三角形单元测试(一)(人教版)(含答案)
人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。
人教版八年级上册数学《三角形》单元检测卷(含答案)

人教版数学八年级上学期《三角形》单元测试(满分:100分 时间:35分钟)一、单选题(共15小题,每小题3分)1.(2019·安图县第三中学初二期中)下列说法中错误的是( )A .一个三角形中至少有一个角不小于60°B .直角三角形只有一条高C .三角形的中线不可能在三角形外部D .三角形的中线把三角形分成面积相等的两部分2.(2018·青海初三中考真题)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E =90∘,∠C =90∘,∠A =45∘,∠D =30∘,则∠1+∠2等于( )A .150∘B .180∘C .210∘D .270∘3.(2019·浙江初三中考真题)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .84.(2018·吉林初三中考真题)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°5.(2019·四川初三中考真题)如图,//BD EF ,AE 与BD 交于点C ,3075B A ∠∠=,=,则E ∠的度数为( )A.135?B.125C.115?D.1056.(2017·辽宁首山第二初中初一期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.77.(2018·辽宁初三中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°8.(2019·黑龙江初三中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°9.(2019·浙江初三中考真题)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,1110.(2018·河北初三中考真题)下列图形具有稳定性的是()A.B.C.D.11.(2017·甘肃初三中考真题)11.(2017·甘肃初三中考真题)已知a、b、c是△ABC的三条边长,化简|a+b -c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.012.(2015·四川初三中考真题)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.13.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm14.(2018·黑龙江初三中考真题)一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10△中,若一个内角等于另外两个角的差,则( ) 15.(2019·浙江初三中考真题)在ABCA.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒二、填空题(共7小题,每小题3分)16.(2018·黑龙江初三中考真题)三角形三边长分别为3,2a−1,4.则a的取值范围是______.17.(2018·四川初三中考真题)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=_____.18.(2019·贵州初三中考真题)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC与点D,连结AD,若∠B=40°,∠C=36°,则∠DAC的度数是____________.19.(2019·湖南初三中考真题)如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2=____________度.20.(2019·湖南初三中考真题)如图,直线a ,b 被直线c ,d 所截.若a b ∥,1130︒∠=,230︒∠=,则3∠的度数为___度.21.(2018·贵州初三中考真题)(题文)如图,m ∥n ,∠1=110°,∠2=100°,则∠3=_______°.22.(2019·北京初三中考真题)如图,已知△ABC ,通过测量、计算得△ABC 的面积约为____cm 2.(结果保留一位小数)三、解答题(共4小题,共计34分)23.(8分)(2019·江西南屏中学初二月考)(8分)如图,在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB .计算:(1)若∠A=60°,求∠BOC 的度数;(2)若∠A=100°,则∠BOC 的度数是多少?(3)若∠A=120°,则∠BOC 的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.24.(8分)(2018·湖北初三中考真题)(9分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.25.(9分)(2018·山东初三中考真题)(9分)已知:如图,△ABC 是任意一个三角形,求证:∠A +∠B +∠C =180°.26.(9分)(2019·江苏初三中考真题)(9分)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.参考答案一、单选题(共15小题,每小题3分)1.(2019·安图县第三中学初二期中)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【答案】B【解析】分别根据三角形内角和定理、中线和高对各选项进行逐一分析即可.【详解】、因为三角形的内角和等于180°,所以一个三角形中至少有一个角不少于60°,故A选项正确,直角三角形有三条高,故B选项错误,三角形的中线一定在三角形的内部,故C选项正确,三角形的中线把三角形分成等底等高的两个三角形,故面积相等,故D选项正确,故选B.【点睛】本题考查了三角形的内角和定理、中线和高,熟知三角形的内角和等于180°是解答此题的关键.2.(2018·青海初三中考真题)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90∘,∠C=90∘,∠A=45∘,∠D=30∘,则∠1+∠2等于()A.150∘B.180∘C.210∘D.270∘【答案】C【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA =∠COP ,∠EPB =∠CPO ,∴∠1+∠2=∠D +∠E +∠COP +∠CPO=∠D +∠E +180∘−∠C=30∘+90∘+180∘−90∘=210∘,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.3.(2019·浙江初三中考真题)若长度分别为的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8【答案】C【解析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.(2018·吉林初三中考真题)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°【答案】C【解析】【分析】根据三角形内角和得出∠ACB ,利用角平分线得出∠DCB ,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,,3,5a∵CD 平分∠ACB 交AB 于点D ,∴∠DCB=12×78°=39°, ∵DE ∥BC ,∴∠CDE=∠DCB=39°,故选C .【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.5.(2019·四川初三中考真题)如图,,AE 与BD 交于点C ,,则的度数为( )A .B .C . D【答案】D 度数,再利用平行线的性质分析得出答案.【详解】解,.故选:D . 【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.(2017·辽宁首山第二初中初一期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .//BD EF 3075B A ∠∠=,=E ∠135?115?105【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.7.(2018·辽宁初三中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【答案】D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.8.(2019·黑龙江初三中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【答案】B【解析】根据角平分线的定义得到∠EBM=∠ABC、∠ACM,根据三角形的外角性质计算即可.【详解】解:∵BE是∠ABC的平分线,∴∠∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM ,则∠BEC=∠ECM-∠EBM=×(∠ACM-∠∠A=30°, 故选:B . 【点睛】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.(2019·浙江初三中考真题)下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,11 【答案】B【解析】根据三角形的三边关系即可求解.【详解】AB 选项,,,两边之各大于第三边,两边之差小于第三边,故能组成三角形C 选项,,两边之和小于第三边,故不能组成三角形D 选项,,两边之和不大于第三边,故不能组成三角形故选:B .【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边.10.(2018·河北初三中考真题)下列图形具有稳定性的是( )A .B .C .D .【答案】A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键. 11.(2017·甘肃初三中考真题)11.(2017·甘肃初三中考真题)已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )ABC △3045︒60︒A.2a+2b-2c B.2a+2b C.2c D.0【答案】D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.12.(2015·四川初三中考真题)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.【答案】D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高. 考点:三角形的高13.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( ) A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【答案】C【解析】根据三角形任意两边的和大于第三边,进行分析判断即可.【详解】A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形,故选C.【点睛】本题考查了三角形构成条件,熟练掌握三角形三边关系是解题的关键. 14.(2018·黑龙江初三中考真题)一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10【答案】D【解析】【分析】由多边形的外角和为360°结合每个外角的度数,即可求出n值,此题得解.【详解】∵一个正n边形的每一个外角都是36°,∴n=360°÷36°=10,故选D.【点睛】本题考查了多边形的外角,熟记多边形的外角和为360度是解题的关键. 15.(2019·浙江初三中考真题)中,若一个内角等于另外两个角的差,则( ) A.必有一个角等于BC.必有一个角等于D【答案】D【解析】先设三角形的两个内角分别为x,y,则可得(180°-x-y),再分三种情况讨论,即可得到答案. 【详解】设三角形的一个内角为x,另一个角为y,则三个角为(180°-x-y),则有三种情况:②③综上所述,必有一个角等于90°故选D.【点睛】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.二、填空题(共7小题,每小题3分)16.(2018·黑龙江初三中考真题)三角形三边长分别为3,2a−1,4.则a的取值范围是______.【答案】1<a<4【解析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.EB C【详解】∵三角形的三边长分别为3,2a −1,4,∴4−3<2a −1<4+3,即1<a <4,故答案为:1<a <4.【点睛】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系.17.(2018·四川初三中考真题)如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=_____.【答案】40°【解析】先根据角平分线的定义得到∠OBC=12∠ABC ,∠OCB=12∠ACB ,再根据三角形内角和定理得∠BOC+∠OBC+∠OCB=180°,则∠BOC=180°﹣12(∠ABC+∠ACB),由于∠ABC+∠ACB=180°﹣∠A ,所以∠BOC=90°+12∠A ,然后把∠BOC=110°代入计算可得到∠A 的度数. 【详解】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,而∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣12(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A ,∴∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A , 而∠BOC=110°,∴90°+12∠A=110°∴∠A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.18.(2019·贵州初三中考真题)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC与点D,连结AD,若∠B=40°,∠C=36°,则∠DAC的度数是____________.【答案】34°【解析】根据作图过程得BD=BA,在根据已知条件即可得出∠DAC的角度.【详解】由作图过程可知BD=BA,∵∠B=40°,∴∠BDA=∠-∠B)=70°,∴∠DAC=∠BDA-∠C=70°-36°=34°.故答案为34°.【点睛】本题考查了三角形与圆的相关知识点,解题的关键是熟练的掌握三角形与圆的应用. 19.(2019·湖南初三中考真题)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=____________度.【答案】52【解析】根据平行线的性质可得∠OED=∠2,再根据∠O=90°,∠1=∠OED+∠O=142°,即可求得答案. 【详解】∵AB∥CD,∴∠OED=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OED+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为:52.【点睛】本题考查了平行线的性质,垂直的定义,三角形外角的性质,熟练掌握相关知识是解题的关键. 20.(2019·湖南初三中考真题)如图,直线a ,b 被直线c ,d 所截.若,,,则的度数为___度.【答案】100【解析】直接利用平行线的性质结合三角形外角的性质得出答案.【详解】,,,,, ,解得, 故答案为:100.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关性质是解题的关键.注意数形结合思想的应用.21.(2018·贵州初三中考真题)(题文)如图,m ∥n ,∠1=110°,∠2=100°,则∠3=_______°.CAF BAE ∠=∠EF G EF BC=28ACB ∠=︒FGC ∠【答案】150【解析】分析:两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.详解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°-∠4-∠5=30°,∴∠3=180°-∠6=150°,故答案为:150.点睛:本题主要考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.22.(2019·北京初三中考真题)如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)【答案】1.9【解析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC 的面积.【详解】解:过点C 作CD ⊥AB 的延长线于点D ,如图所示.经过测量,AB=2.2cm ,CD=1.7cm ,2).故答案为:1.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.三、解答题(共4小题,共计34分)23.(8分)(2019·江西南屏中学初二月考)(8分)如图,在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB .计算:(1)若∠A=60°,求∠BOC 的度数;(2)若∠A=100°,则∠BOC 的度数是多少?(3)若∠A=120°,则∠BOC 的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.【答案】(1)120°;(2)140°;(3)150°;(4)90°+12∠A . 【解析】1)根据角平分线的定义和三角形的内角和定理求出∠OBC+∠OCB 的值,再利用三角形的内角和定理求出∠BOC 的值;(2)先根据角平分线的定义得到∠OBC=12∠ABC ,∠OCB=12∠ACB ,再根据三角形内角和定理得到∠BOC=180°-(∠OBC+∠OCB),∠ABC+∠ACB=180°-∠A ,则∠BOC=180°-12(180°-∠A)=90°+12∠A ,然后把∠A 的度数代入计算即可;(3)同(2)的计算方法;(4)根据(1)(2)(3)的结论即可得到结果.【详解】(1)∵BO 、CO 分别平分∠ABC 和∠ACB ,∠A=60°,∴∠CBO+∠BCO=12(180°﹣∠A)=12(180°﹣60°)=60°, ∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°; (2)同理,若∠A=100°,则∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A=140°;(3)同理,若∠A=120°,则∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A=150°; (4)由(1)、(2)、(3),发现:∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A .【点睛】本题考查了三角形内角和定理.第一,第二、第三问是解决第四问发现规律的基础,因而总结前三问中的基本解题思路是解题的关键.24.(8分)(2018·湖北初三中考真题)(9分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.【答案】(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°. 详解:(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.25.(9分)(2018·山东初三中考真题)(9分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【答案】证明见解析【解析】分析:过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.26.(9分)(2019·江苏初三中考真题)(9分)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点(1)求证;(2)若,,求的度数.【答案】(1)证明见解析;(2)78°.【解析】(1)因为,所以有,又因为,所以有,得到;(2)利用等腰三角形ABE内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得,从而算出∠FGC【详解】【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键。
人教版数学八年级上学期《三角形》单元检测题(带答案)

(2)当E在A D上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1.下列各组中的三条线段能组成三角形的是()
A.3,4,8B.5,6,11C.5,6,10D.4,4,8
点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边.由此可以得到A>3,A<7,因此可以判断A-3和A-7的正负情况.此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零.由此可化简|A-3|+|A-7|
[结束]
10.如图,把△A B C纸片沿DE折叠,当点A在四边形B C DE的外部时,记∠AEB为∠1,∠A D C为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()
A. 10°B. 15°C. 20°D. 25°
[答案]B
[解析]
试题分析:根据三角形的外角的性质可得,∠A+45°=60°,解得∠A=15°.
故选B.
考点:三角形的外角的性质.
7.下列度数不可能是多边形内角和的是()
A.360°B.720°
C.810°D.2 160°
[答案]C
[解析]
试题分析:多边形内角和公式为(n-2)×180°,可将四个选项代入公式,计算出n为正整数就是多边形内角和,若不是则说明不是多边形的内角和.经计算可得810°除以180°等于4.5不是整数,所以810°不是多边形的内角和.故选C
二、填空题(每小题3分,共18分)
11.如图,共有______个三角形.
12.如图,点B,C,E,F 一直线上,A B∥D C,DE∥GF,∠B=∠F=72°,则∠D=_____度.
人教版八年级上学期数学《三角形》单元测试题(含答案)

人教版八年级上册《三角形》单元测试卷满分:100分时间:90分钟一.选择题(共12小题)1.三角形按边可分为()A .等腰三角形,直角三角形,锐角三角形B .直角三角形,不等边三角形C .等腰三角形,不等边三角形D .等腰三角形,等边三角形2.若三角形两边长分别是4、5,则第三边C 的范围是()A .1<C <9B .9<C <14 C .10<C <18D .无法确定3.如图在△A B C 中,∠A C B >90°,A D ⊥B D ,B E⊥A E,C F⊥A B ,垂足分别是点D 、E、F,则下列说法错误的是()A .A D 是△AB D 的高 B .C F是△A B C 的高C .B E是△A B C 的高D .B C 是△B C F的高4.已知:如图,A D 是△A B C 的角平分线,A E是△A B C 的外角平分线,若∠D A C =20°,问∠EA C =()A .60°B .70°C .80°D .90°5.可以把三角形分成两个面积相等的三角形的是()A .三角形的中线B .三角形的高线第4题C .三角形的角平分线D .三角形一边的垂线6.在现实的生产、生活中有以下四种情况:①用“人”字梁建筑屋顶;②自行车车梁是三角形结构;③用窗钩来固定窗扇;④商店的推拉防盗铁门.其中用到三角形稳定性的是()A .①②B .②③C .①②③D .②③④7.在△A B C 中,O为∠C A B 和∠C B A 的角平分线的交点,若∠A OB =120°,则∠C 的度数为()A .120°B .60°C .50°D .308.如图,对任意的五角星,结论正确的是()A .∠A +∠B +∠C +∠D +∠E=90° B .∠A +∠B +∠C +∠D +∠E=180°C .∠A +∠B +∠C +∠D +∠E=270° D .∠A +∠B +∠C +∠D +∠E=360°9.直角三角形中有一锐角为15°,则另一锐角为()A .85°B .75°C .15°D .90°第8题10.角度是多边形的内角和的是()A .1900°B .1800°C .560°D .270°11.若正多边形的一个外角等于45°,那么这个正多边形的内角和等于()A .1 080°B .720°C .540°D .360°12.已知△A B C 的三边长分别是A 、B 、C ,化简|A +B ﹣C |﹣|B ﹣A ﹣C |的结果是()A .2AB .﹣2BC .2(A +B )D .2(B ﹣C )二.填空题(共4小题)13.如图所示,其中∠1=°.14.如图所示,求∠D +∠E+∠F+∠G+∠M+∠N=.第13题第14题第15题15.如图,在△A B C 中,A D ⊥B C 于D ,A E为∠B A C 的平分线,且∠D A E=15°,∠B =35°,则∠C =°.16.如图,在△A B C 中,∠A =m°,∠A B C 和∠A C D 的平分线交于点A 1,得∠A 1,∠A 1B C 和∠A 1C D 的平分线交于点A 2,得∠A 1…;求∠A 2014=.三.解答题(共8小题)17.已知:在△A B C 中,∠A +∠B =2∠C ,∠A ﹣∠B =20°,求三角形三个内角的度数.18.已知等腰三角形A B C 中,一腰A C 上的中线B D 将三角形的周长分成9C m和15C m两部分,求这个三角形的腰长和底边的长.19.已知:△A B C 中,B C =2C m,A B =8C m,A C 的长度是奇数,求△A BC 的周长.20.如图,△A B C 中,∠1=∠2,∠3=∠4,∠5=∠6.∠A =60°.求∠EC F、∠FEC 的度数.21.如图,在△A B C C 中,∠A C B =90°,C D ⊥A B ,A F 是角平分线,交C D 于点E .求证:∠1=∠2.22.如图所示,△A B C 中,∠B :∠C =3:4,FD ⊥B C ,D E ⊥A B ,且∠A FD=146°,求∠ED F 的度数.23.如图,A D 、A E 分别为△A B C 的高和角平分线,∠B =35°,∠C =45°,求∠D A E 的度数. 24.(1)如图1,点P 为△A B C 的内角平分线B P 与C P 的交点,求证:∠B PC =90°+21∠A ; (2)如图2,点P 为△A B C 内角平分线B P 与外角平分线C P 的交点,请直接写出∠B PC 与∠A 的关系;(3)如图3,点P 是△A B C 的外角平分线B P 与C P 的交点,请直接∠B PC 与∠A 的关系.参考答案一.选择题(共12小题)1.三角形按边可分为()A .等腰三角形,直角三角形,锐角三角形B .直角三角形,不等边三角形C .等腰三角形,不等边三角形D .等腰三角形,等边三角形[分析]三角形按边分类即有三条边都不相等和有两条边相等,所以分为了不等边三角形和等腰三角形.等边三角形是特殊的等腰三角形.[解答]解:三角形按边分类分为不等边三角形和等腰三角形.故选C .2.若三角形两边长分别是4、5,则第三边C 的范围是()A .1<C <9B .9<C <14 C .10<C <18D .无法确定[分析]直接利用三角形的三边关系进而得出答案.[解答]解:∵三角形两边长分别是4、5,∴第三边C 的范围是:5﹣4<C <4+5,则1<C <9.故选:A .3.如图在△A B C 中,∠A C B >90°,A D ⊥B D ,B E⊥A E,C F⊥A B ,垂足分别是点D 、E、F,则下列说法错误的是()A .A D 是△AB D 的高 B .C F是△A B C 的高C .B E是△A B C 的高D .B C 是△B C F的高[分析]根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.[解答]解:A 、A D 是△A B D 的高正确,故本选项错误;B 、C F 是△A B C 的高正确,故本选项错误;C 、B E 是△A B C 的高正确,故本选项错误;D 、B C 是△B C F 的高错误,故本选项正确.故选:D .4.已知:如图,A D 是△A B C 的角平分线,A E 是△A B C 的外角平分线,若∠D A C =20°,问∠EA C =( )A .60°B .70°C .80°D .90°[分析]根据三角形的外角性质得到∠EA C =∠B +∠A C D ,求出∠EA C 的度数,根据角平分线的定义求出即可.[解答]解:∵A D 是△A B C 的角平分线,∠D A C =20°,∴∠B A C =2∠D A C =40°,∴∠B +∠A C D =140°,∴. 故选:B .5.可以把三角形分成两个面积相等的三角形的是( )A .三角形的中线B .三角形的高线C .三角形的角平分线D .三角形一边的垂线 [分析]三角形的中线把三角形分成面积相等的两个三角形.[解答]解:能够把一个三角形分成面积相等的两部分的线段是三角形的中线.()︒=∠+∠=∠=∠702121ACD B FAC EAC故选:A .6.在现实的生产、生活中有以下四种情况:①用“人”字梁建筑屋顶;②自行车车梁是三角形结构;③用窗钩来固定窗扇;④商店的推拉防盗铁门.其中用到三角形稳定性的是()A .①②B .②③C .①②③D .②③④[分析]根据生活常识对各小题进行判断即可得解.[解答]解:①用“人”字梁建筑屋顶,是利用三角形具有稳定性;②自行车车梁是三角形结构,是利用三角形具有稳定性;③用窗钩来固定窗扇,是利用三角形具有稳定性;④商店的推拉防盗铁门,不是利用三角形具有稳定性;综上所述,用到三角形稳定性的是①②③.故选:C .7.在△A B C 中,O为∠C A B 和∠C B A 的角平分线的交点,若∠A OB =120°,则∠C 的度数为()A .120°B .60°C .50°D .30[分析]根据三角形的内角和求得∠OA B +∠OB A ,利用角平分线的定义求得∠C A B +∠C B A ,利用三角形的内角和定理列式计算求得答案即可.[解答]解:∵∠C A B 与∠C B A 的平分线相交于O点,∴∠OA B +∠OB A =(∠A B C +∠B A C )=180°﹣120°=60°, ∴∠A B C +∠B A C =120°,∴∠C =180°﹣(∠A B C +∠B A C )=60°.故选:B .8.如图,对任意的五角星,结论正确的是( )A .∠A +∠B +∠C +∠D +∠E =90°B .∠A +∠B +∠C +∠D +∠E =180° C .∠A +∠B +∠C +∠D +∠E =270° D .∠A +∠B +∠C +∠D +∠E =360°[分析]根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D ,∠2=∠A +∠C ,根据三角形内角和定理得到答案.[解答]解:∵∠1=∠2+∠D ,∠2=∠A +∠C ,∴∠1=∠A +∠C +∠D ,∵∠1+∠B +∠E =180°,∴∠A +∠B +∠C +∠D +∠E =180°,故选:B .9.直角三角形中有一锐角为15°,则另一锐角为( )A .85°B .75°C .15°D .90°[分析]根据直角三角形中两个锐角互余即可得出答案.[解答]解:∵直角三角形中有一锐角为15°,根据直角三角形中两个锐角互余,∴另一锐角=90°﹣15°=75°,21故选:B .10.角度是多边形的内角和的是()A .1900°B .1800°C .560°D .270°[分析]根据多边形的内角和公式(n﹣2)•180°可知多边形的内角和是180°的倍数,然后找出各选项中180°的倍数的选项即可.[解答]解:多边形的内角和公式(n﹣2)•180°可知,多边形的内角和是180°的倍数,纵观各选项,只有1800°是180°的倍数,所以,角度是多边形的内角和的是1800°.故选:B .11.若正多边形的一个外角等于45°,那么这个正多边形的内角和等于()A .1 080°B .720°C .540°D .360°[分析]先根据多边形的外角和定理求出多边形的边数,再根据多边形的内角和公式求出这个正多边形的内角和.[解答]解:正多边形的边数为:360°÷45°=8,则这个多边形是正八边形,所以该多边形的内角和为(8﹣2)×180°=1080°.故选:A .12.已知△A B C 的三边长分别是A 、B 、C ,化简|A +B ﹣C |﹣|B ﹣A ﹣C |的结果是()A .2AB .﹣2BC .2(A +B )D .2(B ﹣C )[分析]先根据三角形三边关系判断出A +B ﹣C 与B ﹣A ﹣C 的符号,再把要求的式子进行化简,即可得出答案.[解答]解:∵△A B C 的三边长分别是A 、B 、C ,∴A +B >C ,B ﹣A <C ,∴A +B ﹣C >0,B ﹣A ﹣C <0,∴|A +B ﹣C |﹣|B ﹣A ﹣C |=A +B ﹣C ﹣(﹣B +A +C )=A +B ﹣C +B ﹣A ﹣C =2(B ﹣C );故选:D .二.填空题(共4小题)13.如图所示,其中∠1=145°.[分析]首先求得∠2,然后根据三角形的外角的性质即可求解.[解答]解:∠2=180°﹣100°=80°,∴∠1=65°+∠2=65°+80°=145°.故答案是:145°.14.如图所示,求∠D +∠E+∠F+∠G+∠M+∠N=360°.[分析]根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D +∠E=∠1,∠F+∠G=∠2,∠M+∠N=∠3,再根据三角形的外角和等于360°解答.[解答]解:如图,由三角形的外角性质得,∠D +∠E=∠1,∠F+∠G=∠2,∠M+∠N=∠3,∵△A B C 的外角和等于360°,即∠1+∠2+∠3=360°,∴∠D +∠E+∠F+∠G+∠M+∠N=360°.故答案为:360°.15.如图,在△A B C 中,A D ⊥B C 于D ,A E为∠B A C 的平分线,且∠D A E=15°,∠B =35°,则∠C =65°.[分析]利用三角形内角和定理求得∠A ED =75°;然后根据已知条件和三角形外角定理可以求得∠B A E 的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.[解答]解:如图,∵A D ⊥B C ,∴∠A D E =90°.又∵∠D A E =15°,∴∠A ED =75°.∵∠B =35°,∴∠B A E =∠A ED ﹣∠B =40°.又∵A E 为∠B A C 的平分线,∴∠B A C =2∠B A E =80°,∴∠C =180°﹣∠B ﹣∠B A C =65°.故答案是:65.16.如图,在△A B C 中,∠A =m °,∠A B C 和∠A C D 的平分线交于点A 1,得∠A 1,∠A 1B C 和∠A 1C D 的平分线交于点A 2,得∠A 1…;求∠A 2014= ()° .[分析]利用角平分线的性质、三角形外角性质,易证∠A 1=∠A ,进而可求∠A 1,由于∠A 1=∠A ,∠A 2=∠A 1=∠A ,…,以此类推可知∠A 2014∠A .[解答]解:∵A 1B 平分∠A B C ,A 1C 平分∠A C D ,∴∠A 1B C =∠A B C ,∠A 1C A =∠A C D , ∵∠A 1C D =∠A 1+∠A 1B C ,即∠A C D =∠A 1+∠A B C , 20142m21212121212121∴∠A 1=(∠A C D ﹣∠A B C ), ∵∠A +∠A B C =∠A C D ,∴∠A =∠A C D ﹣∠A B C ,∴∠A 1=∠A , ∠A 2=∠A 1∠A ,…, 以此类推可知∠ A 2014=∠A =°.故答案为:°.三.解答题(共8小题)17.已知:在△A B C 中,∠A +∠B =2∠C ,∠A ﹣∠B =20°,求三角形三个内角的度数.[分析]设∠B =x °,则∠A =x °+20,∠C =x °+10°,根据∠A +∠B +∠C =180°得出方程x +20+x +x +10=180,求出方程的解即可.[解答]解:∵在△A B C 中,∠A +∠B =2∠C ,∠A ﹣∠B =20°,∴设∠B =x °,∠A =x °+20,∴∠A +∠B =2x °+20°,∴∠C =x °+10°,∵∠A +∠B +∠C =180°,∴x +20+x +x +10=180解得:x =50212121则∠A =70°,∠B =50°,∠C =60°.18.已知等腰三角形A B C 中,一腰A C 上的中线B D 将三角形的周长分成9C m 和15C m 两部分,求这个三角形的腰长和底边的长.[分析]分腰长与腰长的一半是9C m 和15C m 两种情况,求出腰长,再求出底边,然后利用三角形的任意两边之和大于第三边进行判断即可.[解答]解:设腰长为xC m ,①腰长与腰长的一半是9C m 时,x +x =9, 解得x =6,所以,底边=15﹣×6=12, ∵6+6=12,∴6C m 、6C m 、12C m 不能组成三角形;②腰长与腰长的一半是15C m 时,x +x =15, 解得x =10, 所以,底边=9﹣×10=4, 所以,三角形的三边为10C m 、10C m 、4C m ,能组成三角形,综上所述,三角形的腰长为10C m ,底边为4C m .19.已知:△A B C 中,B C =2C m ,A B =8C m ,A C 的长度是奇数,求△A B C 的周长.[分析]根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围后,根据A C 的长度是奇数,求出周长即可.[解答]解:设第三边A C 是x ,∵B C =2C m ,A B =8C m21212121∴6<x <10.∴x =7、8或9.∵A C 的长度是奇数,∴A C =7C m 或9C m ,∴△A B C 的周长为:2+8+7=17(C m );2+8+9=19(C m ).20.如图,△A B C 中,∠1=∠2,∠3=∠4,∠5=∠6.∠A =60°.求∠EC F 、∠FEC 的度数.[分析]先根据三角形内角和定理及角平分线的性质求出∠2+∠3的度数,再由三角形外角的性质求出∠FEC 的度数;根据B 、C 、D 共线,∠3=∠4,∠5=∠6,可得出∠4+∠5=90°,故可求出∠EC F 的度数.[解答]解:∵∠A =60°,且∠1=∠2,∠3=∠4,∴∠2+∠3=(180°﹣∠A )=(180°﹣60°)=60°, ∵∠FEC 是△B C E 的外角,∴∠FEC =∠2+∠3=60°,又∵B 、C 、D 共线,∠3=∠4,∠5=∠6,∴∠4+∠5=90°;∴∠FC E =∠4+∠5=90°.21.如图,在△A B C C 中,∠A C B =90°,C D ⊥A B ,A F 是角平分线,交C D 于点E .求证:∠1=∠2.[分析]根据角平分线的定义可得∠C A F =∠B A F ,再根据直角三角形两锐互余列式证明即可.[解答]证明:∵A F 是角平分线,∴∠C A F =∠B A F ,∵∠A C B =90°,C D ⊥A B ,∴∠C A F +∠2=90°,∠B A F +∠A ED =90°,2121∴∠2=∠A ED ,∵∠1=∠A ED ,∴∠1=∠2.22.如图所示,△A B C 中,∠B :∠C =3:4,FD ⊥B C ,D E ⊥A B ,且∠A FD =146°,求∠ED F 的度数.[分析]根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C 的度数,然后求出∠B 的度数,再根据直角三角形两锐角互余求出∠B D E ,然后根据垂直的定义列式计算即可得解.[解答]解:∵∠A FD =146°,FD ⊥B C ,∴∠C =∠A FD ﹣∠FD C =146°﹣90°=56°,∵∠B :∠C =3:4,∴∠B =56=42°,∵D E ⊥A B ,∴∠B ED =90°,∴∠B D E =90°﹣42°=48°,∵∠B D E +∠ED F =90°,∴∠ED F =90°﹣∠B D E =90°﹣48°=42°.23.如图,A D 、A E 分别为△A B C 的高和角平分线,∠B =35°,∠C =45°,求∠D A E 的度数.[分析]根据三角形内角和定理求得∠B A C 的度数,则依据角平分线的定义求得角∠EA C ,然后在直角△AC D 中,求得∠D A C 的度数,则∠D A E =∠C A E ﹣∠D A C 即可求解.[解答]解:在△A B C 中,∵A E 平分∠B A C ,∴∠C A E =∠B A C , ∵∠B =35°,∠C =45°,21∴∠B A C =100°,∠D A C =45°,∴∠C A E =50°,∴∠D A E =∠C A E ﹣∠D A C =5°.24.(1)如图1,点P 为△A B C 的内角平分线B P 与C P 的交点,求证:∠B PC =90°+∠A ;(2)如图2,点P 为△A B C 内角平分线B P 与外角平分线C P 的交点,请直接写出∠B PC 与∠A 的关系;(3)如图3,点P 是△A B C 的外角平分线B P 与C P 的交点,请直接∠B PC 与∠A 的关系.[分析](1)先根据三角形内角和定理求出∠PB C +∠PC B 的度数,再根据角平分线的性质求出∠A B C +∠A CB 的度数,由三角形内角和定理即可求出答案.(2)根据角平分线的定义得∠PB C =∠A B C ,∠PC D =∠A C D ,再根据三角形外角性质得∠A C D =∠A +∠A B C ,∠PC D =∠PB C +∠P ,所以(∠A +∠A B C )=∠PB C +∠P =∠A B C +∠P ,然后整理可得∠P =∠A ; (3)根据题意得∠PB C =(∠A +∠A C B ),∠PC B =(∠A +∠A B C ),由三角形的内角和定理以及三角形外角的性质,求得∠P 与∠A 的关系,从而计算出∠P 的度数.[解答]证明:(1)∵∠PB C +∠B C P +∠B PC =180°,∵∠B PC =120°,∴∠A B C +∠A C B =60°,∵B P 、C P 是角平分线,21212121212121∴∠A B C =2∠PB C ,∠A C B =2∠B C P , ∵∠A B C +∠A C B +∠A =180°, ∴∠B PC =90°+∠A ; (2)∠P =∠A (3)∠P =90°﹣∠A 212121。
人教版八年级数学上册第1章三角形单元测试(含答案)

第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版八年级上学期数学《三角形》单元测试卷含答案

[答案]8
[解析]
试题分析:因为A B=A C,A D⊥B C,所以B D=C D,因为△A B C 周长为32 ,所以A C+C D= 32 =16,又因为△A C D的周长为24,所以A D=" 24" -(A C+C D)="24-16=" 8.
2.如图,△A B C中,A D为△A B C的角平分线,BE为△A B C的高,∠C=70°,∠A B C=48°,那么∠3是()
A.59°B.60°C.56°D.22°
[答案]A
[解析]
[详解]根据题意可得,在△A B C中, ,则 ,
又 A D为△A B C 角平分线,
又 在△AEF中,BE为△A B C的高
[详解]①∵∠A+∠B=∠C,
∴∠A+∠B+∠C=2∠C=180°
∴∠C=90°
∴△A B C是直角三角形,故小题正确;
②∵∠A:∠B:∠C=1:2:3,
∴最大角∠C=180°× =90°
故小题正确
③∵∠A=90°-∠B
∴∠A+∠B=90°
∴∠C=180°-90°=90°
故正确
④∵∠A=∠B= ∠C
10.作△A B C的高A D,中线AE,角平分线AF,三者中有可能画在△A B C外的是
A.A DB.AEC.AFD.都有可能
[答案]A
[解析]
[分析]
三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段;中线是三角形的顶点到对边中点的线段;三角形一角的平分线与对边的交点到该角顶点的线段.
[详解]三角形的中线和角平分线都在三角形的内部,高线可能在△A B C的外部.
人教版八年级数学上名校课堂单元测试(一)(含答案)
单元测试(一) 三角形(时间:45分钟满分:100分)题号一二三总分合分人复分人得分一、选择题(每小题3分,共24分)1.下列各组数可能是一个三角形的边长的是( )A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.(长沙中考)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )3.(宁波中考)一个多边形的每个外角都等于72°,则这个多边形的边数为( )A.5 B.6 C.7 D.84.(柳州中考)如图,图中∠1的大小等于( )A.40°B.50°C.60°D.70°5.(漳州中考)如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( ) A.2个B.3个C.4个D.5个6.(鄂尔多斯中考)如图,直线l1∥l2,∠1=50°,∠2=23°20′,则∠3的度数为( ) A.26°40′B.27°20′C.27°40′D.73°20′7.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于( ) A.95°B.120°C.135°D.无法确定8.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于一点P.若∠A=50°,则∠BPC的度数是( )A.50°B.90°C.100°D.130°二、填空题(每小题4分,共24分)9.如图所示是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是________________.10.已知△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是________三角形.11.如图所示,直线a∥b.直线c与直线a,b分别相交于点A,点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=________.12.一个正多边形的每一个内角都等于140°,则它的每一个外角都等于________度.13.已知等腰三角形的一边等于6 cm,一边等于7 cm,则它的周长为________.14.如图,六边形ABCDEF中,AB∥DC,∠1、∠2、∠3、∠4分别是∠BAF、∠AFE、∠FED、∠EDC的外角,则∠1+∠2+∠3+∠4=________.三、解答题(共52分)15.(8分)如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.16.(10分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P 和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO 应等于多少度才能确保BQ与AP在同一条直线上?17.(10分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.18.(12分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC =50°,∠C=62°,求∠DAC和∠BOA的度数.19.(12分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC.若BE ∥DF ,求证:△DCF 为直角三角形.参考答案1.C 2.A 3.A 4.D 5.B 6.A 7.C 8.D 9.三角形具有稳定性 10.钝角 11.32° 12.40 13.19 cm 或20 cm 14.180°15.∵S △ABC =12BC ·AE =12 cm 2,AE =3 cm ,∴BC =8 cm.∵AD 是BC 边上的中线, ∴DC =12BC =4 cm.16.在△AOB 中,∠QBO =180°-∠A -∠O =180°-28°-100°=52°.即∠QBO 应等于52°才能确保BQ 与AP 在同一条直线上.17.(1)证明:由三角板的性质可知∠D =30°,∠3=45°,∠DCE =90°. ∵CF 平分∠DCE ,∴∠1=∠2=12∠DCE =45°.∴∠1=∠3. ∴CF ∥AB.(2)由三角形内角和可得∠DFC =180°-∠1-∠D =180°-45°-30°=105°. 18.∵AD 是△ABC 的高, ∴∠ADC =90°.∵∠C =62°, ∴∠DAC =90°-62°=28°. ∵∠BAC =50°,∠C =62°, ∴∠ABC =68°.又∵BF 是∠ABC 的角平分线,AE 是∠BAC 的角平分线, ∴∠ABO =12∠ABC =34°,∠BAO =12∠BAC =25°.∴∠BOA =180°-∠BAO -∠ABO =180°-25°-34°=121°. 19.证明:∵在四边形ABCD 中,∠A 与∠C 互补, ∴∠ABC +∠ADC =180°.又∵BE平分∠ABC,DF平分∠ADC,∴∠EBC+∠FDC=90°.∵BE∥DF,∴∠EBC=∠DFC.∴∠DFC+∠FDC=90°.∴△DCF为直角三角形.。
数学八年级上册《三角形》单元检测(含答案)
当腰为6cm时,6−3<6<6+3,能构成三角形;
此时等腰三角形的周长为6+6+3=15cm.
故答案为15cm.
【点睛】此题考查等腰三角形的性质,三角形三边关系,解题关键在于利用三角形三边关系进行解答.
12.一个三角形的三边长分别为a、b、c,则 =________.
A. B. C. D.
6.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()
A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形
7. 、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为( )cm
A. 13或17B. 17C. 13D. 10
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
7.、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为()cm
A. 13或17B. 17C. 13D. 10
【答案】B
【解析】
∵等腰三角形的两条边长分别为3cm,7cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为3,只能为7,
∴等腰三角形的周长=7+7+3=17cm.
故选B.
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
A. 125°B. 120°C. 140°D. 130°
【答案】D
【解析】
如图,∵EF∥GH,∴∠FCD=∠2.
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°.
∴∠2=∠FCD=130°.
故选D.
9.如图:在△ABC中,BC=BA,点D在AB上,AC=CD=DB,则∠B=( ).
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)
2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
人教版数学《三角形》单元测试题(含答案)
《三角形》单元测试题一、选择题1. 如图,D,E,F是△ABC的边BC上的点,且BD=DE=EF=FC,那么△ABE 的中线是()A.线段AD B.线段AEC.线段AF D.线段DF2. 在△ABC中,△A=95°,△B=40°,则△C的度数是()A. 35°B. 40°C. 45°D. 50°3. 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形4. 如图,小明书上的三角形被墨迹遮挡了一部分,测得其中两个角的度数分别为28°,62°,于是他很快判断出这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形5. 如图是六边形ABCDEF,则该图形的对角线的条数是()A.6B.9C.12D.186. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米7. 如图,在△ABC中,△ABC,△ACB的平分线BE,CD相交于点F,△ABC=42°,△A=60°,则△BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 如图,将△ABC沿BC向右平移后得到△DEF,△A=65°,△B=30°,则△DFC 的度数是()A.65° B.35° C.80° D.85°10. 如图,在△ABC中,△ACB=70°,△1=△2,则△BPC的度数为()A.70° B.108°C.110° D.125°二、填空题11. 如图,已知△CAE是△ABC的外角,AD△BC,且AD是△EAC的平分线.若△B=71°,则△BAC=________.12. 如图,在△ABC 中,△ABC ,△ACB 的平分线相交于点O ,OD△OC 交BC 于点D.若△A =80°,则△BOD =________°.13. 如图,小明从点A 出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A 时,一共走了________米.14. 如图,在△ABC 中,AD △BC ,BE △AC ,CF △AB ,垂足分别是D ,E ,F .若AC =4,AD =3,BE =2,则BC =________.15. 如图所示,在△ABC 中,△A =36°,E 是BC 延长线上一点,△DBE =23△ABE ,△DCE =23△ACE ,则△D 的度数为________.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则△1=________°.三、解答题17. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?18. 如图,CE是△ABC的外角△ACD的平分线,且CE交BA的延长线于点E,△B=25°,△E=30°,求△BAC的度数.19. 如图是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得△A=145°,△B=75°,△C=85°,△D=55°,就断定这块模板是合格的,这是为什么?20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若△ABC=50°,△ACB=60°,求△BOC的度数;(2)求证:△BOC +△A =180°.21. 如图,在△ABC 中,BD 是角平分线,CE 是AB 边上的高,且△ACB=60°, △ADB=97°,求△A 和△ACE 的度数.三角形答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】C ∴△ACB=180°-△A -△ABC=78°. ∴△ABC ,△ACB 的平分线分别为BE ,CD , ∴△FBC=12△ABC=21°,△FCB=12△ACB=39°, ∴△BFC=180°-△FBC -△FCB=120°.故选C.8. 【答案】C9. 【答案】D10. 【答案】C△1=△2,△△2+△BCP=△1+△BCP=△ACB=70°.△△BPC=180°-△2-△BCP=180°-70°=110°.二、填空题11. 【答案】38°12. 【答案】4013. 【答案】120则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】8315. 【答案】24°16. 【答案】67.5三、解答题17. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.△20+65<90,△20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,△100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.18. 【答案】解:△△B=25°,△E=30°,△△ECD=△B+△E=55°.△CE是△ACD的平分线,△△ACE=△ECD=55°.△△BAC=△ACE+△E=85°.19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∴△C+△ADC=85°+55°=140°,∴△F=180°-140°=40°.∴△C+△ABC=85°+75°=160°,∴△E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:(1)△CD△AB,BE△AC,△△BDC=△BEC=90°.△△ABC=50°,△ACB=60°.△△BCO=40°,△CBO=30°.△△BOC=180°-40°-30°=110°.(2)证明:△CD△AB,BE△AC,△△BDC=△BEC=90°.△△ABE=90°-△A.△△BOC=△ABE+△BDC=90°-△A+90°=180°-△A.△△BOC+△A=180°.21. 【答案】解:∴△ADB=△DBC+△ACB,∴△DBC=△ADB-△ACB=97°-60°=37°.∴BD是△ABC的角平分线,∴△ABC=74°.∴△A=180°-△ABC-△ACB=46°.∴CE是AB边上的高,∴△AEC=90°.∴△ACE=90°-△A=44°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形单元测试(一)(人教版)
一、单选题(共10道,每道10分)
1.如图,在Rt△ABC中,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(除∠C外)相等的角的个数是( )
A.2
B.3
C.4
D.5
答案:B
解题思路:
试题难度:三颗星知识点:直角三角形两锐角互余
2.如图,在△ABC中,D,E是BC边上的点,BD=AB,CE=AC,又∠DAE=∠BAC,则∠BAC 的度数是( )
A.100°
B.108°
C.110°
D.120°
答案:B
解题思路:
试题难度:三颗星知识点:三角形内角和定理
3.如图,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=40°,∠AEC=35°,则∠ABC的度数为( )
A.30°
B.35°
C.37.5°
D.40°
答案:A
解题思路:
试题难度:三颗星知识点:三角形外角定理
4.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=( )
A.70°
B.80°
C.90°
D.100°
答案:B
解题思路:
试题难度:三颗星知识点:三角形内角和定理
5.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7的和为( )
A.360°
B.450°
C.540°
D.无法确定
答案:C
解题思路:
试题难度:三颗星知识点:多边形内角和公式
6.如图,在△ABC中,∠A=96°,延长BC到点D,∠ABC的平分线与∠ACD的平分线相交于点,的平分线与的平分线相交于点,依此类推,的平分线与的平分线相交于点,则的度数为( )
A.3°
B.6°
C.8°
D.12°
答案:A
解题思路:
试题难度:三颗星知识点:三角形外角定理
7.如图所示,已知O是四边形ABCD内一点,OB=OC=OD,∠BCD=∠BAD=75°,则∠ADO+∠ABO等于( )
A.125°
B.135°
C.150°
D.225°
答案:B
解题思路:
试题难度:三颗星知识点:多边形的内角和定理
8.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )
A.3
B.4
C.5
D.6
答案:A
解题思路:
试题难度:三颗星知识点:外角和定理
9.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为( )
A.6米
B.8米
C.12米
D.16米
答案:C
解题思路:
试题难度:三颗星知识点:多边形的外角和定理
10.学校要铺设一个活动场地,供选用的地砖有边长相等的正多边形,为了美观,要求至少用两种不同形状的地砖铺设,同学们设计了四种方案:①正三角形,正四边形;②正三角形,正六边形;③正五边形,正八边形;④正三角形,正四边形,正六边形,你认为以上可行的方案有( )
A.1种
B.2种
C.3种
D.4种
答案:C
解题思路:
试题难度:三颗星知识点:平面镶嵌。