生物陶瓷的分类及应用
生物陶瓷

作为生物陶瓷材料性能
生物陶瓷除用于测量、诊断、治疗外,主要是用 作生物硬组织的代用材料。可应用在骨科、整形 外科、口腔外科、心血管外科、眼科、耳鼻喉科 及普通外科等各个方面。由于它主要用于特殊修 复功能或用于人工器官,因而要求生物陶瓷必须 具备一系列优良性能:
①对人体无害(无毒性、无组织刺激、无致癌作用、 无血栓形成等); (生物学条件)
(2)显微结构
氧化铝瓷显微结构由取向各异的氧化铝晶粒通过晶界集 合而成。
晶粒是多晶体中无一定几何外形的小单晶,是陶瓷多晶 材料中晶相存在形式和组成单元。
每一种晶体按自己结晶习性,长成有规则的几何多面 体。晶体的形态随晶体生长时物理化学条件和外界环境的 不同而变化。
在较好的环境下自由生长,晶体就能按自己的结晶习性 发育成自形晶体。当生长环境较差或生长时受到抑制,就 会形成半自形晶和他形晶。
作为生物陶瓷材料应具பைடு நூலகம்如下功能
代替人体内有病的或损伤的部分; 作为人体先天性缺损部分的代用品; 有助于人体内组织的恢复。
生物陶瓷材料按用途分类
①人工骨或人造关节; ②运动系统的人工脏器(如心脏瓣膜)材料; ③形态修复和整形外科材料; ④人造牙根和假牙; ⑤人工肝脏内的吸附材料(活性碳); ⑥固定酶载体(多孔玻璃); ⑦诊断仪器的温度,气体、离子传感器等材
显微结构--晶界
另外,晶界上质点排列不规则,质点分布疏密不均,因而 形成微观的晶界应力。对于单相多晶材料,由于晶粒的取 向不同,相邻晶粒在某同一方向上的热膨胀系数、弹性模 量等均不相同;对于多相多晶体,各相间更有性能上的差 异;对于固溶体,各晶粒间化学组成上的波动也会在晶界 上产生很大的晶界应力。晶粒愈大,晶界应力愈大。这种 晶界应力甚至可以使大晶粒出现穿晶断裂,这可能就是粗 晶结构的陶瓷材料机械强度较差的一个原因。
生物陶瓷

4、需要外科医生、口腔医生紧 密合作。
5、深入研究种植与骨界面的作 用过程以及种植与骨和软组织结 合的机理
6、在移植陶瓷应用范围不断扩 大基础上, 人造血管和人造气管 等软组织材料的应用
生物陶瓷应用与发展前景
随着社会的进步,人类已不再满足简单模仿人体器官的形状, 而是追求功能尽善尽美的新型材料。生物陶瓷已成为当今医 学领域一个不可缺少的重要部分。目前, 材料科学界已经在 这一方面进行了很多的研究。随着现代科学的飞速发展,技 术上的改进不断完善,生物陶瓷的制备方法也越来越向着可行 性发展。多种C a- P陶瓷与有机材料复合作为骨组织工程支 架材料在临床试验中,如TCP+ 胶原,纳米晶HA + 胶原, TCP+ 富血小板血浆等。形状记忆合金制备,有自膨胀和球 囊扩张式两类。主要用于晚期恶性肿瘤引起的胆道狭理想的 生物医用材料应该是对人体无毒性、无致敏性、无刺激性、 无遗传毒性和无致癌性等不良反应。因此,了解生物医用材 料对人体的生物学反应就显得至关重要。这些反应主要包括 组织反应、血液反应及免疫反应。 通过不断的研究开发,生物陶瓷更多的优良性能将被开发并 应用。总之生物陶瓷有着很大的研究空间和广阔的发展前景。
脊柱侧弯,后路矫正加生物陶瓷植入脊柱融合。 上海第二军医大学、长征医院骨科
3)陶瓷容易成型,可根据需要制成各种形态和尺寸
4)后加工方便。
5)易于着色。如陶瓷牙冠与天然牙逼真,利于整容、美容。
1、提高现有生物陶瓷的可靠性, 提高其强度, 降低杨氏模量, 改 善韧性, 最有希望的途径是研制 复合材料, 如金属一陶瓷复合, 陶瓷纤维增强生物陶瓷, 聚合物 一陶瓷复合, 骨胶原一生物陶瓷 复合等。 2、非活性生物陶瓷的强度较高, 但与生物无亲和作用,但陶瓷活 性生物陶瓷具有亲和作用, 可与 生物体长在一起, 但强度较低如 磷酸钙陶瓷。在非活性陶瓷上涂 敷活性生物陶瓷, 使之兼具两者 优点 3、开展人工骨应用基础理论研 究, 建立和完善材料综合评判系 统
生物陶瓷材料的应用及其发展前景

生物陶瓷材料的应用及其发展前景生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体直接相关的生物、医用、生物化学等的陶瓷材料。
作为生物陶瓷材料,需具备如下条件:生物相容性,力学相容性,与生物组织有优异的亲和性,抗血栓,灭菌性并具有很好的物理、化学稳定性。
进入21世纪,世界科技迅猛发展,生物陶瓷材料及其复合材料的应用,在生物材料更新及硬组织工程中占据不可替代的地位。
因此,对生物陶瓷材料的研究与三类植入物及硬组织工程材料开发倍受医疗器械和生物医用材料界的重视。
1生物陶瓷材料的发展早在18 世纪前,人们就开始用象牙、木头等材料作为骨修复材料; 19 世纪前,由于冶金技术和陶瓷制备工艺的发展,开始用纯金、纯银、铂等贵金属作牙修复及骨缺损修复; 20世纪前半,由于冶金技术的进步,钴铬铝合金、纯钛和钛合金等被应用到人工骨的领域,有机玻璃等高分子材料也开始用于临床;到20世纪60 年后,人们开始研究生物活性陶瓷, 包括生物玻璃、羟基磷灰石等[ 1 ] 。
在这同时, Hench等还开创了用表面活性材料玻璃陶瓷的研究工作。
最近生物陶瓷又有了很大的新进展,其标志是羟基磷灰石陶瓷骨诱导机理研究进展[ 3 ]和高年增长率及大批量的成功应用[ 4 ] 。
生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨,人工关节,人工齿根,骨充填材料,骨置换材料,骨结合材料,还可应用于人造心脏瓣膜,人工肌腱,人工血管,人工气管,经皮引线可应用于体内医学监测等[ 4 ] 。
2生物陶瓷分类2. 1生物惰性陶瓷生物惰性陶瓷主要是指化学性能稳定、生物相溶性好的陶瓷材料。
如氧化铝、氧化锆以及医用碳素材料等。
这类陶瓷材料的结构都比较稳定,分子中的键合力较强,而且都具有较高的强度、耐磨性及化学稳定性。
2. 1. 1氧化铝陶瓷单晶氧化铝c轴方向具有相当高的抗弯强度,耐磨性能好, 耐热性好, 可以直接与骨固定。
已被用作人工骨、牙根、关节、螺栓。
《生物医用陶瓷》课件

生物医用陶瓷可分为生物惰性陶 瓷、生物活性陶瓷和可降解陶瓷 等。
生物医用陶瓷的应用领域
人工关节
用于替代磨损或损坏的 关节,如髋关节和膝关
节。
牙科植入物
用于修复或替换牙齿。
血管和心脏瓣膜
用于替换病变的血管和 心脏瓣膜。
骨修复材料
用于修复骨折或填充骨 缺损。
生物医用陶瓷的发展历程
01
02
03
初期阶段
其他新型生物医用陶瓷材料
总结词
随着科技的不断进步,新型生物医用陶瓷材料也不断 涌现,如纳米生物医用陶瓷、光敏生物医用陶瓷等, 为医疗领域提供了更多的选择。
详细描述
纳米生物医用陶瓷是近年来研究的热点之一,通过将陶 瓷材料制备成纳米级,可以获得更优异的物理和生物学 性能。这种材料可以提高骨组织的再生和修复能力,降 低炎症反应和免疫排斥反应等。光敏生物医用陶瓷是一 种具有光敏特性的陶瓷材料,可以通过特定波长的光激 发产生光化学反应,从而在体内实现药物释放、光热治 疗等功能。这种材料在治疗癌症、感染等疾病方面具有 潜在的应用价值。
求。
加工性能决定了材料的加工精度 和表面质量,对于材料的临床应 用效果和使用安全性具有重要影
响。
03
生物医用陶瓷的制备工艺
粉末制备
固相法
将原料在高温下熔融、冷 却、破碎成粉末,再进行 筛分和分级。
化学法
通过化学反应生成所需的 陶瓷粉末,如沉淀法、溶 胶-凝胶法等。
物理法
利用物理过程制备陶瓷粉 末,如蒸发冷凝法、溅射 法等。
《生物医用陶瓷》ppt课件
contents
目录
• 生物医用陶瓷概述 • 生物医用陶瓷的特性 • 生物医用陶瓷的制备工艺 • 生物医用陶瓷的表面改性 • 生物医用陶瓷的最新研究进展 • 生物医用陶瓷的未来展望
8.4生物陶瓷材料

艺。近年来又发现了可用普通金属加工机床进行车、铣、刨、钻孔等的“可切削性生物陶瓷”,利用玻璃陶瓷结晶化 之前的高温流动性,制成铸造玻璃陶瓷。用这种陶瓷制作的人工牙冠,不仅强度好,而且色泽与天然牙相似。 表8.1将三类常用的生物种植材料作了对照,由表可看出陶瓷作为生物医用材料的特点。
(2)玻璃碳 其密度低,其耐磨性和化学稳定性好,但强度与韧性均不
如LTI碳,只能用于力学性能要求不高的场合。
第10页,共19页。
2. 碳素材料
(3)ULTI碳 具有高密度和高强度,但仅作为薄的涂层材料使用。
UTLI涂层与金属的结合强度高,加上涂层的耐磨性良好,遂成为制造人
工机械心脏瓣膜的理想材料。
1.2 生物惰性陶瓷材料
生物惰性陶瓷是指化学性能稳定, 具有较高的力学强度和耐磨损性能, 与机体组织生
物相容性好的陶瓷材料。
1. 氧化铝(A1203)陶瓷
用于生物医学的A1203分为单晶A1203、多晶A1203和多孔质A1203三种。
就多晶A1203而言,只有高纯度(>99. 5%)、高密度(≥3.90g/cm3)、晶粒细小
第14页,共19页。
1.4 生物陶瓷复合材料
为提高生物陶瓷材料的力学性能、稳定性和生物相容性,许多材料工作者 在复合生物陶瓷材料方面做了大量的研究,并取得了较大进步。 常用的基体材料有高分子材料、生物碳素材料、生物玻璃、磷酸钙基生物陶 瓷等材料. 增强材料有碳纤维、不锈钢或钴基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维 等纤维增强体,另外还有氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒 增强体。 Kim等人利用硅硼酸钠玻璃来增强HAP,当玻璃相为59%,可使HAP的力学强度
生物陶瓷的分类和特性

生物陶瓷的分类和特性001、生物惰性陶瓷材料生物惰性陶瓷主要是指化学性能稳定,生物相溶性好的陶瓷材料。
这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度,耐磨性以及化学稳定性,它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等。
2、生物活性陶瓷材料生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。
生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。
生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰和陶瓷,磷酸三钙陶瓷等几种。
一、玻璃生物陶瓷玻璃陶瓷也称微晶玻璃或微晶陶瓷。
1、玻璃陶瓷的生产工艺过程为:配料制备→配料熔融→成型→加工→晶化热处理→再加工玻璃陶瓷生产过程的关键在晶化热处理阶段:第一阶段为成核阶段,第二阶段为晶核生长阶段,这两个阶段有密切的联系,在A阶段必须充分成核,在B阶段控制晶核的成长。
玻璃陶瓷的析晶过程由三个因素决定。
第一个因素为晶核形成速度;第二个因素为晶体生长速度;第三个因素为玻璃的粘度。
这三个因素都与温度有关。
玻璃陶瓷的结晶速度不宜过小,也不宜过大,有利于对析晶过程进行控制。
为了促进成核,一般要加入成核剂。
一种成核剂为贵金属如金、银、铂等离子,但价格较贵,另一种是普通的成核剂,有TiO2、ZrO2、P2O5、V2O5、Cr2O3、MoO3、氟化物、硫化物等。
2、玻璃陶瓷的结构与性能及临床应用玻璃陶瓷是由结晶相和玻璃相组成的,无气孔,不同于玻璃,也不同于陶瓷。
其结晶相含量一般为50%-90%,玻璃相含量一般为5%-50%,结晶相细小,一般小于1-2/μm,且分布均匀。
因此,玻璃陶瓷一般具有机械强度高,热性能好,耐酸、碱性强等特点。
国内外就SiO2-Na2O-CaO-P2O5系统玻璃陶瓷,Li2O-Al2O3-SiO2系统玻璃陶瓷,SiO2-Al2O3-MgO-TiO2-CaF系统玻璃陶瓷等进行了生物临床应用。
生物活性陶瓷材料

生物活性陶瓷材料生物活性陶瓷包括表面活性玻璃、表面活性玻璃陶瓷和羟基磷灰石3种类型。
它们的共同特点是:它们与原骨相结合时,在界面处无纤维状的组织,它们的表面可与生理换进发生选择性的化学反应,所形成的界面能保护移植物而防止降解。
特别要指出的是它们的化学成分与动物的骨头和牙齿等硬组织相似,这类材料的组成中含有能够通过人体正常的新陈代谢途径进行置换的钙、磷等元素,或含有能与人体组织发生键合的羟基等基团。
它们的表面同人体组织可通过键的结合达到完全的亲和;它们之间具有良好的化学亲和性。
这类材料对动物体无毒、无害、无致癌作用,生物相容性极佳。
1 生物活性玻璃玻璃是熔融、冷却、固化的非晶态无机物,具有良好的耐腐蚀、耐热和电学、光学性质,能够用多种成型和加工方法制成各种形状和大小的制品,亦可调整化学组成改变其性能,以适应不同的使用要求。
作为生物活性玻璃,主要是指含有氧化钙和五氧化二磷的磷酸盐玻璃。
Hench研制的Na2O-CaO-SiO2-P2O5系生物玻璃组成及其与骨结合过程。
CaO-SiO2-P2O5系玻璃水泥硬化及羟基磷灰石的形成机理。
生物玻璃的活性控制Kokubo研制的A-W生物活性玻璃陶瓷具有较高的力学强度,其与骨键合的界面结合强度均高于材料本身或者骨组织的强度。
表 1 生物活性玻璃陶瓷的应用2 磷灰石磷灰石是骨骼、牙本质和牙釉质等硬组织的主要成分。
骨的成分中约65%是羟基磷灰石,其余成分为纤维蛋白胶原。
研究表明,骨的纳米结构的主要基本单元是针状和柱状的磷灰石晶体,它们或定向和卷曲排列,或相互缠结,构成多种织构,不同的织构形成了骨在纳米尺寸上的功能单元,如束状结构和团聚结构适合于承受高强度,而卷曲和疏状交织结构具有很好的韧性,并有利于营养物的传递。
磷灰石的结构可将磷灰石归为一大类,磷灰石所代表的物质具有广泛的化学组成,用化学分子式可以表示为:A10(MO4)6X2,A是1价、2价、3价的阳离子,如Ca、Ba、Mg、Sr、Pb、Cd、Zn、Ni、Fe、Al、La等M是P、As、V、S、Si等;X是F、OH、Cl、O、CO3等。
生物陶瓷在组织工程中的应用

生物陶瓷在组织工程中的应用生物陶瓷是指以无机非金属元素为主要成分的人工材料,具有生物相容性、生物可降解性、形态可塑性等特点。
在组织工程领域中,生物陶瓷可以用于制作人工骨、人工关节、牙科种植体等医疗器械,其应用范围十分广泛。
一、生物陶瓷的优势与传统的金属材料相比,生物陶瓷具有以下几方面的优势:1. 生物相容性好生物陶瓷可以与人体细胞和组织完美融合,使其良好地结合在人体内。
这取决于生物陶瓷的主要成分,钙磷酸盐和氧化锆等具有较好的生物相容性。
2. 具有良好的生物可降解性当生物陶瓷在人体内失去其功能时,可以通过生物降解的方式在体内自然分解,不会对人体造成任何不良影响。
这可以避免传统人工材料使用后形成的金属离子对人体健康的影响。
3. 形态可塑性强生物陶瓷可以通过不同的成型方法制成各种形态的骨组织,如菱形、半球形等。
这使其能够根据患者需求有选择地制定合适的医疗器械。
二、生物陶瓷在组织工程中的应用1. 人工骨生物陶瓷可制成适合骨组织生长的材料,例如人工骨,可以在植入人体后逐渐将身体本身的细胞以及外来细胞吸引至人工骨表面,越来越多的细胞聚集而形成新的骨组织。
人工骨被广泛应用于脊椎手术、大块骨缺失修复等领域。
2. 人工关节生物陶瓷能有效地模仿人体关节的形态和结构,使得其具有良好的功能和生物相容性。
通过不同的制造工艺,生物陶瓷可以应用于人工髋关节、人工膝关节等。
3. 牙科种植体生物陶瓷能够在口腔环境中表现较好,而且能够与周围的骨组织完美地融合。
这是制成种植体的一种理想材料,可以在种植体联合术后达到最好的牙冠复位和美观。
4. 肝细胞培养生物陶瓷可以用于肝细胞的培养,使其在体外环境中的效果更好。
生物陶瓷为细胞提供了良好的细胞定位支持,使其增殖、分化及细胞附着能力得到了显著的提高。
三、未来展望随着人们对人工材料的需求不断增加,生物陶瓷必将成为重要的制造材料之一。
随着生产技术不断发展和完善,生物陶瓷的制品形态和性能将得到更大的改进,并且可以实现更多细胞培育上的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物陶瓷的分类及应用
生物陶瓷是指由生物性材料经过特殊处理和加工制成的陶瓷材料。
生物陶瓷的分类主要从原料、制备方法和应用领域等方面进行划分。
一、按原料分类:
1. 钙磷类生物陶瓷:主要包括羟基磷灰石(HA)、β-三磷酸钙(β-TCP)、二钙磷酸盐(DCPA)、碳酸钙(CaCO3)等。
应用:被广泛应用于牙科修复材料、骨修复材料等。
2. 钙硅磷类生物陶瓷:主要包括硅酸钙(CS)、硅酸镁钙(CMS)、硅酸三钙(C3S)等。
应用:用于生物活性玻璃、人工骨块、骨水泥等。
3. 钛类生物陶瓷:主要包括氢氧化钛(HAP)、Ti6Al4V合金(钛合金)等。
应用:广泛用于人工关节、牙科种植材料等。
4. 氧化锆生物陶瓷:主要是氧化锆(ZrO2)。
应用:常用于牙科修复中的全瓷冠、全瓷桥、种植体修复等。
二、按制备方法分类:
1. 生物矿化法:通过溶液中有机物与无机盐相互作用,进行生物矿化反应制备生物陶瓷。
优点:较为简便、成本较低。
应用:主要应用于羟基磷灰石陶瓷的制备。
2. 生物可降解聚合物复合法:将无机陶瓷与可降解聚合物复合制备生物复合陶瓷。
优点:能够降解,与组织成分更相似,促进骨骼再生。
应用:用于骨修复材料等。
3. 生物材料离子交换法:通过离子交换反应制备生物陶瓷。
优点:可以通过控制交换反应的时间和条件调控材料的生物活性。
应用:用于骨填充、骨修复材料等。
4. 仿生法:通过模仿生物体内的形态、结构、组成等制备生物陶瓷。
优点:能够更好地模仿生物体组织,具有更好的生物相容性。
应用:主要用于人工关节、牙科修复材料等。
三、按应用领域分类:
1. 医疗领域:生物陶瓷作为生物医用材料的一种,广泛应用于骨修复、关节置换、牙科种植等领域。
2. 生物传感领域:生物陶瓷的表面结构可以调控,能够实现对生物体内信号和物质的检测与传递,用于生物传感装置的制备。
3. 环境修复领域:生物陶瓷具有孔隙结构,具有一定的吸附和催化作用,可以
应用于水处理、废气净化等环境修复领域。
总结起来,生物陶瓷的分类可从原料、制备方法和应用领域等方面进行划分,不同类型的生物陶瓷在不同领域具有广泛的应用前景。
在医疗领域,生物陶瓷可以用于骨修复、关节置换、牙科种植等,具有良好的生物相容性和生物活性。
此外,在生物传感和环境修复领域也有着重要的应用意义。