煤制氢工艺流程
焦炉煤气制氢工艺存在的问题和应对

焦炉煤气制氢工艺存在的问题和应对【摘要】:氢能是实现绿色可持续发展的重要载体,是世界能源变革发展的重要方向。
氢能的制取、储运应用是保障氢能产业发展的重要推手,其中,氢气的制取更是重中之重。
本文首先对焦炉煤气利用现状进行分析,然后介绍焦炉煤气制氢基本原理及过程,最后结合实际,对焦炉煤气制氢中存在的问题及解决对策展开探讨。
【关键词】:焦炉煤气;制氢工艺;问题和应对引言20世纪初期,我国的煤炭产业进入了高速发展的“黄金期”。
煤炭约占能源消费中70%,占据我国能源消费的主体位置。
2020年《世界能源统计综述》显示2019年,世界煤炭总消耗157.86亿吨,仅我国的煤炭消耗量就高达81.67亿吨,占据世界总产量的51.7%。
据统计,2020年我国的一次能源消费中煤炭占比约58%,这一数字意味着在未来的一段时间内,煤炭仍然是我国一次能源消费的主体。
迫于全球气候压力,全球主要国家已就全球温室气体控制目标达成共识,也均结介自身情况提出了碳中和发展的时间表,并出台了相应的政策支持氢能发展。
在2021年全国两会上,碳达峰、碳中和被首次写入政府工作报告。
在这一背景下,氢能正逐步登上能源舞台的中央,并在全球能源新格局中扮演重要角色。
氢气的“制、储、运、用”将是氢能产业发展的重要方向。
氢气的廉价获取更是重中之重,是氢能产业发展的根本,制氢的技术与成本在相当长一段时间内仍然是亟待解决的问题。
1.焦炉煤气利用现状焦炉煤气是钢铁工业或其他工厂煤炭碳化过程中重要的副产物,由H2(55~60vol%)、CH4(23~27vol%),CO(5~8vol%),CO2(小于2vol%)和微量杂质(如H2S)等组成。
作为一种富含氢气的气体,近年来焦炉煤气的利用一直是人忙研究的热点,这对炼钢行业的节能减排起着重要的作用。
一般情况下,焦炉煤气可作为加热炉或钢厂的发电厂的燃料,在一些情况下,富余的焦炉煤气会被燃烧掉,甚至会直接被排放到空气中,造成了巨大的能源浪费和严重的环墟污染。
变换单元工艺知识培训

二、变换反应工艺原理
POX装置变换反应器为4台,分别为保护 床反应器(721-R-104)、第一变换反应器 ( 721-R-101 )、第二变换反应器( 721R-102)及第三变换反应器( 721-R-103)。
9
二、变换反应工艺原理
保护床反应器:
阻挡煤粉尘、炭黑等固体杂质,吸附As、Cl等对催化剂有毒害作 用的组分,以保护后续耐硫变换催化剂 。
第一变换反应器:
亦称高变反应器、中温变换反应器,变换反应的主反应器,将气 化来的合成气和水蒸气在催化剂的作用下以较高的速度快速进行变换 反应,生成氢气,同时有机硫和氢气反应生成容易脱除的硫化氢。
第二、三变换反应器:
亦称低温变换反应器,将中变过来变换气在较低的温度下进行变 换,生成氢气,尽可能将一氧化碳的浓度降低,增产氢气。
此时,对应的水汽比为:3.344/(5.8-3.344)=1.3
16
二、变换反应工艺原理
影响水气比的因素: (1)压力:在温度不变情况下,压力升高,
饱和蒸汽的分压不变,气体的分压增大,水汽 比减小,反之亦然。
(2)温度:在压力不变的情况下,合成气 温度升高,气体温度不变,水的饱和蒸气压增 大,水汽比增大,反之亦然。
变换反应为放热的可逆反应,符合反应 平衡机理。
化学平衡的定义:是指在宏观条件一定的可逆 反应中,化学反应正逆反应速率相等,反应物和 生成物各组分浓度不再改变的状态。
12
二、变换反应工艺原理
勒夏特列原理
勒夏特列原理又名“平衡移动原理” 。 如果改变影响平 衡的一个条件(如浓度、压强或温度等),平衡就向能够减弱这 种改变的方向移动。 勒夏特列原理是指在一个平衡体系中,若 改变影响平衡的一个条件,平衡总是要向能够减弱这种改变的方 向移动。比如一个可逆反应中,当增加反应物的浓度时,平衡要 向正反应方向移动,平衡的移动使得增加的反应物浓度又会逐步 减少;但这种减弱不可能消除增加反应物浓度对这种反应物本身 的影响,与旧的平衡体系中这种反应物的浓度相比而言,还是增 加了。
煤制氢联产羰基合成气工艺流程与控制方案分析

煤制氢联产羰基合成气工艺流程与控制方案分析吴德民【摘要】通过对某炼厂拟建长链醇类所需羰基合成气规格及总硫含量、杂质要求进行分析,在现有煤制氢装置的基础上新建一个净化系列用于生产羰基合成气.结合醇类合成装置对羰基合成气控制精度的要求,提出了预变换炉后预变换气作为主气源、预变换炉前粗合成气作为辅助气源补气的并行压力控制方案,并采用了粗配氢和细配氢两级配氢的控制方案,达到了氢碳比精确控制精度的要求.%A new purification system is established for carboxylic syngas production based on the existing coal to hydrogen unit by analyzing spec-ification ,total sulphur content and impurity requirement of the carboxylic syngas needed by thelong-chain aliphatic alcoholin some refining plant . Considering the requirement of alcohols synthesis unit on the precision of carboxylic syngas control ,this paper proposes the parallel pressure control scheme in which pre-shift gas serves as the major gas source after pre-shift converter and raw syngas servers as complimentary gas source before pre-shift converter ,and control scheme of two-stage hydrogenmatching ,rough hydrogen matching and fine hydrogen matching , which meets the requirements for the precision of carbon-hydrogen ratio control .【期刊名称】《化肥设计》【年(卷),期】2018(056)003【总页数】4页(P21-24)【关键词】水煤浆气化;煤制氢;羰基合成气;工艺流程;控制方案【作者】吴德民【作者单位】中石化宁波工程有限公司,浙江宁波 315103【正文语种】中文【中图分类】TQ116.22随着汽车保有量的快速增长,汽车尾气排放对大气污染的影响日益增加,炼油企业加快油品质量升级,所需油品加氢改质的氢气用量大幅增加。
煤制氢装置生产工艺

环保问题
1.煤制氢装置生产工艺:煤粉制备、煤气化、氢气提纯 煤制氢装置生产工艺 煤制氢装置的生产工艺主要分为三个阶段:煤粉制备、煤气化、和氢气提纯。 首先,煤粉通过破碎、筛分和干燥等预处理,制成适合煤气化的形态。接着,煤气化过程利用气化剂将煤转化为可燃气。然后,将得到的煤气进行进一步 提纯,分离出二氧化碳和剩余的杂质,得到高纯度的氢气。 2.煤制氢工艺虽可行,却引发环境问题 虽然煤制氢工艺在某些情况下是可行的,但是它涉及到许多环境问题。 首先,煤的开采和使用会产生大量的二氧化碳排放,导致全球变暖。这可能会加剧气候变化,引发极端天气,如洪水、干旱和飓风等。其次,煤制氢过程 中会产生大量的废水和废渣,这些废物可能含有有害物质,如重金属和有害化学物质。如果不妥善处理,这些废物可能会对环境和人类健康造成严重危害。 3.煤制氢的噪音与振动及可再生能源 此外,煤制氢过程中还会产生大量的噪音和振动,这可能会对周围的社区和环境造成负面影响。 为了解决上述环保问题,需要采取一系列的措施。首先,应该大力推广可再生能源,如太阳能、风能和水力发电。这些能源不会产生温室气体排放,有助 于减缓全球变暖的速度。 4.可再生能源替代煤制氢,环保与人类健康之选 其次,应该采用更环保的煤制氢工艺,例如使用生物质替代煤粉,或者使用更高效的煤气化技术。这些方法可以减少废水和废渣的产生,降低对环境的污 染。 此外,应该加强对煤制氢工厂的监管和管理,确保它们遵守环保法规和标准。这包括对排放物进行实时监测,对废物进行妥善处理,以及对噪音和振动进
THANK YOU
05. 氢气的分离和提纯
煤制氢装置生产工艺
煤制氢是一种通过使用煤炭来生产氢气的方法。其基本原理是先将煤炭转化 为气体燃料,然后在燃料重整过程中将气体燃料转化为氢气。以下是一个关 于煤制氢装置生产工艺的简要描述:
工业制取氢气的关键技术

工业制取氢气的关键技术根据氢气生产来源和生产过程中的碳排放情况,一般可将氢能分为灰氢、蓝氢、绿氢。
灰氢,是通过化石燃料(例如石油、天然气、煤炭等)燃烧产生的氢气,在生产过程中会有二氧化碳等排放。
目前,市面上绝大多数氢气是灰氢,约占当今全球氢气产量的95%左右。
灰氢的生产成本较低,制氢技术较为简单,而且所需设备、占用场地都较少,但是碳排放较大。
蓝氢,是将天然气通过蒸汽甲烷重整或自热蒸汽重整制成。
虽然天然气也属于化石燃料,在生产蓝氢时也会产生温室气体,但由于使用了碳捕捉、利用与储存(CCUS)等先进技术,温室气体被捕获,减轻了对地球环境的影响,实现了低排放生产。
绿氢,是通过使用再生能源(例如太阳能、风能、核能等)制造的氢气,例如通过可再生能源发电进行电解水制氢,在生产绿氢的过程中,完全没有碳排放。
绿氢是氢能利用的理想形态,但受到目前技术及制造成本的限制,绿氢实现大规模应用还需要时间。
目前,氢的制取主要有三种较为成熟的技术路线:一是以煤炭、天然气为代表的化石能源重整制氢;二是以焦炉煤气、氯碱尾气、丙烷脱氢为代表的工业副产气制氢;三是电解水制氢。
1 灰氢制造技术1.1媒制氢煤制氢的本质是以煤中的碳取代水中的氢,最终生成氢气和二氧化碳(CO2),其成本低,技术成熟,运用广泛。
以煤气化为例,其工艺流程是将煤炭经高温气化形成合成气,然后通过水煤气变换反应进一步将合成气中的CO 与水反应,生成氢气与CO2,最后进行混合气体净化、分离、氢气提纯、尾气处理等工序,最终得到高纯度氢气。
由于煤中含有硫等杂质,由气化和变换反应生成的氢气需要采用脱硫和脱碳技术,后用变压吸附(PSA)纯化技术制成高纯度的氢气。
脱硫和脱碳一般采用低温甲醇洗或者SelexolTM 工艺技术。
1.2天然气制氢天然气水蒸气重整制氢(SMR)目前为国内外普遍采用的天然气制氢工艺路线,和煤制氢相比,用天然气制氢产量高、加工成本较低,排放的温室气体少。
在美国和中东等地,大部分专有制氢装置采用天然气制氢,因此天然气成为国外较普遍的制氢方法,但在中国,天然气价格相对较高,因此中国大多数制氢厂通过煤气化制氢。
煤制氢(CTG)工艺概况

导读:1、煤为原料制取氢气方法:焦化、气化;2、传统煤制氢技术和煤气化制氢工艺;3、煤气化制氢原理与工艺流程。
我国是世界上开发利用煤炭最早的国家。
2000多年前的地理名著《山海经》(现代多数学者认为《山海经》成书非一时,作者亦非人。
大约是从战国初年到汉代初年楚和巴蜀地方的人所作,到西汉刘歆校书时才合编在一起)中称煤为“石涅”,并记载了几处“石涅”产地,经考证都是现今煤田的所在地。
例如书中所指“女床之山”,在华阴西六百里,相当于现今渭北煤田麟游、永寿一带;“女儿之山”,在今四川双流和什邡煤田分布区域内;书中还指出“风雨之山”。
显然,我国发现和开始用煤的时代还远早于此。
在汉些史料中,有现今河南六河沟、登封、洛阳等地采煤的记载煤不仅用作柴烧,而目成了煮盐、炼铁的燃料。
现河南巩县还能见到当时用煤饼炼铁的遗迹。
汉朝以后,称煤为“石墨”或“石炭”。
可见我国劳动人民有悠久的用煤历史。
煤制氢技术发展已经有200年历史,在中国也有近100年历史。
我国是煤炭资源十分丰富的国家,目前,煤在能源结构中的比例高达70%左右,专家预计,即使到2050年,我国能源结构中,煤仍然会占到50%。
如此大量的煤炭使用将放出大量的温室气体CO2。
现在我国已经是世界CO2排放第一大国,受到巨大的国际压力。
洁净煤技术将是我国大力推行的清洁使用煤炭的技术。
在多种洁净煤技术中煤制氢,可以简称为CTG( Coal to gas),将是我国最重要的洁净煤技术,是清洁使用煤炭的重要途径。
■煤为原料制取氢气方法:焦化、气化以煤为原料制取氢气的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。
焦化是指煤在隔绝空气条件下,在900-1000℃制取焦炭,副产品为焦炉煤气。
焦炉煤气组成中含氢气55%-60%(体积分数)、甲烷23%~27%、一氧化碳6%~8%等。
每吨煤可得煤气300~350m3,可作为城市煤气,亦是制取氢气的原料。
煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。
浅谈焦炉煤气制氢工艺

浅谈焦炉煤气制氢工艺焦炉煤气是焦炭生产过程中煤炭在高温、缓慢干馏过程中产生的一种可燃性气体。
我国是焦炭产量最大的国家,2023年我国焦炭产量43142.6万t,依此计算,我国焦炉煤气产量是非常高的。
全国焦炭产能约有1/3在钢铁联合企业,2/3在独立焦化企业。
独立焦化企业富余的焦炉气曾因无法直接用于生产而被大量放散,放散量最高峰时曾达30km³/a。
焦炉煤气自2023年1月1日起实施的《焦化行业准入条件》修订版规定,焦化生产企业生产的焦炉煤气应全部回收利用,不得放散。
这给焦炉煤气的综合利用提供了有利的政策支持,也进一步推动了焦炉煤气制氢、甲醇等工业技术的发展。
炼焦过程中释放的焦炉煤气中富含氢气(55%左右),焦炉煤气制氢是目前可实现的大规模低成本高效率获得工业氢气的重要途径。
而我国晋、冀、豫几省是资源大省和焦化大省,氢源非常丰富,如何高效、合理地利用是关系环保、资源综合利用和节能减排的重大课题。
1、焦炉煤气制氢原理焦炉煤气制氢工序主要有:脱硫脱萘、压缩预处理、变压吸附制氢、脱氧干燥等。
其中焦炉煤气预处理系统为变温吸附(TSA),制氢系统为变压吸附(PSA),而氢气精制系统也为变温吸附(TSA),可用焦炉煤气制取99.999%的氢气。
吸附剂在常温高压下大量吸附原料气中除氢以外的杂质组分,然后降解杂质的分压使各种杂质得以解吸。
在实际应用中一般依据气源的组成、压力及产品要求的不同来选择组合工艺。
变温吸附的循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的净化;变压吸附的循环周期短,吸附剂利用率高,用量相对较少,不需要外加换热设备,广泛用于大气量、多组分气体的分离和提纯。
由于焦炉煤气提纯氢气的特点是:原料压力低,原料组分复杂并含有焦油、萘、硫、重烃等难以解吸的重组分,产品纯度要求高。
因而装置需采用“加压+TSA预处理+PSA氢提纯+脱氧+TSA干燥”流程。
2、主要生产过程焦炉煤气是炼焦的副产品,产率和组成因炼焦煤质量和焦化过程不同而有所差别,一般每吨干煤可生产焦炉煤气300~350m³(标准状态)。
常压白煤气化制氢流程图---wgb

CO
28.01
34.04
14902
34.06
14901
2
H2
2.02
42.54
18625
42.56
18624
3
CO2
44.01
9.68
4236
9.68
4236
4
CH4
16.04
0.65
285
0.65
285
5
AR
39.95
0.28
122
122
6
N2
28.01
5.59
2444
2444
7
H2S
34.08
1.4.假定水煤气组成%
H2
CO
CO2
N2
CH4
Ar
O2
总硫
Σ
45.72
36.58
10.4
6.00
0.70
0.30
0.30
1.0G/NM3
100
23837
19072
5422
3128
365.
156
156
52136
2、工艺计算
2.1、物料平衡计算
计算结果汇总表
位号
1
2
3
物流
原料煤
工艺蒸汽
工艺空气
序号
组分
分子量
% G
t/H
% V
NM3/tNH3
% W
Kg/tNH3
1
CO
28.01
2
H2
2.02
3
CO2
44.01
4
CH4
16.04
5
AR
39.95
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤制氢工艺流程
煤制氢是一种通过煤炭资源转化为氢气的工艺,在能源转型和减少碳排放的背景下,煤制氢成为一种潜在的清洁能源解决方案。
下面将介绍煤制氢的工艺流程。
煤制氢的工艺主要包括煤气化、气体净化和氢气分离三个步骤。
首先是煤气化步骤。
该步骤将煤炭在高温和高压条件下与氧气或蒸汽反应,产生一种混合气体,即合成气。
合成气主要由氢气、一氧化碳、二氧化碳和少量的甲烷等组成。
煤气化反应可以使用不同的反应器,常见的有固定床煤气化反应器和流化床煤气化反应器。
固定床煤气化反应器将煤块装入反应器中,通过气体在煤层中的渗透来实现气化反应;而流化床煤气化反应器则通过在煤床中持续注入气体来保持颗粒的浮动状态,并与气体发生反应。
接下来是气体净化步骤。
合成气中含有很多杂质,如硫化氢、苯和氨等,需要经过净化来去除。
常见的净化方法包括吸附法和脱硫脱氨法。
吸附法通过将合成气经过吸附剂层进行吸附,将杂质分离出来。
脱硫脱氨法则是通过将合成气经过吸收剂进行吸收,并进行化学反应来去除杂质。
最后是氢气分离步骤。
经过净化后的合成气中含有一定量的氢气,需要进行进一步的提纯。
常见的分离方法有压力摩擦法和膜分离法。
压力摩擦法是将合成气通过一系列的膜孔或孔隙,通过压力差将氢气和其他气体分离。
膜分离法则是通过透过膜的气体分子大小和亲和性的不同来实现氢气的分离。
在整个工艺流程中,还需要对各个步骤的废气进行处理和回收利用。
例如,煤气化反应产生的尾气可以通过余热回收来提高能源利用效率。
气体净化步骤产生的废气可以通过吸收剂再生或气体燃烧来消除有害物质。
需要注意的是,煤制氢工艺虽然可以将煤炭转化为氢气,但在实际应用中仍面临一些挑战。
首先是煤气化过程产生的二氧化碳排放问题,需要采取碳捕集和封存等措施。
其次是氢气分离技术的成本问题,目前大部分分离方法仍存在较高的投资和运营成本。
总的来说,煤制氢工艺流程包括煤气化、气体净化和氢气分离三个步骤,通过这些步骤可以将煤炭转化为氢气,并减少碳排放。
然而,煤制氢仍需进一步完善技术和降低成本,以实现在能源转型过程中的商业化应用。