2018高考物理备考中等生百日捷进提升专题10磁场
2018届全国卷高考物理考前复习大串讲基础知识及查漏补缺复习资料专题10 磁场基础知识含解析

【基础知识梳理】一、磁场、磁感应强度 1.磁场(1) 基本性质:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。
(2) 方向:小磁针的N 极所受磁场力的方向。
2.磁感应强度3.磁感应强度与电场强度的区别二、 磁感线 1.磁感线(1)定义:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致。
(2)磁感线的特点①磁感线是为了形象地描述磁场而人为假设的曲线,并不是客观存在于磁场中的真实曲线。
②磁感线在磁体(螺线管)外部由N 极到S 极,内部由S 极到N 极,是闭合曲线。
③磁感线的疏密表示磁场的强弱,磁感线较密的地方磁场较强,磁感线较疏的地方磁场较弱。
④磁感线上任何一点的切线方向,都跟该点的磁场(磁感应强度)方向一致。
⑤磁感线不能相交,也不能相切。
2.几种常见的磁场(1)条形磁铁和蹄形磁铁的磁场(如图所示)(2)常见电流的磁场3.磁场的叠加:磁感应强度为矢量,合成与分解遵循平行四边形定则。
4.地磁场的特点(1)磁感线由地理南极发出指向地理北极(地球内部相反)。
(2)地磁场的水平分量总是由地理南极指向地理北极。
(3)北半球具有竖直向下的磁场分量,南半球具有竖直向上的磁场分量。
(4)赤道平面距地面相等高度的各点,磁场强弱相同,方向水平向北。
三、磁场对电流的作用力—安培力1.安培力的方向(1)左手定则:伸出左手,让拇指与其余四指垂直,并且都在同一个平面内。
让磁感线从掌心进入,并使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。
(2)两平行的通电直导线间的安培力:同向电流互相吸引,异向电流互相排斥。
2.安培力的大小(1)当B⊥L时,安培力最大,F=BIL。
(2)当B∥L时,安培力等于零。
注意:F=BIL中的L是有效长度,即垂直磁感应强度方向的长度。
如图甲所示,直角形折线abc中通入电流I,ab=bc=L,折线所在平面与匀强磁场磁感应强度B垂直,abc受安培力等效于ac(通有a→c的电流I)所受的安培力,即F=BI·2L,方向为在纸面内垂直于ac斜向上。
三年高考2018_2019高考物理试题分项版解析专题10磁场含解析

专题10 磁场【2018高考真题】1.某空间存在匀强磁场和匀强电场。
一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是A. 磁场和电场的方向B. 磁场和电场的强弱C. 粒子的电性和电量D. 粒子入射时的速度【;;】2018年全国普通高等学校招生统一考试物理(北京卷)【答案】 C点睛:本题考查了带电粒子在复合场中的运动,实际上是考查了速度选择器的相关知识,注意当粒子的速度与磁场不平行时,才会受到洛伦兹力的作用,所以对电场和磁场的方向有要求的。
2.(多选)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称。
整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。
已知a、b两点的磁感应强度大小分别为和,方向也垂直于纸面向外。
则()A. 流经L1的电流在b点产生的磁感应强度大小为B. 流经L1的电流在a点产生的磁感应强度大小为C. 流经L2的电流在b点产生的磁感应强度大小为D. 流经L2的电流在a点产生的磁感应强度大小为【;;】2018年普通高等学校招生全国统一考试物理(全国II卷)【答案】 AC可解得: ;故AC正确;故选AC点睛:磁场强度是矢量,对于此题;说ab两点的磁场强度是由三个磁场的叠加形成,先根据右手定则判断导线在ab两点产生的磁场方向,在利用矢量叠加;求解即可。
3.(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电;连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。
将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。
下列说法正确的是()A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动【;;】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 AD【解析】本题考查电磁感应、安培定则及其相关的知识点。
专题10选修模块-高考物理备考中等生百日捷进提升系列(原卷版)

(精心整理,诚意制作)第一部分特点描述【选修3-3】热学是研究与温度有关的热现象的科学。
它是从两方面来研究热现象及其规律的,一是从物质的微观结构即分子动理论的观点来解释与揭示热学宏观量及热学规律的本质;二是以观测和实验事实为依据,寻求热学参量间的关系及热功转换的关系。
虽然热学部分知识点较分散,大多属于定性了解的内容,并非重点内容,不必要搞得过难,但要全面落实基础知识和基本技能,强调对基本概念、基本规律的理解,做到不留知识盲点。
高频考点主要有:(1)物质是由大量分子组成的.阿伏加德罗常数.分子的热运动、布朗运动.分子间的相互作用力(2)分子热运动.温度是物体分子热运动平均动能的标志.物体分子间的相互作用势能.物体的内能.(3)做功和热传递是改变物体内能的两种方式.热量.能量守恒定律(4)气体的体积、压强、温度间的关系(5)热力学第一、二定律(6)气体压强的微观意义【选修3-4】对机械振动的考查着重放在简谐运动的运动学特征和动力学特征和振动图像上;同时也通过简谐运动的规律考查力学的主干知识.对机械波的考查着重放在波的形成过程、传播规律、波长和波动图像及波的多解上;对波的叠加、干涉和衍射、多普勒效应也有涉及.实际上许多考题是振动与波的综合,考查振动图像与波动图像的联系和区别;同时也加强了对振动和波的联系实际的问题的考查,如利用单摆,结合万有引力知识测量山的高度,共振筛、队伍过桥等共振现象的利用与防止,医用B型超声波图、心电图、地震波图线的分析等。
通过《考试大纲》可以知道,光学部分:由几何光学的光的反射和折射与物理光学的光的波动性和微粒性四个部分组成,其中光的反射、折射和光电效应要求属Ⅱ级要求(即:对所列如果把固体分子、液体分子看成球体,则分子直径d=36V′π=36V0πNA;如果把固体、液体分子看成立方体,则d=3 V′=3V0NA.利用油酸在水面上形成的单层分子膜,可得油酸分子的直径d=VS,其中V、S分别为油酸的体积和油膜的面积.2.气体分子微观量的估算(1)物质的量n=V22.4,V为气体在标准状况下的体积,其单位为L.(2)分子间距的估算方法:倘若气体分子均匀分布,每个分子占据一定的空间,假设为立方体,分子位于每个立方体的中心,则每个小立方体的边长就是分子间距;假设气体分子占有的体积为球体,分子位于球体的球心,则分子间距等于每个球体的直径.特别提醒:(1)分子直径的数量级为10-10 m,因此求出的数据只在数量级上有意义.(2)阿伏加德罗常数N A=6.02×1023 mol-1,是联系微观世界和宏观世界的桥梁.二、分子力做功及物体的内能1.分子力的特点分子间作用力(指引力和斥力的合力)随分子间距离变化而变化的规律是:(1)r<r0时表现为斥力;(2)r=r0时分子力为零;(3)r>r0时表现为引力;(4)r>10r0以后,分子力变得十分微弱,可以忽略不计,如图:2.分子力做功的特点及势能的变化分子力做正功时分子势能减小;分子力做负功时分子势能增大.(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小.)由上面的分子力曲线可以得出如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变化的图象如图.可见分子势能与物体的体积有关,体积变化,分子势能也变化.3.物体的内能及内能变化项目内容备注内能分子动能分子动能各不相等分子总动能由分子个数和温度决定温度是分子平均动能的标志分子势能r=r0时,E p最小总E p与分子个数、分子种类、物体体积有关分子力做正功,E p减小分子力做负功,E p增大分子力做功时,E k和E p相互转化,但二者之和不变内能的改变做功没有热传递时,W=ΔU做功和热传递在改变物体内能上是等效的实质:其他形式的能与内能的相互转化热传递没有做功时,Q=ΔU实质:内能在物体间的转移三种方式:传导、对流、辐射特别提醒:内能与机械能不同.前者由物体内分子运动和分子间作用决定,与物体的温度和体积有关,具体值难确定,但永不为零;后者由物体的速度、物体间相互作用、物体质量决定,可以为零;内能和机械能在一定条件下可以相互转化.三、气体性质的比较项目内容备注气体分子运动的特点分子间距很大,作用力很弱对理想气体,温度T∝E k, 分子间碰撞频繁,分子运动混乱(2)核反应中的质量亏损,并不是这部分质量消失或质量转化为能量,质量亏损也不是核子个数的减少,核反应中核子的个数是不变的.(3)质量亏损不是否定了质量守恒定律,生成的γ射线虽然静质量为零,但动质量不为零,且亏损的质量以能量的形式辐射出去.特别提醒:在核反应中,电荷数守恒,质量数守恒,质量不守恒,核反应中核能的大小取决于质量亏损的多少,即ΔE =Δmc 2.第三部分 技能+方法【选修3-3】考点一 微观量的计算阿伏加德罗常数是联系宏观量和微观量的桥梁.分子的质量m 0、分子体积V 0、分子直径d 等微观量可利用摩尔质量M 、摩尔体积V 等宏观量和阿伏加德罗常数N A 求解:(1)分子质量:m 0=M NA ;(2)分子的大小:球体模型V 0=16πd 3,立方体模型V 0=d 3;(3)分子占据的空间体积:V 0=V NA = M ρNA(固体和液体可忽略分子之间的间隙,V 0表示一个分子的体积;对于气体,V 0表示一个分子的活动空间的体积);(4)物质(质量为m 、体积为V ′)所含的分子数:n =m M N A ,n =V′V N A .【例1】“用油膜法估测分子的大小”实验中,以下选项中不作为本次实验的科学依据的是( )A .将油膜看成单分子层油膜B .将油膜分子近似看成球体或正立方体C .考虑了各油酸分子间的间隙D .油膜的体积等于总的分子体积之和考点二 气体状态变化图象问题一定质量的某种理想气体的等温、等容、等压图象变化过程 变化规律 图象等温变化遵循玻意耳定律pV=C.p—V图象为双曲线,对同一气体,pV乘积大的图线对应的T 高,即T2>T1;p—1V图象为过原点的直线,对同一气体,斜率大的图线对应的T高,即图中T2>T1等容变化遵循查理定律pT=C,p—T图象为过原点的直线,对同一气体,斜率大的图线对应的V小,即图中V2<V1等压变化遵循盖·吕萨克定律VT=C.V—T图象为过原点的直线,对同一气体,斜率大的图线对应的p小,即图中p2<p1【例2】如图所示,一个上端开口、下端封闭的细长玻璃管,下部有长l1=66cm的水银柱,中间封有长l2=6.6 cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐.已知大气压强为p0=76 cmHg.如果使玻璃管绕底端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度.封入的气体可视为理想气体,在转动过程中没有发生漏气.p3=p0+ρgx⑤由玻意耳定律得p1(Sl2)=p3(Sh′)⑥考点三热力学定律与气体定律的综合1.热力学第一定律适用于固体、液体、气体,而气体实验定律、状态方程均适用于理想气体.研究理想气体状态变化问题时,应先根据气体定律判断三个状态参量的变化,再依据温度的变化确定内能的变化,依据气体体积的变化确定做功情况,依据内能的变化及做功情况确定过程是吸热还是放热.2.注意理想气体分子间分子力为零,分子势能为零,所以理想气体的内能等于分子动能的总和,而温度是分子平均动能的标志,因此一定质量的某种理想气体的内能只由温度决定;非理想气体分子之间存在分子力,因此分子势能不可忽略.【例3】如图所示,内壁光滑的气缸水平放置,一定质量的理想气体被活塞密封在气缸内,外界大气压强为p0.现对气缸缓慢加热,气体吸收热量Q后,体积由V1增大为V2.则在此过程中,气体分子平均动能________(选填“增大”、“不变”或“减小”),气体内能变化了________.【选修3-4】考点一 光的折射与全反射问题利用折射定律和折射率公式解题时,应先根据题意画出光路图,确定入射角和折射角,然后应用折射定律、折射率公式求解,注意明确光从真空射入透明介质与光从透明介质射入真空时折射定律公式的区别.在遇到光从光密介质射入光疏介质的情况时,应考虑能否发生全反射问题,根据sin C =求临界角C .【例1】如图所示,有一束平行于直角三角棱镜截面ABC 的单色光从空气射向E 点,并偏折到F 点.已知入射方向与边BC 的夹角为θ=30°,E 、F 分别为边AB 、BC 的中点.下列说法中正确的是( )A .该棱镜的折射率为 2B .光在F 点不发生全反射C .从边AC 出射的光束与边AB 平行D .光从空气进入棱镜,波长变大考点二 光的干涉现象1.双缝干涉(1)双缝的作用是将一束光分成频率相同的两束,获得相干光源.(2)条纹间距与波长的关系:∆λdl x =(3)明暗条纹条件:某点到双缝的距离之差Δx与波长的关系决定明暗条纹.亮条纹:Δx=nλ(n=0,1,2,3,4…)暗条纹:Δx=(2n+1)λ2(n=0,1,2,3,4…)2.薄膜干涉(1)形成:由透明薄膜(油膜、肥皂沫、空气膜等)前后表面的反射光叠加形成干涉.(2)薄膜干涉为等厚干涉,同一条纹处薄膜厚度相同.增透膜的厚度为光在介质中波长的四分之一.【例2】如图所示的4种明暗相间的条纹分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(灰黑色部分表示亮纹).则在下面的四个图中从左往右排列,亮条纹的颜色依次是()A.红黄蓝紫 B.红紫蓝黄 C.蓝紫红黄 D.蓝黄红紫考点三振动图象与波动图象问题1.由振动图像判定质点在某时刻的振动方向振动图像中质点在某时刻的振动方向可根据下一个时刻(远小于T4)质点的位移(位置坐标)确定,也可根据图像中该时刻对应的曲线斜率的正负确定.2.波动图像中质点的振动方向与波的传播方向(1)“上下坡法”:将波形想象成一段坡路,沿着波传播的方向看,位于“上坡”处的各质点振动方向向下,位于“下坡”处的各质点振动方向向上.(2)微平移法:波的传播过程其实是波形沿传播方向的平移,作出微小时间Δt后的波形,可确定各质点经Δt后到达的位置,由此可确定各质点的振动方向.3.振动图像与波动图像结合解答振动图像和波动图像结合的问题,应注意两种图像意义的理解,波动图像是某时刻一系列质点的振动情况的反映,振动图像是某一质点在不同时刻的振动情况的反映;其次要从一种图像中找到某一质点的振动信息,由此结合题设条件及相应的振动或波动规律推导另一种图像的相关情况.关键提醒:要特别关注波动图像是哪个时刻的图像,振动图像是哪个质点的图像.【例3】一列简谐横波沿x轴传播,波长为1.2m,振幅为A.当坐标为x=0处质元的位移为-3 2A且向y轴负方向运动时,坐标为x=0.4 m处质元的位移为32A.当坐标为x=0.2m处的质元位于平衡位置且向y轴正方向运动时,x=0.4 m处质元的位移和运动方向分别为()A.-12A、沿y轴正方向 B.-12A、沿y轴负方向C.-32A、沿y轴正方向 D.-32A、沿y轴负方向【选修3-5】考点一动量定理的应用1.动量定理的理解(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度.这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受合外力冲量的矢量和).(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系.(3)现代物理学把力定义为物体动量的变化率:(4)动量定理的表达式是矢量式.在一维的情况下,各个矢量必须以同一个规定的方向为正.2.解题步骤(1)明确研究对象(一般为单个物体)及对应物理过程.(2)对研究对象进行受力分析并区分初、末运动状态,找出对应的动量.(3)规定正方向,明确各矢量的正负,若为未知矢量,则可先假设其为正方向.(4)由动量定理列方程求解.【例1】某兴趣小组用如图所示的装置进行实验研究.他们在水平桌面上固定一内径为d的圆柱形玻璃杯,杯口上放置一直径为3 2d、质量为m的匀质薄圆板,板上放一质量为2m的小物块.板中心、物块均在杯的轴线上.物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g,不考虑板翻转.(1)对板施加指向圆心的水平外力F,设物块与板间最大静摩擦力为F f max,若物块能在板上滑动,求F应满足的条件.(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I,①I应满足什么条件才能使物块从板上掉下?②物块从开始运动到掉下时的位移s为多少?③根据s与I的关系式说明要使s更小,冲量应如何改变.考点二动量守恒定律的应用1.表达式:(1)p=p′(相互作用前系统总动量p等于相互作用后总动量p′);(2)Δp=0(系统总动量的增量等于零);(3)Δp1=-Δp2(两个物体组成的系统中,各自动量的增量大小相等、方向相反).2.应用范围:(1)平均动量守恒:初动量为零,两物体动量大小相等,方向相反.(2)碰撞、爆炸、反冲:作用时间极短,相互作用力很大,外力可忽略.(3)分方向动量守恒:一般水平动量守恒,竖直动量不守恒.3.应用动量守恒定律解决问题的步骤:(1)确定研究对象,研究对象为相互作用的几个物体.(2)分析系统所受外力,判断系统动量是否守恒,哪一过程守恒.(3)选取正方向,确定系统的初动量和末动量.(4)根据动量守恒列方程求解.【例2】如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度 .(不计水的阻力)考点三能级跃迁的分析与计算1.自发跃迁:高能级→低能级.释放能量,发出光子.(1)光子的频率ν:ν=ΔEh=E高-E低h(2)光的条数:N=n n-122.受激跃迁:低能级→高能级,吸收能量.(1)光照(吸收光子):光子的能量必恰等于能级差hν=ΔE.(2)碰撞、加热等:只要入射粒子能量大于或等于能级差即可.E外≥ΔE.(3)大于电离能的光子可被吸收将原子电离.【例3】氢原子部分能级的示意图如图所示.不同色光的光子能量如下表所示.处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为()A.红、蓝靛 B.黄、绿 C.红、紫 D.蓝靛、紫考点四核能的计算1.书写核反应方程的注意事项(1)书写核反应方程时要以事实为依据.(2)核反应通常不可逆,方程中要用“→”连接,不能用“=”连接.(3)质量数守恒并不意味着反应前后粒子的总质量相等.(4)无光子辐射时,核反应中释放的核能转化为生成的新核和新粒子的动能,在此情况下可应用力学规律(动量守恒和能量守恒)来计算核能.2.核能计算:ΔE=Δmc2(1)若Δm以kg为单位,则ΔE=Δmc2.(2)若Δm以原子质量u为单位,则ΔE=Δm×931.5 MeV.【例4】20xx年上海世博会倡导“绿色世博”和“低碳世博”的理念,世博会中国主题馆“东方之冠”高大68米的屋顶台上“镶嵌”有与建筑相融合的太阳能光伏组件,屋面太阳能板面积达3万多平方米,是目前世界最大的单体面积太阳能屋面,上海世博会场馆周围80%~90%的路灯利用太阳能发电技术来供电.科学研究发现太阳发光是由于其内部不断发生从氢核到氦核的核聚变反应,即在太阳内部4个氢核(1H)转化成一个氦核和两个正电子(01e)并放出能量.已知质子的质量m p=1.0073 u,α粒子的质量mα=4.0015 u,电子的质量m e=0.0005 u.1 u的质量相当于931.5MeV的能量.(1)写出该热核反应方程;(2)一次这样的热核反应过程释放出多少MeV的能量?(结果保留四位有效数字)第四部分基础练+测【选修3-3】1.(5分)下列说法中正确的有。
2018年高考物理课标Ⅱ专用复习专题测试专题十 磁场 共182张 精品

3.(2017课标Ⅰ,19,6分)(多选)如图,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电 流I,L1中电流方向与L2中的相同,与L3中的相反。下列说法正确的是 ( )
9.(2016课标Ⅲ,18,6分)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上 方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。一带电粒子的质量为m,电荷量为q (q>0)。粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角。已知 该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场。不计重力。粒子 离开磁场的出射点到两平面交线O的距离为 ( )
A.左、右转轴下侧的绝缘漆都刮掉 B.左、右转轴上下两侧的绝缘漆都刮掉 C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉 D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉
答案 AD 本题考查安培力、电路。要使线圈在磁场中开始转动,则线圈中必有电流通过,电 路必须接通,故左右转轴下侧的绝缘漆都必须刮掉;但如果上侧的绝缘漆也都刮掉,当线圈转过1 80°时,靠近磁极的导线与开始时靠近磁极的导线中的电流方向相反,受到的安培力相反,线圈向 原来的反方向转动,线圈最终做往返运动,要使线圈连续转动,当线圈转过180°时,线圈中不能有 电流通过,依靠惯性转动到初始位置再接通电路即可实现连续转动,故左、右转轴的上侧不能都 刮掉,故选项A、D正确。
() A.运动轨迹的半径是Ⅰ中的k倍 B.加速度的大小是Ⅰ中的k倍 C.做圆周运动的周期是Ⅰ中的k倍 D.做圆周运动的角速度与Ⅰ中的相等
2018-2018高考物理二轮复习磁场压轴题及答案

2018-2018高考物理二轮复习磁场压轴题及答案高考将至,2016年高考将于6月7日如期举行,以下是一篇磁场压轴题及答案,详细内容点击查看全文。
1如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为=0.4,取g=10m/s2,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向2(10分)如图214所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?(2)到A、B都与挡板碰撞为止,C的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F ,放手后,木板沿斜面下滑,稳定后弹簧示数为F ,测得斜面斜角为,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4有一倾角为的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质量分别为m =m =m,m =3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v 向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R 间的距离L的大小。
专题10磁场2018年高考物理备考艺体生百日突围系列解析

第一部分 特点描述磁场一般会以选项题和计算题两种形式出现,若是选择题一般考查对磁感应强度、磁感线、安培力和洛仑兹力这些概念的理解,以及安培定则和左手定则的运用;若是计算题主要考查安培力大小的计算,以及带电粒子在磁场中受到洛伦兹力和带电粒子在磁场中的圆周运动的分析判断和计算,尤其是带电粒子在电场、磁场中的运动问题对学生的空间想象能力、分析综合能力、应用数学知识处理物理问题的能力有较高的要求,仍是本考点的重点内容,有可能成为试卷的压轴题。
由于本考点知识与现代科技密切相关,在近代物理实验中有重大意义,因此考题还可能以科学技术的具体问题为背景,考查学生运用知识解决实际问题的能力和建模能力。
预测高考基础试题仍是重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、能量守恒、电路分析、安培力等力学和电学知识。
主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等。
第二部分 知识背一背 一、磁场、磁感应强度1.磁场的特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用. 2.磁场的方向:小磁针静止时N 极所指的方向. 3.磁感应强度(1)物理意义:描述磁场的强弱和方向. (2)大小:ILFB =(通电导线垂直于磁场). (3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,简称特,符号:T. 4.磁通量(1)概念:在匀强磁场中,与磁场方向垂直的面积S 和磁感应强度B 的乘积. (2)公式:BS =φ. (3)单位:1Wb =1T ·m 2二、磁感线、通电导体周围的磁场的分布1.磁感线:在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致. 2.条形磁铁和蹄形磁铁的磁场磁感线分布(如图所示)3.电流的磁场直线电流的磁场 通电螺线管的磁场 环形电流的磁场 特点无磁极、非匀强且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两 侧是N 极和S 极,且离圆环中心越远,磁场越弱安培 定则立体图横截面图4.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱. (3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体 内部,由S 极指向N极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 三、安培力的大小和方向 1.安培力的大小当磁感应强度B 的方向与导线方向成θ角时,θsin BIL F =,这是一般情况下的安培力的表达式,以下是两种特殊情况:(1)当磁场与电流垂直时,安培力最大,F max =BIL . (2)当磁场与电流平行时,安培力等于零. 2.安培力的方向(1)安培力:通电导线在磁场中受到的力.(2)左手定则:伸开左手,使拇指与其余四指垂直,并且都与手掌在同一个平面内.让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向. (3)两平行的通电直导线间的安培力:同向电流互相吸引,异向电流互相排斥. 四、洛伦兹力的大小和方向1.洛伦兹力的定义:磁场对运动电荷的作用力.2.洛伦兹力的大小θsin qvB F =,θ为v 与B 的夹角.如图所示.(1)当v ∥B 时,θ=0°或180°,洛伦兹力F =0; (2)当v ⊥B 时,θ=90°,洛伦兹力qvB F =. (3)静止电荷不受洛伦兹力作用.学.科.网 3.洛伦兹力的方向 (1)左手定则磁感线垂直穿过手心,四指指向正电荷运动的方向,拇指指向即为运动的正电荷所受洛伦兹力。
2018年全国卷高考物理总复习《磁场》习题专训(含答案)
2018年全国卷高考物理总复习《磁场》习题专训1.如图所示,条形磁铁放在桌子上,一根通电直导线由S极的上端平移到N极的上端的过程中,导线保持与磁铁垂直,导线的通电方向如图,则在这个过程中磁铁受到的摩擦力(保持静止)()A.为零.B.方向由左变为向右.C.方向保持不变.D.方向由右变为向左.【答案】B2.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,则过c点的导线所受安培力的方向()A.与ab边平行,竖直向上B.与ab边平行,竖直向下C.与ab边垂直,指向左边D.与ab边垂直,指向右边【答案】C3.如图所示,X1、X2,Y1、Y2,Z1、Z2分别表示导体板左、右,上、下,前、后六个侧面,将其置于垂直Z1、Z2面向外、磁感应强度为B的匀强磁场中,当电流I通过导体板时,在导体板的两侧面之间产生霍耳电压U H。
已知电流I与导体单位体积内的自由电子数n、电子电荷量e、导体横截面积S和电子定向移动速度v之间的关系为neSvI 。
实验中导体板尺寸、电流I和磁感应强度B保持不变,下列说法正确的是()A .导体内自由电子只受洛伦兹力作用B .U H 存在于导体的Z 1、Z 2两面之间C .单位体积内的自由电子数n 越大,U H 越小D .通过测量U H ,可用IU R =求得导体X 1、X 2两面间的电阻 【答案】C4.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab 是圆的直径。
一带电粒子从a 点射入磁场,速度大小为v 、方向与ab 成30°角时,恰好从b 点飞出磁场,且粒子在磁场中运动的时间为t ;若同一带电粒子从a 点沿ab 方向射入磁场,也经时间t 飞出磁场,则其速度大小为( )A .v 21B .v 32C .v 23D .v 23 【答案】C5.如图所示,空间存在一水平方向的匀强电场和匀强磁场,磁感应强度大小为B ,电场强度大小为q mgE 3=,且电场方向与磁场方向垂直。
(加练半小时)2018年高考物理(广东专用)一轮微专题复习第10章_磁场_微专题52_有答案
[方法点拨] (1)判断安培力的方向时,充分利用F 安⊥B ,F 安⊥I ;(2)受力分析时,要注意将立体图转化为平面图.1.(直线电流的磁场)真空中两根金属导线平行放置,其中一根导线中通有恒定电流.在导线所确定的平面内,一电子从P 点运动的轨迹的一部分如图1中的曲线PQ 所示,则一定是( )图1A .ab 导线中通有从a 到b 方向的电流B .ab 导线中通有从b 到a 方向的电流C .cd 导线中通有从c 到d 方向的电流D .cd 导线中通有从d 到c 方向的电流2.(磁场的叠加)分别置于a 、b 两处的长直导线垂直纸面放置,通有大小相等的恒定电流,方向如图2所示,a 、b 、c 、d 在一条直线上,且ac =cb =bd .已知c 点的磁感应强度大小为B 1,d 点的磁感应强度大小为B 2.若将b 处导线的电流切断,则( )图2A .c 点的磁感应强度大小变为12B 1,d 点的磁感应强度大小变为12B 1-B 2B .c 点的磁感应强度大小变为12B 1,d 点的磁感应强度大小变为12B 2-B 1C .c 点的磁感应强度大小变为B 1-B 2,d 点的磁感应强度大小变为12B 1-B 2D .c 点的磁感应强度大小变为B 1-B 2,d 点的磁感应强度大小变为12B 2-B 13.(磁场对电流的作用)如图3所示,磁感应强度大小为B 的匀强磁场方向斜向右上方,与水平方向所夹的锐角为45°.将一个34金属圆环ab 置于磁场中,圆环的圆心为O ,半径为r ,两条半径Oa 和Ob 相互垂直,且Oa沿水平方向.当圆环中通以电流I 时,圆环受到的安培力大小为( )图3A.2BIrB.32πBIrC .BIrD .2BIr4.(电流间的相互作用)(多选)如图4所示,无限长水平直导线中通有向右的恒定电流I ,导线正下方沿竖直方向固定一正方形线框,线框中也通有沿顺时针方向的恒定电流I ,线框的边长为L ,线框上边与直导线平行,且到直导线的距离也为L ,已知在长直导线的磁场中距长直导线r 处的磁感应强度大小为B =k Ir ,线框的质量为m ,则释放线框的一瞬间,线框的加速度可能为( )图4A .0 B.kI 2m -g C.kI 22m-g D .g -kI 2m5.(多选)如图5所示,在平面直角坐标系的第一象限内分布着非匀强磁场,磁场方向垂直纸面向里,沿y 轴方向磁场分布是不变的,沿x 轴方向磁感应强度与x 满足关系B =kx ,其中k 是一恒定的正数,由粗细均匀的同种规格导线制成的正方形线框ADCB 边长为a ,A 处有一极小开口AE ,整个线框放在磁场中,且AD 边与y 轴平行,AD 边与y 轴距离为a ,线框AE 两点与一电源相连,稳定时流入线框的电流为I ,关于线框受到的安培力情况,下列说法正确的是( )图5A .整个线框受到的合力方向与BD 连线垂直B .整个线框沿y 轴方向所受合力为0C .整个线框在x 轴方向所受合力为ka 2I ,沿x 轴正向D .整个线框在x 轴方向所受合力为34ka 2I ,沿x 轴正向6.如图6所示,一劲度系数为k 的轻质弹簧,下面挂有匝数为n 的矩形线框abcd ,bc 边长为l ,线框的下半部分处在匀强磁场中,磁感应强度大小为B ,方向与线框平面垂直(在图中垂直于纸面向里),线框中通以电流I ,方向如图所示,开始时线框处于平衡状态.令磁场反向,磁感应强度的大小仍为B ,线框达到新的平衡,则在此过程中线框位移的大小Δx 及方向是( )图6A .Δx =2nBIlk ,方向向上B .Δx =2nBIlk ,方向向下C .Δx =nBIlk,方向向上D .Δx =nBIlk,方向向下7.如图7所示,长为L ,质量为m 的细导体棒a 被水平放置在倾角为45°的光滑斜面上,无限长直导线b 被水平固定在与a 同一水平面的另一位置,且a 、b 平行,它们之间的距离为x ,当a 、b 中均通以电流强度为I 的同向电流时,a 恰能在斜面上保持静止.已知无限长直导线周围的磁场为一系列的同心圆,周围某点的磁场的磁感应强度与该点到导线的距离成反比.则下列说法正确的是( )图7A .a 、b 中电流必垂直纸面向里B .b 中的电流在a 处产生的磁场的磁感应强度大小为2mg2ILC .若将b 适当上移以增大x ,则导体棒仍可能静止D .无论将b 上移还是下移,导体棒都可能处于静止状态8.如图8所示,空间中有垂直纸面向里的匀强磁场,一不可伸缩的软导线绕过纸面内的小动滑轮P (可视为质点),两端分别拴在纸面内的两个固定点M 、N 处,并通入由M 到N 的恒定电流I ,导线PM 和PN 始终伸直.现将P 从左侧缓慢移动到右侧,在此过程中导线MPN 受到的安培力大小( )图8A.始终不变B.逐渐增大C.先增大后减小D.先减小后增大答案精析1.C2.A [c 点的磁场是分别置于a 、b 两处的长直导线中的电流产生的.由安培定则可知分别置于a 、b 两处的长直导线在c 点产生的磁场方向相同,磁感应强度大小均为B 12.由对称性可知,b 处的长直导线在d 点产生的磁场的磁感应强度大小为B 12,方向向下.a 处的长直导线在d 点产生的磁场的磁感应强度大小为B 12-B 2,方向向上.若将b 处导线的电流切断,则c 点的磁感应强度大小变为12B 1,d 点的磁感应强度大小变为12B 1-B 2,选项A 正确.]3.A [连接题图中a 、b 两点,由几何关系知ab 连线与磁场方向垂直,故金属圆环在磁场中所受安培力的等效长度为2r ,则所受安培力为2BIr ,A 项正确.]4.AC [线框上边所在处的磁感应强度大小为B 1=k IL ,由安培定则可判断出线框所在处磁场方向为垂直纸面向里,所受安培力的大小为F 1=B 1IL =kI 2,由左手定则可判断出安培力方向向上;线框下边所在处的磁感应强度大小为B 2=k I 2L ,所受安培力的大小为F 2=B 2IL =12kI 2,由左手定则可判断出安培力方向向下;若F 1=F 2+mg ,则加速度为零,选项A 正确.若F 1>F 2+mg ,则加速度方向向上,由F 1-(F 2+mg )=ma ,解得a =kI 22m -g ,选项C 正确,B 错误.若F 1<F 2+mg ,则加速度方向向下,由F 2+mg -F 1=ma ,解得a =g -kI 22m ,选项D错误.]5.BC [由于沿y 轴方向磁场分布是不变的,故而整个线框沿y 轴方向所受合力为0,B 正确;沿x 轴方向磁感应强度与x 满足关系B =kx ,AD 边受到的向左的安培力小于BC 边受到的向右的安培力,故而整个线框受到的合力方向沿x 轴正向,A 错误;整个线框在x 轴方向所受合力为k (a +a )Ia -(ka )Ia =ka 2I ,C 正确,D 错误.] 6.B [线框在磁场中受重力、安培力和弹簧弹力处于平衡状态,安培力为F A =nBIl ,且开始时方向向上,改变磁场方向后方向向下,大小不变.设在磁场反向之前弹簧的伸长量为x ,则反向之后弹簧的伸长量为x +Δx ,由平衡条件知kx +nBIl =mg 及k (x +Δx )=nBIl +mg ,联立解得Δx =2nBIl k ,且线框向下移动,B 对.]7.C [因a 恰能在斜面上保持静止,其受力如图甲所示,而由平行通电直导线之间的相互作用可知,电流同向时导线相互吸引,电流反向时导线相互排斥,故A 错;由图甲知tan 45°=mg BIL ,即B =mgIL ,B 错;无论b 是上移还是下移,b 中的电流在a 处产生的磁场的磁感应强度均减小,上移时其重力mg 、安培力BIL 、斜面支持力F N 满足图乙所示关系,支持力逐渐减小,安培力减小,但两个力的合力仍可能等于重力,即a 仍可能处于静止状态,C 对;当b 下移时,安培力在减小,而支持力方向不变,则a 所受合力不可能为零,即a 不可能处于静止状态,D错.]8.A[在P从左侧缓慢移动到右侧的过程中,导线MPN受到的安培力可等效为直导线MN通入电流I时受到的安培力,即导线MPN受到的安培力大小始终不变,A正确.]。
2018高考物理大一轮复习领航课件:第九章 磁场-第1节
切线 闭合
强弱
相交 中断
BIL
电流
拇指
√ ×
× × ×
√
原因(电流方向 结果(磁场绕向
)Leabharlann )直线电流的磁场 大拇指
四指
环形电流的磁场
四指
大拇指
结论法
主干回顾 夯基固源 考点透析 题 组 冲关
课 时 规 范训练
第1节 磁场的描述、磁场对电流的作用
磁力
N极 特斯拉
切线
直线电 流的磁场 通电螺线管的磁场
无磁极、非匀强 特点 且距导线 越远
处 磁场越弱
与条形磁铁的磁场 相似,管内为匀强 磁场且磁场最强, 管外为非匀强磁场
环 形电流的磁场
同向电流互相吸引,异向电流互相排斥;两不 平行的直线电流相互作用时,有转到平行且电 流方向相同的趋势
定性分析磁体在电流磁场作用下如何运动或运 动趋势的问题,可先分析电流在磁体磁场中所 转换研究对象法 受的安培力,然后由牛顿第三定律,确定磁体 所受电流磁场的作用力,从而确定磁体所受合 力及运动方向
课时规范训练
专题11 电磁感应-2018年高考物理备考优生百日闯关系列(原卷版)
第一部分 名师综述近年来高考对本考点内容考查命题频率极高的是感应电流的产生条件、方向判定和导体切割磁感线产生的感应电动势的计算,且要求较高.几乎是年年有考;其他像电磁感应现象与磁场、电路和力学、电学、能量及动量等知识相联系的综合题及图像问题在近几年高考中也时有出现;另外,该部分知识与其他学科的综合应用也在高考试题中出现。
试题题型全面,选择题、填空题、计算题都可涉及,尤其是难度大、涉及知识点多、综合能力强,多以中档以上题目出现来增加试题的区分度,而选择和填空题多以中档左右的试题出现,这类问题对学生的空间想象能力、分析综合能力、应用数学知识处理物理问题的能力有较高的要求,是考查考生多项能力的极好载体,因此历来是高考的热点。
第二部分 精选试题一、选择题1.如图所示,正方形线框的边长为L ,电容器的电容为C 。
正方形线框的一半放在垂直于纸面向里的匀强磁场中,在磁场以变化率k 均为减弱的过程中 ( )A .线框产生的感应电动势大小为kL 2B .电压表的读数为22kl C .a 点的电势高于b 点的电势D .电容器所带的电荷量为零2.如图所示,平行于y 轴的导体棒以速度v 向右做匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀强磁场区域,导体棒中的感应电动势E 与导体棒位置x 关系的图像是 ( )A.B.C.D.3.如图所示,匀强磁场区域宽度为l,现有一边长为d(d>l)的矩形金属框以恒定速度v向右通过磁场区域,该过程中有感应电流的时间总共为()A. B. C. D.4.青藏铁路刷新了一系列世界铁路的历史纪录,青藏铁路火车上多种传感器运用了电磁感应原理,有一种电磁装置可以向控制中心传输信号以确定火车位置和运动状态,原理是将能产生匀强磁场的磁铁,安装在火车首节车厢下面,俯视如图甲所示,当它经过安放在两铁轨间的线圈时,便产生一个电信号,被控制中心接收到,当火车通过线圈时,若控制中心接收到的线圈两端的电压信号为图乙所示,则说明火车在做 ( )A .匀速直线运动B .匀加速直线运动C .匀减速直线运动D .加速度逐渐加大的变加速直线5.如图所示,平行金属导轨的间距为d ,一端跨接一阻值为R 的电阻,匀强磁场的磁感应强度为B ,方向垂直于导轨所在平面向里,一根长直金属棒与导轨成60°角放置,且接触良好,则当金属棒以垂直于棒的恒定速度v 沿金属导轨滑行时,其他电阻不计,电阻R 中的电流为 ( )A. 060sin R Bdv B. R Bdv C. R Bdv 060sin D. R Bdv 060cos6.如图甲所示,在竖直向上的磁场中,水平放置一个单匝金属圆线圈,线圈所围的面积为0.1 m 2,线圈电阻为1 Ω,磁场的磁感应强度大小B 随时间t 的变化规律如图乙所示,规定从上往下看顺时针方向为线圈中感应电流i 的正方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考物理备考中等生百日捷进提升专题10磁场第一部分 特点描述本章内容包括磁场的基本性质和安培定则、左手定则的应用、安培力的应用、洛伦兹力和带电粒子在磁场中的运动、带电粒子在复合场中的运动等内容,基本概念多且非常抽象,需要熟练掌握磁场的基本概念,掌握用磁感线描述磁场的方法,以及电流、带电粒子在磁场中的受力和运动情况,结合牛顿运动定律、运动学知识、圆周运动知识及功能关系等知识进行综合分析.历年高考对本考点知识的考查覆盖面大,几乎每个知识点都考查到。
特别是左手定则的运用和带电粒子在磁场中的运动更是两个命题频率最高的知识点.带电粒子在磁场中的运动考题一般运动情景复杂、综合性强,多以把场的性质、运动学规律、牛顿运动定律、功能关系及交变电流等有机结合的计算题出现,难度中等偏上,对考生的空间想象能力、物理过程和运动规律的综合分析能力及用数学方法解决物理问题的能力要求较高。
从近两年高考看,涉及本考点的命题常以构思新颖、高难度的压轴题形式出现,在复习中要高度重视。
特别是带电粒子在复合场中的运动问题在历年高考中出现频率高,难度大,经常通过变换过程情景、翻新陈题面貌、突出动态变化的手法,结合社会、生产、科技实际来着重考查综合分析能力、知识迁移和创新应用能力。
情景新颖、数理结合、联系实际将是本考点今年高考命题的特点。
第二部分 知识背一背 一、洛伦兹力:1、产生洛伦兹力的条件:(1)电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. (2)电荷的运动速度方向与磁场方向不平行.2、洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力为零;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,等于qvB ;3、洛伦兹力的方向:洛伦兹力方向用左手定则判断4、洛伦兹力不做功.二、带电粒子在匀强磁场的运动 1、带电粒子在匀强磁场中运动规律 初速度的特点与运动规律(1)000==F v ,,为静止状态;(2)0//0=F B v ,,则粒子做匀速直线运动;(3)qvB F B v =⊥,0,则粒子做匀速圆周运动,其基本公式为:向心力公式:Rv m Bqv 2=运动轨道半径公式:Bqm v R =; 运动周期公式:BqmT π2=动能公式:()mBqR mv E k 22122== 2、解题思路及方法 圆周运动的圆心的确定:(1)利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心.(2)利用圆上弦的中垂线必过圆心的特点找圆心 三、带电体在复合场或组合场中的运动.复合场是指重力场、电场和磁场三者或其中任意两者共存于同一区域的场;组合场是指电场与磁场同时存在,但不重叠出现在同一区域的情况.带电体在复合场中的运动(包括平衡),说到底仍然是一个力学问题,只要掌握不同的场对带电体作用的特点和差异,从分析带电体的受力情况和运动情况着手,充分发掘隐含条件,建立清晰的物理情景,最终把物理模型转化成数学表达式,即可求解.解决复合场或组合场中带电体运动的问题可从以下三个方面入手:1、动力学观点(牛顿定律结合运动学方程);2、能量观点(动能定理和机械能守恒或能量守恒);3、动量观点(动量定理和动量守恒定律).一般地,对于微观粒子,如电子、质子、离子等不计重力,而一些实际物体,如带电小球、液滴等应考虑其重力.有时也可由题设条件,结合受力与运动分析,确定是否考虑重力. 四、带电粒子在复合场中运动的应用实例 1.电视显像管电视显像管是应用电子束磁偏转的原理来工作的,使电子束偏转的磁场是由两对偏转线圈产生的.显像管工作时,由阴极发射电子束,利用磁场来使电子束偏转,实现电视技术中的扫描,使整个荧光屏都在发光. 2.速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出 来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是BE v qvB qE ==,即。
3.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极.(3)磁流体发电机两极板间的距离为l ,等离子体速度为v ,磁场的磁感应强度为B ,则由qvB lUq qE ==得两极板间能达到的最大电势差Blv U =. 4.电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:dUqqE qvB ==,所以Bd U v =,因此液体流量BdUSv Q 4π==。
5.霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.第三部分 技能+方法 一、带电粒子在磁场中的运动解析带电粒子在磁场中运动的问题,应画出运动轨迹示意图,确定轨迹圆的圆心是关键.常用下列方法确定圆心:①已知轨迹上某两点速度方向,作出过两点的速度的垂线,两条垂线的交点即圆心;②已知轨迹上两个点的位置,两点连线的中垂线过圆心.带电粒子在磁场中运动侧重于运用数学知识(圆与三角形知识)求解,带电粒子在磁场中偏转的角度、初速度与磁场边界的夹角往往是解题的关键,角度是确定圆心、运动方向的依据,更是计算带电粒子在磁场中运动时间的桥梁,如带电粒子在磁场中运动的时间为T t πα2=(α是圆弧对应的圆心角).带电粒子在磁场中的运动半径不仅关联速度的求解,而且在首先确定了运动半径的情况下,可利用半径发现题中隐含的几何关系.【例1】如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据求:带电粒子的比荷及带电粒子在磁场中运动的周期【答案】334tπ本题考查带电粒子在磁场中的偏转,画出粒子的运动轨迹,先找圆心后求得半径,洛伦兹力提供向心力求得荷质比,轨迹所对应圆心角为60°,运动时间为周期的六分之一【例2】如图所示,一个板长为L ,板间距离也是L 的平行板容器上极板带正电,下极板带负电。
有一对质量均为m ,重力不计,带电量分别为+q 和-q 的粒子从极板正中水平射入(忽略两粒子间相互作用),初速度均为v 0。
若-q 粒子恰能从上极板边缘飞出,求:(1)两极板间匀强电场的电场强度E 的大小和方向 (2)-q 粒子飞出极板时的速度v 的大小与方向(3)在极板右边的空间里存在着垂直于纸面向里的匀强磁场,为使得+q 粒子与-q 粒子在磁场中对心正碰(碰撞时速度方向相反),则磁感应强度B 应为多少?【答案】 (1)20mv E qL=,方向竖直向下(20 ;450(3)02mv B qL =(2)(6分)设粒子飞出板时水平速度为v x ,竖直速度为v y ,水平偏转角为……………………………….………………………………………………..⑤(1分)……………………….………..…………………………………..⑥(1分)……………………….………..…………………………………………..⑦(1分)……………………….…………………………………………………⑧(1分)由④⑤⑥⑦⑧式可得,….………………………………………⑨(2分)(⑤⑥⑦联合列式且正确者得3分)(3)(6分)由于+q粒子在电场中向下偏转,且运动轨迹与-q粒子对称,它飞出下极板时速度大小与偏转角和-q 粒子相同,进入磁场后它们均做圆周运动,为了使它们正碰,只须,轨迹如图所示(正确画出轨迹图可得2分)二、带电粒子在复合场中的运动问题1.是否考虑粒子重力(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力.(2)在题目中有明确说明是否要考虑重力的,按题目要求处理.(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力.2.分析方法(1)弄清复合场的组成.如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等.(2)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(4)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.3.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因F洛不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因F洛不做功,可用能量守恒或动能定理求解问题.4.带电粒子在复合场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.【例3】如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。
空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。
匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q g为重力加速度。
(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离。
【答案】(1x轴方向夹角45°;(2(3【解析】(1)由题意知小球做匀速直线运动(2分)受力分析如图2分)(1分) 方向如图,斜向下与x 轴方向夹角45° (1分)(3)设小球运动到最低位置时下落高度为H ,此时速度最大为v 0,方向水平 (2分) 任意时刻v 沿x 轴正向、y 轴负向的分速度分别为v x ,v y.。