准同步数字体系PDH和同步数字体化SDH

合集下载

SDH与PDH优劣对比分析

SDH与PDH优劣对比分析

SDH与PDH优劣对比分析发表时间:2010-8-4 彭亮来源:IT专家网关键字:SDH PDH传输体制传输协议随着互联网产业的迅速发展,通过网络传输、交换、处理的信息量在成几何级的上升,PDH传输体制已经不能够在满足现有的应用。

在这种情况下SDH传输机制也就应用而生。

在这篇文章中,笔者将给大家介绍一下SDH与PDH两种互联网传输机制的对比以及各自的优缺点,以帮助大家在日后的工作中选择合适的传输机制。

三网合一,这个概念相信网络管理员已经听到好几年了。

但是到现在为止,都还没有变为现实。

这其中很重要的一个原因就在于传输体制的问题。

在以前互联网中采用的传输体制主要是PDH(准同步数字传输体制)。

而随着互联网产业的迅速发展,通过网络传输、交换、处理的信息量在成几何级的上升,PDH传输体制已经不能够在满足现有的应用。

在这种情况下SDH传输机制也就应用而生。

在这篇文章中,笔者将给大家介绍一下SDH与PDH两种互联网传输机制的对比以及各自的优缺点,以帮助大家在日后的工作中选择合适的传输机制。

一、SDH的主要优势SDH互联网传输体制其实是从PDH中进化过来的,也可以将SDH当作PDH的一个二代产品。

不过其在PDH的基础上,做了很多改进。

SDH在实际工作中应用的也比较广泛了。

如综合业务数字网、宽带综合业务数字网络中都可以看到SDH的身影。

相比PDH传统的传输机制而言,SDH的优势主要体现在以下几个方面。

优势一:能够提供比加高的冗余功能网络的冗余功能是指当业务信道损坏导致通信中断时,网络会自动将业务切换到备用业务的信道,是业务能够在比较短的时间内得以恢复正常通信。

在其他的一些专业书籍上,又将这个冗余功能称之为自愈功能。

不过笔者这个称谓可能会引起误会。

因为在这里只是通信恢复了,但是发生故障的设备和发生故障的信道仍然还没有恢复,需要人工去调试与排错。

这就好像有两条山路,其中有一条由于山体滑波被截断了。

此时只有通过另外一条备用山道。

PDH及SDH

PDH及SDH

交叉矩阵盘
交叉矩阵盘
opticl
支路盘#1 2M
支路盘#2 34M
支路盘#3 140M&155M
SDH光缆线路系统的设计
要建设一个SDH光缆通信系统(网络),确定了网络的拓朴结 构后,还要考虑整体的线路系统的安排,也就是确定再生段的距离 和一整套的光参数。
再生(中继)器
Tx
Rx Tx
Rx
光纤
光纤
•数字电信号需要再生然后 重新发射光信号
SDH网络拓扑结构的设计
节点的覆盖和业务量因素 网络保护考虑 成本/容量 应用灵活性 传输性能的要求 已敷设的光缆条件
STM-16 SDH设备基本结构图
通信盘
opticl
2.5G光盘
告警维护盘
复用控制盘 2.5G光盘
W
A
P
D
B
C
倒 b ) 故障情况下 换
SDH传送网结构(六) 二纤双向通道保护环示意图
倒换
A
D
B
C P1/W2
W1/P2
a ) 正常情况
A
D
B
P1/W2 C
W1/P2
倒换
b ) 故障情况下
SDH传送网结构(七) 二纤双向复用段共享保护环示意图
A
D
B
C W2/P1
W1/P2
a) 正常情况
A
D
B
W2/P1
1 OLT
7
2 / 8
2 / 8
每方向各 780 780 480
SDH 技 术 介 绍
目录
SDH发展的动力 SDH技术基础 总体结构和设计考虑 系列设备和工程应用 SDH技术的发展
光纤类型和损耗谱

第七章同步数字体系(SDH)

第七章同步数字体系(SDH)
576×8000=4608Mbit 4)、管理单元指针(AUPTR),占帧结构左侧l~9N列第4行的区域。 AUPTR这组码所对应的值与信息在信息净负荷区域中的位置(位 置被编了号)相对应。这样,使得接收端能准确地从信息净负荷区中 分离出信息净负荷来。
AUPTR还可用于频率调整.以便实现网络各支路同步工作。
这10个比特就是指针值。指针值是用二进制来表示的。亦即用 l0个比特的0、1码构成的二进制数值,来表示十进制的0~782 个编号。再深一步说,就是用上面所述的10比持来表示VC-4第 一个字节在o~782中的位置。
四、指针的频率调整作用
1、当VC帧速率<AUG帧速率时: 图7—14中的5个I比持反转,通知接收端表示要作正码速调整(加
(C-4)十(VC-4POH)=VC-4 (VC-4) 十(AU-4PTR)=AU-4 (AU-4)=(AUG) 最后形成 STM-1
(1)下图画出了两帧,(一帧的时间是125μs,故两帧是250μs (2)对照帧结构图7-2可知,图中左侧第四行的位置就是指针区。 (3)图右侧是两帧STM—1的净负荷区,为了表明净负荷区中某点的 位置,根据行、列来画线打出格子。从第四行向右、向下进行位置 编号。每三格编一个号。例如的000,111,222,--。
二、PDH的固有缺点
1、存在互为独立的三大数字系列,使国际间的互通存在 困难。
2、无统一的光接口,使各厂家的产品互不兼容。 3、 4、网管通信带宽严重不足,给建立集中式电信管理网带
5
三、SDH网的基本特点
优点: 1)SDH网络是由一系列SDH网元(NE)组成的,它是一个可在
光纤 或微波、卫星上进行同步信息传输、复用和交叉连接的网络。 2)具有全世界SDH)传输网中的信号是以同步传输模块(STM)

光纤通信系统与应用(胡庆)复习总结

光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解第1章1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。

光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。

对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm2、光纤通信系统的基本组成:P5 图1-3目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。

该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。

各部件功能:电发射机:对来自信源的信号进行模/数转换和多路复用处理;光发送设备:实现电/光转换;光接收机:实现光/电转换;光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。

3、光纤通信的特点:(可参照P1、2)优点:(1),传输容量大。

(2)传输损耗小,中继距离长。

(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。

(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。

(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。

4、适用光纤:P11G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。

常见的结构有阶跃型和下凹型单模光纤。

G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。

难以克服FWM混频等非线性效应带来的影响。

G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm处。

可以尽量克服FWM混频等非线性效应带来的影响。

补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。

PDH和SDH

PDH和SDH

PHD和SDH以往在传输网络中普遍采用的是准同步数字体系(PDH lesiochronous Digital Hierarchy),随着信息社会的到来,它已不能满足现代信息网络的传输要求,因此同步数字体系应运而生。

PDH存在的主要问题•PDH主要是为话音业务设计,而现代通信的趋势是宽带化、智能化和个人化。

•PDH传输线路主要是点对点连接,缺乏网络拓扑的灵活性。

•存在相互独立的两大类、三种地区性标准(日本、北美、欧洲),难以实现国际互通。

•异步复用,需逐级码速调整来实现复用/解复用。

•缺少统一的标准光接口,无法实现横向兼容。

•网络管理的通道明显不足,建立集中式传输网管困难。

•网络的调度性差,很难实现良好的自愈功能。

SDH的产生SDH的研究工作始于1986年,其目的是建立光纤通信的通用标准,通过一组网络单元提供一个经济、简单、灵活的网络应用。

美国贝尔通信研究所最先提出了光同步传输网的概念,并称之为同步光网络(SONET)。

1988年,美国国家标准协会(ANSI)通过了两个最早的SONET标准。

国际电话电报咨询委员会(CCITT),于1988年接受了SONET的概念,重新命名为同步数字系列(SDH),建立了世界性的统一标准。

什么是SDHSDH-Synchronous Digital Hierarchy,是一种传输技术体制。

它是一套可进行同步信息传输、复用、分插和交叉连接的标准化数字信号的结构等级。

它具有世界性的统一标准,不仅适用于光纤,也适用于微波和卫星通信。

SDH网络是由一些基本网络单元(NE)组成的,在传输媒质上(如光纤、微波等)进行同步信息传输、复用、分插和交叉连接的传输网络。

•有全世界统一的网络接口接点(NNI)作用:减少设备种类和数量,简化了操作。

•有一套标准化的信息结构等级(STM)作用:统一了现存的两个数字体系,方便了国际互连。

•具有块状帧结构作用:可以安排丰富的开销比特用于网络运行的维护和管理。

PDH、SDH、MSTP、ASON、PTN、OTN技术介绍

PDH、SDH、MSTP、ASON、PTN、OTN技术介绍

PDH 、SDH 、MSTP 、ASON/PTN 、OTN技术介绍第一部分:PDH 准同步数字系列(1) PCM30/32路 即E1 欧洲和我国采用此标准 (2) PCM24/路 即T1 北美采用此标准 一、 E1和T1PCM 脉冲调制,对模拟信号采样,8000个样值每S ,每个样值8bit ,所以一个话路的速率为64kbps 。

E1有32个时隙,TS0用来同步,TS16用来传送信令,其中30路用来传话音信号的,32个话路的速率为2.048Mbps ,即PCM 基群,也叫一次群。

…,他们的速率是四倍关系。

T1的采样与E1相同,只是有24个话路,其速率为64kbps*24 = 1.544Mbps 四个一次群复用为一个二次群,当然一个二次群的速率比四个一次群的速率总和还要多一些,用于同步的码元。

四个二次群复用为一个三次群,依次类推。

E1=2.048、E2=8.448、E3=34.368Mbps ……二、 在传送网上传送时,现在的PDH 体制中,只有1.5Mbit/s 和2Mbit/s 速率的信号是同步的,其他速率的信号都是异步的,需要通过码速的调整来匹配和容纳时钟的差异。

由于PDH 采用异步复用方式,那么就导致当低速信号复用到高速信号时,其在高速信号的帧结构中的位置没规律性和固定性。

也就是说在高速信号中不能确认低速信号的位置,而这一点正是能否从高速信号中直接分/插出低速信号的关键所在。

所以在传送过程中,难于从高次群信号中直接分出低次群甚至基群的信号,也就是说四次群必须先分接为三次群,而不能直接分接为一次群,这就使得在对中继站上、下话路时,需要进行多级的复用分接,使得上下话路不方便,而且较多的接口对于信号的损伤非常大。

使得提取的时钟出现不一致。

也增加了设备的复杂性,降低了效率和可靠性。

又存在多个制式,接口不统一,这就促成了PDH 发展为SDH——数字同步系列。

此部分介绍了PDH中的E1,和PDH组网的缺陷。

同步数字体系的基本概念(ppt 144页)

同步数字体系的基本概念(ppt 144页)

人民邮电出 版社
图5.20 PDH的网络结构(一种应用)
人民邮电出
版第社 四节 SDH的基本概念
一、 PDH的弱点
现在的准同步数字体系(PDH)传 输体制已不能适应现代通信网的发展要 求,其弱点主要表现在如下几个方面。
(1) 只有地区性数字信号速率和帧 结构标准而不存在世界性标准。
人民邮电出 版社 (2)没有世界性的标准光接口 规范,导致各个厂家自行开发的 专用光接口大量出现。
(3) 准同步系统的复用结构, 除了几个低等级信号(如 2048kbit/s,1544kbit/s)采用 同步复用外,其它多数等级信号 采用异步复用,即靠塞入一些额 外的比特使各支路信号与复用设 备同步并复用成高速信号。
人民邮电出 版社 (4 ) 复接方式大多采用按位复接,虽 然节省了复接所需的缓冲存储器容量,但 不利于以字节为单位的现代信息交换。
人民邮电出 版社
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
人民邮电出 版社
图5.5 数字复接系统方框图
人民邮电出
版第社二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
人民邮电出 版社
图5.13 扣除插入脉冲后的信号序列
图5.14 锁相环方框图
人民邮电出 版社 (1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。

光纤知识点总结(5-9章)

光纤知识点总结(5-9章)

光纤知识点(5-9章)第五章知识点1.数字传输体制有两种:是不同的传输体制协议。

SDH(同步数字传输体制)PDH(准同步数字传输体制)2. SDH对模型的下列几个方面做了规定:(1)网络节点接口(2)同步数字体系的速率(3)帧结构。

(1)网络节点接口传输设备:光缆传输系统设备;微波传输系统设备;卫星传输系统设备。

网络节点:只有复用功能(简单);复用、交叉连接多种功能(复杂)。

(2)速率:同步传输模块:STM-N,N=1、4、16 等。

STM-1 155.520Mbit/s 155Mbit/sSTM-4622.080Mbit/s 622Mbit/sSTM-16 2488.320Mbit/s 2.5Gbit/sSTM-64 9953.280Mbit/s 10Gbit/sSTM-256 39813.12Mbit/s 40Gbit/s(3)帧结构:SDH 帧为块状帧结构,共有9 行,270 列,以字节为单位。

一个STMN 帧有9 行,每行由270×N 个字节组成。

这样每帧共有9×270×N 个字节,每字节为8 bit。

帧周期为125μs,即每秒传输8000 帧。

对于STM1 而言,传输速率为9×270×8×8000=155.520 Mb/s 。

字节发送顺序为:由上往下逐行发送,每行先左后右。

(结构图见书127页,重点)3.STM-N 帧包括三个部分:SOH、AU-PTR、PAYLOAD(结构图见书127页,重点)(1)段开销SOH:RSOH,再生段开销:1~3 行。

MSOH,复用段开销:5~9 行。

区别:监管范围不同。

如:若光纤上传输2.5G 信号,RSOH 监控STM-16 整体的传输性能。

MSOH 监控每一个STM-1 的传输性能。

(2)管理指针AU-PTR:指示净负荷PAYLOAD 中信息的起始字节位置,便于接收端从正确的位置分解出有效传输信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准同步数字体系(PDH)和同步 数字体系(SDH)
第一节 数字复接的基本概念 第二节 同步复接与异步复接 第三节 PCM零次群和PCM高次群 第四节 SDH的基本概念 第五节 SDH的速率与帧结构 ) 第六节 同步复用与映射方法
第一节 数字复接的基本概念
一、 准同步数字体系
(PDH)
国际上主要有两大系列的准同 步 数 字 体 系 , 都 经 ITU-T 推 荐 , 即 PCM24路系列和PCM30/32路系列。
)
)
图5.11 异步复接二次群帧结构
3. 异步复接系统的构成
实现正码速调整异步复接和 分接系统的方框图如图5.12所示。
)
图5.12二次群异步复接和分接系统的方框图
)
4. 复接抖动的产生与抑制
在采用正码速调整的异步复接系 统中,即使信道的信号没有抖动,复 接器本身也产生一种抖动,即“插入 抖动”的相位抖动。
)
)
图5.4数码率不同的低次群复接
五、 数字复接的方法及系统构成
1.
数字复接的方法实际也就是数字复接 同步的方法,有同步复接和异步复接两种。
同步复接是用一个高稳定的主时钟来 控制被复接的几个低次群,使这几个低次 群的数码率(简称码速)统一在主时钟的 频率上(这样就使几个低次群系统达到同 步的目的),可直接复接(复接前不必进 行码速调整,但要进行码速变换,详见第 )二节)。
)
这样的复接系列具有如下优点: (1)易于构成通信网,便于分支与 插入,并具有较高的传输效率。复用倍 数适中,多在3~5倍之间。 (2)可视电话、电视信号以及频分制 群信号能与某个高次群相适应。 (3)与传输媒介,如对称电缆、同 轴电缆、微波、波导、光纤等传输容量 相匹配。
)
图5.1 PCM复接体制
)
图5.6 码速变换及恢复过程
)
2.
二次群同步复接器和分接器的方框图 如图5.7所示。
在复接端,支路时钟和复接时钟来自 同一个总时钟源,各支路码速率为 2048kbit/s,且是严格相等的,经过缓冲 存储器进行码速变换,以便复接时本支路 码字与其他支路码字错开以及为插入附加 码留下空位,复接合成电路把变换后的各 支路码流合并在一起,并在所留空位插入 包括帧同步码在内的附加码。
)
图5.7二次群同步复接、分接方框图
)
3.
)
图5.8 二次群同步复接的帧结构
二、 异步复接
1.
码速调整是利用插入一些码元将各 一次群的速率由2048kbit/s左右统一调 整成2112kbit/s。接收端进行码速恢复, 通过去掉插入的码元,将各一次群的速 率由2112kbit/s还原成2048kbit/s左右。
1.
按位复接是每次复接各低次群(也 称为支路)的一位码形成高次群。
2.
按字复接是每次复接各低次群(支
路)

)
图5.3 按位复接与按字复接示意图
)
四、 数字复接的同步
数字复接要解决两个问题:同步 和复接。
数字复接的同步指的是被复接的 几个低次群的数码率相同。
为此,在各低次群复接之前,必 须使各低次群数码率互相同步,同时 使其数码率符合高次群帧结构的要求。 数字复接的同步是系统与系统间的同 步,因而也称之为系统同步。
)
(3) 扣除码速调整插入脉 冲所产生的抖动,即指扣除第 161位V脉冲所产生的抖动。
由于锁相环具有对相位噪声 的低通特性,经过锁相环后的剩 余抖动仅为低频抖动成分。
)
第三节PCM零次群和PCM高次群
一、 PCM零次群
PCM 通 信 最 基 本 的 传 送 单位是64kbit/s,即一路话音 的编码,因此它是零次的。
1. PCM
ITU-T G.751推荐的PCM三次 群有480个话路,速率为 34.368Mbit/s。三次群的异步复 接过程与二次群相似。
)
图5.16异步复接三次群帧结构
)
)
图5.17PCM三次群异步复接方框图
2. PCM
ITU-T G.751 推 荐 的 PCM 四 次 群 有 1 9 2 0 个 话 路 , 速率为139.264Mbit/s。
)
图5.13 扣除插入脉冲后的信号序列
图5.14 锁相环方框图
)
(1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。
)
二、 PCM复用和数字复接
扩大数字通信容量,形成二次群以上 的高次群的方法通常有两种:PCM复用和 数字复接。
1. PCM
所谓PCM复用就是直接将多路信号编 码复用。
2.
数字复接是将几个低次群在时间的空 隙上迭加合成高次群。
)
)
图5.2 数字复接的原理示意图
三、 数字复接的实现
数字复接的实现主要有两种方法: 按位复接和按字复接。
)
二、 PCM子群
速率介于64kbit/s和2048kbit/s 之间的信号称为子群。子群速率主要 考虑到下列因素。
(1) 与某些传输介质相匹配。
(2) 与某些业务种类相匹配。
(3) 复接速率与其它等级相配 合并有一定的规则性。
PCM子群还可用于用户环路和小 容量的特殊通信需要。
)
三、 PCM
比 二 次 群 更 高 的 等 级 有 PCM 三次群、四次群、五次群等,下面 分别加以介绍。
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
)
图5.5 数字复接系统方框图
)
第二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
码速变换及恢复过程如图5.6所示。
码速调整技术可分为正码速调整、 正/负码速调整和正/零/负码速调整三种。
)
图5.9 正码速调整电路和码速恢复电路示意图
)
2. 异步复接二次群帧结构
ITU-T G.742推荐的正码速调整异 步复接二次群帧结构如图5.11(b)所示。
异步复接二次群的帧周期为 100.38μs, 帧长为848bit。其中有4×205 =820bit(最少)为信息码(这里的信息 码指的是四个一次群码速变换之前的码 元,即不包括插入的码元),有28bit的 插入码(最多)。
相关文档
最新文档