_Digit[3] + '0';if(Display_Digit[3] == 0)Current_Temp_Display_Buffer[7] = ' ';if(Display_Digit[2] == 0&&Display_Digit[3]==0)Current_Temp_Display_Buffer[8] = ' ';if(ng){hif(Current_Temp_Display_Buffer[8] == ' ')Current_Temp_Display_Buffer[8] = '-';else if(Current_Temp_Display_Buffer[7] == ' ') Current_Temp_Display_Buffer[7] = '-';elseCurrent_Temp_Display_Buffer[6] = '-';}Set_LCD_POS(0x00);for(i=0;i<16;i++){Write_LCD_Data(Temp_Disp_Title[i]);}Set_LCD_POS(0x40);for(i=0;i<16;i++){Write_LCD_Data(Current_Temp_Display_Buffer[i]);}Set_LCD_POS(0x4d);Write_LCD_Data(0x00);Set_LCD_POS(0x4e);Write_LCD_Data('C');}void main(){LCD_Initialise();Read_Temperature();Delay(50000);Delay(50000);while(1){Read_Temperature();if(DS18B20_IS_OK)Display_Temperature();DelayXus(100);}}欢迎您的下载,资料仅供参考!。