第三章传热学1热传导1共36页文档
合集下载
传热学-第三章 非稳态热传导

(0, ) m ( ) 2 sin 1 F e 0 0 1 sin 1 cos 1
( x, ) x cos(1 ) m ( )
2 1 0
2 1 0
与时间无关
28
考察热量的传递
Q0 cV (t0 t )
Q0 --非稳态导热所能传递的最大热量
第三章
非稳态导热
1
§3-1 非稳态导热的基本概念
1 非稳态导热的定义 . 2 非稳态导热的分类
t f (r , )
周期性非稳态导热 (定义及特点)
瞬态非稳态导热 (定义及特点)
2
着重讨论瞬态非稳态导热
3 温度分布:
t
1
4 3
2
1
t
0
0
3
4 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
6
7 毕渥数
本章以第三类边界条件为重点。 (1) 问题的分析 如图所示,存在两个换热环节: a 流体与物体表面的对流换热环节 rh 1 h b 物体内部的导热 (2) 毕渥数的定义:
tf
h
t
tf h
0
r
t
x
tf
h
r h Bi rh 1 h
0
7
x
(微细热电偶、薄膜热电阻)
当 4 时, 1.83% hA 0 Vc
工程上认为=4 Vc / hA时 导热体已达到热平衡状态
第三章 非稳态导热
17
3 瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
hA Vc
W
导热体在时间 0~ 内传给流体的总热量:
( x, ) x cos(1 ) m ( )
2 1 0
2 1 0
与时间无关
28
考察热量的传递
Q0 cV (t0 t )
Q0 --非稳态导热所能传递的最大热量
第三章
非稳态导热
1
§3-1 非稳态导热的基本概念
1 非稳态导热的定义 . 2 非稳态导热的分类
t f (r , )
周期性非稳态导热 (定义及特点)
瞬态非稳态导热 (定义及特点)
2
着重讨论瞬态非稳态导热
3 温度分布:
t
1
4 3
2
1
t
0
0
3
4 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
6
7 毕渥数
本章以第三类边界条件为重点。 (1) 问题的分析 如图所示,存在两个换热环节: a 流体与物体表面的对流换热环节 rh 1 h b 物体内部的导热 (2) 毕渥数的定义:
tf
h
t
tf h
0
r
t
x
tf
h
r h Bi rh 1 h
0
7
x
(微细热电偶、薄膜热电阻)
当 4 时, 1.83% hA 0 Vc
工程上认为=4 Vc / hA时 导热体已达到热平衡状态
第三章 非稳态导热
17
3 瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
hA Vc
W
导热体在时间 0~ 内传给流体的总热量:
传热学精选全文

(2) 对流换热:当流体流过一个物体表面时的热量传递 过程,他与单纯的对流不同,具有如下特点:
a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也
必须有温差 c 壁面处会形成速度梯度很大的边界层 (3)对流换热的分类
无相变:强迫对流和自然对流 有相变:沸腾换热和凝结换热
热量;d 在引力场下单纯的导热只发生在密实固体
中。
(4)导热的基本定律:
1822年,法国数学家Fourier: t
dx
Φ A dt W
dx
q Φ dt
A
dx
W m 2
上式称为Fourier定律,号称导
dt
Q
热基本定律,是一个一维稳态
0
x
导热。其中:
一维稳态平板内导热
:热流量,单位时间传递的热量[W];q:热流密度,单
q dx tw2
0
tw1
dt
q tw1 tw2
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
r
导热热阻 单位导热热阻
t
dx
tw1
dt
Q
tw2
0
tw1
Q
A
x
tw2
导热热阻的图示
2 对流(热对流)(Convection)
(1)定义:流体中(气体或液体)温度不同的各部分之 间,由于发生相对的宏观运动而把热量由一处 传递到另一处的现象。
a 当你靠近火的时候,会感到面向火的一面比背面热; b 冬天的夜晚,呆在有窗帘的屋子内会感到比没有窗帘时
要舒服; c 太阳能传递到地面 d 冬天,蔬菜大棚内的空气温度在0℃以上,但地面却可能
a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也
必须有温差 c 壁面处会形成速度梯度很大的边界层 (3)对流换热的分类
无相变:强迫对流和自然对流 有相变:沸腾换热和凝结换热
热量;d 在引力场下单纯的导热只发生在密实固体
中。
(4)导热的基本定律:
1822年,法国数学家Fourier: t
dx
Φ A dt W
dx
q Φ dt
A
dx
W m 2
上式称为Fourier定律,号称导
dt
Q
热基本定律,是一个一维稳态
0
x
导热。其中:
一维稳态平板内导热
:热流量,单位时间传递的热量[W];q:热流密度,单
q dx tw2
0
tw1
dt
q tw1 tw2
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
r
导热热阻 单位导热热阻
t
dx
tw1
dt
Q
tw2
0
tw1
Q
A
x
tw2
导热热阻的图示
2 对流(热对流)(Convection)
(1)定义:流体中(气体或液体)温度不同的各部分之 间,由于发生相对的宏观运动而把热量由一处 传递到另一处的现象。
a 当你靠近火的时候,会感到面向火的一面比背面热; b 冬天的夜晚,呆在有窗帘的屋子内会感到比没有窗帘时
要舒服; c 太阳能传递到地面 d 冬天,蔬菜大棚内的空气温度在0℃以上,但地面却可能
3.2热传导

21
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
微元体热力学能的增量dU = 微元体内热源的生成热dQ = 各量代入能量守恒式中得:
三维非稳态导热微分方程
22
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
3.导热微分方程的化简 ①导热系数为常数
式中, ,称为热扩散率。 ②导热系数为常数 、无内热源
35
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
三.平壁的稳态导热
2.多层平壁的导热 t1 t 2 : t 2 t3 : t3
b3 b1 b2 : : 1 A 2 A 3 A R1 : R2 : R3
t4
此式说明,在多层壁导热过程中,哪 层热阻大,哪层温差就大;反之,哪 层温差大,哪层热阻一定大。
9
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
温度场图示
10
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
4.温度梯度(Temperature gradient)
式中
T n
gradT 是空间某点温度梯度;
是等温面法线方向的温度变化率
T gradT n T n
第三章 传热学—第二节 热传导
2.多层平壁的导热 例题3-2(旧书ex2-2) 例题3-3(旧书ex2-3)
38
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
四.圆筒壁的稳态导热 1.单层圆筒壁稳定热传导
39
材料工程基础多媒体课件
第三章 传热学—第二节 热传导
传热学课件第三章稳态导热

重点与难点
重点: 平壁、圆筒壁的一维稳态导热 难点: 肋片的导热
内容精粹
§1 通过平壁的导热
§2 通过圆筒壁 的导热
§3 通过球壁的导热
§4 接触热阻
§5 通过肋片的导热
第一节
通过平壁的导热
一、第一类边界条件下的平壁导热
当平壁的两表面分别维持均匀恒定 的温度时,平壁的导热为一维稳态导热。
1. 单层平壁的稳态导热
圆球型导热仪示意图
在导热过程达到稳态后,通过被测材料层的
热流量Ф 就等于电加热功率P,忽略球壳的导热
热阻,被测材料层的内、外径即为内球壳外径d1 和外球壳内径d2,内外两侧的温度分别等于内、 外球壁的平均壁温tw1、tw2
。则所测材料在tw1~
tw2温度范围内的平均热导率为:
(d 2 d1) m 2d1d( 2 t w1 t w 2)
2. 多层平壁的稳态导热
多层平壁由多层不同材料组成,当两表面分别维 持均匀恒定的温度时,其导热也是一维稳态导热。 以三层平壁为例,假设 (1)各层厚度分别为1、2、3, 各层材料的导热系数分别为1、2、 3 , 且分别为常数; (2)各层之间接触紧密, 相互 接触的表面具有相同的温度; (3)平壁两侧外表面分别保持 均匀恒定的温度tw1、tw4。 显然,通过此三层平壁的导热为 稳态导热, 各层的热流量相同。
tw1 tw 4 l Rl1 Rl2 Rl3 tw1 tw 4 d3 1 d2 1 1 d4 ln ln ln 21 d1 22 d 2 23 d3
对于 n层不同材料组成的多层圆筒壁的稳态导热 , 单位 长度的热流量为
l
tw1 tw n 1
三层平壁稳态导热的总导热热阻为各层导热热阻 之和,由单层平壁稳态导热的计算公式可得 tw1 tw 4 tw1 tw 4 3 1 2 R1 R 2 R 3 A1 A2 A3
3传热学-第三章

2019/2/22
2
3 温度分布
(1)左侧壁面温度突然升高到t1,并保持不变
t
1
4 3
2
1
t
0
0
2019/2/22
3
(2)今有一无限大平板,突 然放入加热炉中加热,平板受 炉内烟气环境的加热作用,其 温度就会从平板表面向平板中 心随时间逐渐升高,其内能也 逐渐增加,同时伴随着热流向 平板中心的传递。
Φ f(x, y, z, )
(2) 非稳态导热的导热微分方程式:
t t t t c ( ) ( ) ( ) x x y y z z
(3) 求解方法: 分析解法、近似分析法、数值解法
2019/2/22
7
7
毕渥数
t
本章以第三类边界条件为重点。 已知:平板厚 2 、初温 t 0 、表面 传热系数 h 、平板导热系数 , 将其突然置于温度为 t 的流体中 冷却。
t c
hA(t t ) V
dt hA(t t ) - Vc d
2019/2/22
初始条件
0, t t0
13
令: t t — 过余温度,则有
控制方程 hA - Vc d d ( 0) t t 初始条件 0 0
16
2019/2/22
hA 即 与 1 的量纲相同,当 Vc 时,则 Vc hA
2019/2/22
10
Bi 准则对温度分布的影响
0
t t0 0
3
2
1
t t0 0
1 0
t t0
1 0
2 1 2 1
03传热学第三章非稳态热传导

cV
dt
d
cV (t0
t )(
hA
cV
)
exp(
hA
cV
)
hA0
exp(
hA
cV
)
※0~ 时间内传给流体的总热量:
Q 0 d
0
h
A
0
e
xp(
hA
cV
)d
2021/1/14
0 cV
1
exp
hA
cV
15
(2) 时间常数
令
c
cV
hA
ቤተ መጻሕፍቲ ባይዱ
e c
0
※当 时
0 0
即t t
※当
时
c
与几何参数、物理性 质、换热条件有关
(, ) m ( )
cos(1)
f
( Bi , )
则平板中任意点过余温度比 m 0 m 0
2021/1/14
31
相当于第一 类边界条件
2021/1/14
32
2021/1/14
任意时刻平板 内温度均匀
33
书中的诺谟图仅适用一维平板第一类边界条件下的加热及冷却
过程以及具有恒温介质的第三类边界条件,并且Fo>0.2
Q0
cV (t0 t )
0
τ时刻的平均 过余温度
当Fo>0.2时,正规状况阶段温度场与导热量的计算式可统一表示为:
( , 0
)
A exp(
12 Fo)
f
( 1 )
Q Q0
1
A exp(12Fo)B
其中,A、B、f(μ1η)的表达示见表3-1。
2021/1/14
30
(完整PPT)传热学

温度
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高, 导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
热辐射基本概念和定律
普朗克定律
基尔霍夫定律
在热平衡状态的物体所辐射的能 量与吸收的能量之比与物体本身 物性无关,只与波长和温度有关。
给出了黑体辐射力随波长的分布 规律。
斯蒂芬-玻尔兹曼定律
黑体的全波长辐射力与温度的四 次方成正比。
热辐射定义
维恩位移定律
物体由于具有温度而辐射电磁波 的现象。
黑体的最大单色辐射力对应的波 长与绝对温度成反比。
流体物性
包括密度、粘度、导热系数等,影响流动状态和传热效率。
流动状态
层流或湍流,影响传热系数和温度分布。
传热表面形状和大小
影响流动边界层和传热面积,从而影响传热效率。
温度差
传热驱动力,温差越大,传热速率越快。
牛顿冷却定律及其应用
牛顿冷却定律
描述对流换热过程中,传热速率与温差之间的关系,即q = h(Tw - Tf),其中q为传热速率,h为对流换热系数,Tw和Tf 分别为壁面温度和流体温度。
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高, 导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
热辐射基本概念和定律
普朗克定律
基尔霍夫定律
在热平衡状态的物体所辐射的能 量与吸收的能量之比与物体本身 物性无关,只与波长和温度有关。
给出了黑体辐射力随波长的分布 规律。
斯蒂芬-玻尔兹曼定律
黑体的全波长辐射力与温度的四 次方成正比。
热辐射定义
维恩位移定律
物体由于具有温度而辐射电磁波 的现象。
黑体的最大单色辐射力对应的波 长与绝对温度成反比。
流体物性
包括密度、粘度、导热系数等,影响流动状态和传热效率。
流动状态
层流或湍流,影响传热系数和温度分布。
传热表面形状和大小
影响流动边界层和传热面积,从而影响传热效率。
温度差
传热驱动力,温差越大,传热速率越快。
牛顿冷却定律及其应用
牛顿冷却定律
描述对流换热过程中,传热速率与温差之间的关系,即q = h(Tw - Tf),其中q为传热速率,h为对流换热系数,Tw和Tf 分别为壁面温度和流体温度。
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
热传导(通用版)ppt课件

石棉、珍珠岩、矿渣棉等各类制品, 是电厂中广泛采用的隔热保温材料
精品ppt
39
谢谢观看
精品ppt
40
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
41
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
27
第三节 辐射换热
特点 辐射换热与导热、对流换热的主要
不同点就是换热是物体(或物质)之间 不接触。
精品ppt
28
第三节 辐射换热
现在研究外界热辐射的能量投射到某一物
体表面的情况。
单位时间内射到物体单位面积上
Ee
n
的总能量,称为投射辐射Ee。其
E r 中一部分被吸收,称为吸收辐射
Ea;一部分被物体反射出去,称
精品ppt
5
第一节 导热
气体的导热:通过其处于杂乱无章运动中的分子间的 碰撞,进行能量的交换而实现导热。
固体的导热:主要是通过材料晶格的热振动波以及自 由电子的迁移来实现的。
液体的导热:在液体介电质中,热量的转移是依靠弹 性波的作用。
在金属内部则依靠自由电子的运动,而对于非金 属则主要通过晶格的热振动波进行热量的传递。
精品ppt
6
第一节 导热
温度场(Temperature field) 某时刻空间所有各点温度分布的总称 温度场是时间和空间的函数,即:
tf(x,y,z,)
精品ppt
7
第一节 导热
如果物体内各点的温度在温度不随时间 而变,称为稳态温度场。
若物体内的温度分布随时间变化,则为 非稳态温度场。
精品ppt
火电厂的生产过程和传热过程联系密切。 热量传递的基本方式有导热、对流换热和辐射
精品ppt
39
谢谢观看
精品ppt
40
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
41
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
27
第三节 辐射换热
特点 辐射换热与导热、对流换热的主要
不同点就是换热是物体(或物质)之间 不接触。
精品ppt
28
第三节 辐射换热
现在研究外界热辐射的能量投射到某一物
体表面的情况。
单位时间内射到物体单位面积上
Ee
n
的总能量,称为投射辐射Ee。其
E r 中一部分被吸收,称为吸收辐射
Ea;一部分被物体反射出去,称
精品ppt
5
第一节 导热
气体的导热:通过其处于杂乱无章运动中的分子间的 碰撞,进行能量的交换而实现导热。
固体的导热:主要是通过材料晶格的热振动波以及自 由电子的迁移来实现的。
液体的导热:在液体介电质中,热量的转移是依靠弹 性波的作用。
在金属内部则依靠自由电子的运动,而对于非金 属则主要通过晶格的热振动波进行热量的传递。
精品ppt
6
第一节 导热
温度场(Temperature field) 某时刻空间所有各点温度分布的总称 温度场是时间和空间的函数,即:
tf(x,y,z,)
精品ppt
7
第一节 导热
如果物体内各点的温度在温度不随时间 而变,称为稳态温度场。
若物体内的温度分布随时间变化,则为 非稳态温度场。
精品ppt
火电厂的生产过程和传热过程联系密切。 热量传递的基本方式有导热、对流换热和辐射
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三类边界 条件
定解条件包括:几何条件 、物理条件 、初始条件和边界条件。
热辐射
4
热传导:两个相互接触的物体或同一物体的各部分之间由于温差而 引起的热量传递现象,简称导热。通常发生在固体与固体之间。
1) 对于x方向上一个厚度为dx的微元层, 单位时间内通过该层的导热热量
Q = - kA dt dx
q = Q = - k dt A dx
通过平板的一维导热
一维稳态导热 傅里叶定律数
学表达式
5
热对流:依靠流体的运动,而引起流体与固体壁表面之间的传热。 有流体参与,通常发生在气-固、液-固之间。
导热 热对流
共同 作用
自然对流 对流换热
强制对流
有相变的对流换热
沸腾换热 凝结换热
引起流体流 动的原因
对流换热量的基本计算式——牛顿冷却公式(1701年提出):
QAht
qht
6
热辐射:依靠物体表面对外发射可见和不可见的电磁波来传递能量。 不需要直接接触。
3.1 概 述
传递过程
动量传递 能量传递 质量传递
流体力学 传热学的设计;
核能、火箭等尖端技术; 太阳能、地热能和工业余热利用; 农业、生物、地质、气象等部门。
主要传热问题:一类是求解局部或者平均的传热速率的大小; 另一类求解研究对象内部的温度分布。
1
• 传导传热 • 对流换热 • 热辐射 • 传热过程与换热器
2
传热学基础(重点掌握)
• 传热的基本方式与热流速率的基本方 程
• 传热热阻(类比电阻)
3.1.1 传热的基本方式与热流速率的基本方程
热力学第二定律:热量总是自发地、不可逆地从高温处流向低 温处。 即:有温差存在,就会出现热量的传递。
传热机理
热传导
传热过程与 时间的关系
热对流
稳态 t 0
非稳态 t 0
q rqxivqyv jqzk v
13
温度梯度表示的傅里叶定律:
t
dQn
kdA n
qn
dQn kt dA n
q kgrta dktn n
3.2.2 物质的导热特性
q k
t n n
k q gradt
导热系数:物体中单位温度降度单位时间通过单位面积的导热量。 是物质的固有属性之一,衡量物质的导热能力,大小取决于材料的 成分、内部结构、密度、温度、压力和含湿量。
1)直角坐标系 能量方程:
d d e q k 2tP u
微元体热力学能(内能)增量: eCpt
可逆膨胀功: 摩擦耗散功:
P•u 0
0
cd d t x(k x t) y(k y t) z(k z t) q
热扩散率 a = k 内部温度均匀化 r c 的能力
①导热系数为常数
物体内能
电磁波能
物体内能
共同 辐射换热 作用
辐射 吸收
辐射换热特征
传热方式:非接触 能量的转移中伴随着能量形式的转换
影响因素:温度以及物体的属性和表面状况。
7
黑体是指能吸收投入到其表面上的所有热辐射能的物体。
斯蒂芬-玻尔兹曼(Stefan-Boltzmann)定律:
Q AT4 经验修正
QAT4
四次方定律
3.2.1 基本概念
温度场:某一时刻空间各点温度的分布。
tf(x,y,z,)
稳态温度场: t= f(x,y,z)
一维稳态温度场 : t = f (x) 等温面与等温线:温度场中同一瞬间同温度各点连成的面称为 等温面;不同的等温面与同一平面相交,则在此平面上构成一 簇曲线,称为等温线。
12
温度梯度:自等温面上某点到另一个等温面,以该点法线方向的温度
Rt /k或 1/h
q t
Rt
传热热阻
9
问题:冷、热流体通过一块大平壁交换热量的稳态传热过程。
分析: 传热过程包括三个环节,①热流体与 壁面高温侧的热量传递;②穿过固体 壁的导热;③壁面低温侧与冷流体的 热量传递。
解: 稳态,通过串联着的每个环节的热流量 Q相同。设平壁表面积为A。
Q Ah 1 ( t f 1 t w 1 )
d 2t dx 2
0
17
2)径向坐标系 圆柱坐标系
球坐标系
c d d t1 r r(k r t r ) r 1 2 (k t) z(k z t) q
c d d r 1 2 t r ( k 2 r t r ) r 2 s 1 2 i n ( k t) r 2 s 1 2 i n ( k s i t) n q
5.6 7 1 8 0 w /m (2K ) 斯蒂芬-玻尔兹曼系数
物体辐射率,其值<1
例:两块非常接近的互相平行的壁面间的辐射换热:
Q1A 1 (T 14T24) 8
3.1.2 传热热阻
类比热量传递与电量传递
欧姆定律: I = U R
dt
q= - k
类比
dx
变形
qht
q t
k
q
t 1
h
Q
Ak
(tw1 tw2 )
Q Ah 2 ( t w 2 t f 2 )
q
(t f 1 t f 2)
1 1
t
Rt
h1 k h2
10
传导传热(重点掌握)
• 基本概念 • 物质的导热特性 • 导热微分方程与定解条件 • 稳态导热的计算 • 非稳态导热的计算(集总参数法)
3.2 传导传热
ddt a(x2t2
2t y2
z2t2)q& c
②导热系数为常数、无内热源
dt
d
a(x2t2
y2t2
z2t2
)
③导热系数为常数、稳态导热
2t 2t 2t q 0
x2 y2 z2 k
④导热系数为常数、无内热源、稳态导热
泊松方程
2t x2
2t y2
2t z2
0
拉普拉斯 方程
⑤导热系数为常数、无内热源、一维稳态导热
不同物质的导热系数
k金属k非金属
随T , k金属 k非金属
一般工程应用压力 范围内,认为k仅 与温度有关,kk0(1bt)
k固> k液> k气
k晶体> kn定形
随T , k气体 k液体 规律不同。
保温材料:导热系数不大于0. 2w/(m.k)。
保温机理:多孔状。
15
3.2.3 导热微分方程与定解条件
变化率为最大。以该点法线方向为方向,数值正好等于这个最大温度 变化率的矢量称为温度梯度,用gradt表示,正向是朝着温度增加的方 向。
gradt t n n
grt adtit jtk x y z
热流密度矢量(热流矢量) 取等温面上某点,以通过该点最大热流密 度的方向为方向,数值正好等于沿该方向热流密度的矢量称为热流 密度矢量(热流矢量)。