dna 反向平行螺旋结构
DNAA分子的结构和复制

答案:B
1.对基因本质的理解 (1)从结构上看 ①基因是DNA上一个个特定的片段,一个DNA分子上有许 多个基因。 ②基因与DNA结构一样,也是由四种脱氧核苷酸按一定顺 序排列而成的,也是双螺旋结构。
④双链DNA分子中,非互补碱基之和所占比例在两条互补 链中互为倒数。 设双链DNA分子中,一条链上: 则: =m,∴互补链上 = m,
简记为:“DNA两互补链中,不配对两碱基和的比值乘积
为1。”
2.DNA复制的有关计算 (1)DNA不论复制多少次,产生的子代DNA分子中含母链的 DNA分子数总是2个,含母链也总是2条。 (2)复制n代产生的子代DNA分子数为2n,产生的D的描述,错误的是(
)
A.基因在染色体上呈线性排列,染色体是基因的主要载体
B.遗传信息可以通过DNA复制传递给后代 C.互为等位基因的两个基因肯定具有相同的碱基数量 D.遗传信息是指DNA分子的脱氧核甘酸的排列顺序
[课堂笔记] 选 C
基因是具有遗传效应的DNA片段,是控
一、DNA分子的结构
1.DNA双螺旋结构特点 (1)两条链 反向平行 盘旋成双螺旋结构。 (2) 脱氧核糖 和磷酸 交替连接,排列在外侧,构成基本骨 架; 碱基 排列在内侧。 (3)两条链上的碱基通过 氢键 连接成碱基对。
2.碱基互补配对原则
A(腺嘌呤)一定与 T(胸腺嘧啶) 配对;G(鸟嘌呤)一定与
否定”等。
2.观察变量的确定
因变量与观察变量有时是不同的,对于因变量不能直接
观察的,应该通过相应手段转换,将因变量间接展现出 来,便于观察。如细胞分裂中染色体可以通过染色、借 助显微镜观察,呼吸强度可通过测定密闭装置中气压变 化来表现等。
DNA分子的结构规律总结1

•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/42021/9/4Saturday, September 04, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/42021/9/42021/9/49/4/2021 8:58:44 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/42021/9/42021/9/4Sep-214-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/42021/9/42021/9/4Saturday, September 04, 2021
DNA分子为什么能储存大量的遗传信息呢? 构成DNA的基本单位是什么?
---脱氧核苷酸
1.基因的化学组成:每个基因含有成百上千个脱氧
核苷酸。 基因的脱氧核苷酸排列顺序代表遗传信息。
例如: 白花基因有特定的脱氧核苷酸排列顺序,这样特定 的排列顺序就代表白花的遗传信息。 上一代传给下一代的是遗传信息而不是白花的本身, 在下一代就可以将白花遗传信息表达为白花。
5.“精确”复制的原理: (1)DNA分子独特的双螺旋结构,为复制
提供了精确的模板; (2)碱基互补配对原则,保证了复制能够
准确地进行。
6.意义: 将遗传信息从亲代传给子代,从而保持遗传
简述DNA双螺旋结构,以及生物学意义?

1.简述DNA双螺旋结构,以及生物学意义?DNA双螺旋结构:有两条DNA单链,反向平行,一段由3’端开始,一段由5‘端开始,螺旋成双链结构。
外部是磷酸和脱氧核糖交替构成的,内部碱基遵循碱基互补配对原则(A-T,C-G),碱基之间是由氢键连接,脱氧核苷酸之间由磷酸二脂键链接。
双螺旋模型的意义:双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。
因此,只需以其中的一条链为模版,即可合成复制出另一条链。
2.人类基因组计划?简要概括?人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的。
多科学家共同参与了这一预算达30亿美元的人类基因组计划。
人类基因组计划是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。
截止到2005年,人类基因组计划的测序工作已经完成。
其中,2001年人类基因组工作草图的发表被认为是人类基因组计划成功的里程碑。
3.计算生物学的研究范畴?(1)计算生物学最终是以生命科学中地现象和规律作为研究对象,以解决生物学问题为最终目标,计算机和数学仅仅是解决问题的工具和手段。
(2)计算生物学主要侧重于利用数学模型和计算机仿真技术对生物学问题进行研究。
(3)是应用数学理论和计算机技术研究生命科学中数量性质、空间结构形式、分析复杂的生物系统的内在特性,揭示在大量生物实验数据中所隐含的生物信息。
4.计算生物学研究的三个研究层面?(1)初级层面:基于现有的生物信息数据库和资源,利用成熟的计算生物学和生物信息学工具(专业网站、软件)解决生物学问题(2)中级层面:利用数值计算方法、数理统计方法和相关的工具,研究计算生物学和生物信息学问题。
DNA双螺旋结构的要点

1. 横向稳定依靠两条互补链的氢键维持
2. 纵向依靠碱基平面间的疏水堆积力.
3. 从总能量来说,2对维持双螺旋的稳定性更 为重要.
原核生物的DNA合成
(一)复制的起始. 1: DNA的解链 固定起始点,oriC. 2: 引发体和引物 *DNA拓扑酶Π型作用 (二)复制的延长
在DNA-pol催化下dNTP以dNMP的形式加入引物或延长中的 子链,化学本质是磷酸二酯键的不断生成.
DNA双螺旋结构的要点
1. DNA是反向平行的互补 双链结构.
2. DNA双链是右手螺旋结 构.
3. 疏水力和氢键维系DNA 双螺旋结构的稳定.
1. 腺嘌呤与胸腺嘧啶结合,形成两氢键;鸟 嘌呤与胞嘧啶结合.形成三个氢键.
2. 一条链从5’到3’,另一条从3’到5’.
1. 螺旋直径为2nm,一周包含10对碱基,每个 旋转36度,螺距为3.4nm.相邻碱基平面距 离0.34nm.DNA分子表面存在一个大沟和 一个小沟.与蛋白质识别有关.
(三)复制的终止.
真核生物的DNA生物合成
• 复制的起始
起始点很多,复制有时序性,分组激活不是同步起动. 含较多的自主复制序列A(T)TTATA(G)TTTA(T).较原核短
• 复制的延长 • 复制的终止和端粒酶
1. 染色体DNA线状,复制在末端停止. 2. 复制中罔崎片段的连接,复制子之间的连接在DNA内部完成. 3. 染色体两端DNA链上最后复制的RNA引物去除后留下空隙.
• 端粒是真核生物染色体线性DNA分子末端结构,在 维持染色体的稳定性和DNA复制的完整性有重要 作用,特点是富含T,G短序列的多次重复.
• 端粒酶由端粒酶RNA,端粒酶协同蛋白和端粒酶逆 转录酶组成.通过一种爬行模型的机制维持染色体 的完整.老化和端粒酶活性下降有关.
DNA分子的结构

∙DNA分子的结构:1、DNA的元素组成:C、H、O、N、P2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。
3、模型图解:4、DNA分子的结构特性(l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。
(2)多样性:DNA分子中碱基时排列顺序多种多样。
(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。
∙∙知识点拨:碱基互补配对的规律:∙∙知识拓展:1、两条链之间的脱氧核苷酸数目相等→两条链之间的碱基、脱氧核糖和磷酸数目对应相等。
2、碱基配对的关系是:A(或T)一定与T(或A)配对、G(或C)一定与C(或G)配对,这就是碱基互补配对原则。
其中,A与T之间形成2个氢键,G与C之间形成3个氢键。
3、DNA分子彻底水解时得到的产物是脱氧核苷酸的基本组分,即脱氧核糖、磷酸、含氮碱基。
∙题文生物体内某些重要化合物的元素组成和功能关系如图所示。
其中X、Y代表元素,A、B、C是生物大分子,①、②、③代表中心法则的部分过程。
请据图回答下列问题:(1)紫茉莉细胞中A分子中含有的矿质元素是_______,中学生物学实验鉴定A分子通常用_______试剂,鉴定C分子______(需、不需)要沸水浴加热。
(2)甲型H1N1流感病毒体内含有小分子a_____种,小分子b_____种。
(3)不同种生物经过①合成的各新A生物大分子之间存在着三点差异,这些差异是什么?________,_______ _,________。
(4)在经过①合成的各新A生物大分子中,(C+G):(T+A)的比值与其模板DNA的任一单链________(相同、不相同)。
题型:读图填空题难度:偏难来源:广西自治区模拟题答案(1)N、P 二苯胺不需(2)0 4(3)碱基的数目不同碱基的比例不同碱基排列顺序不同(4)相同题文下图是某种遗传病的家系图(显、隐性基因用A、a表示)。
实验四 制作DNA双螺旋结构模型

实验四制作DNA双螺旋结构模型实验原理DNA分子双螺旋结构由脱氧多核苷酸链组成。
双螺旋结构外侧的每条长链,是由脱氧核糖与磷酸交互连接形成的,两条长链以反向平行方式向右盘绕成双螺旋,螺旋直径为2nm,螺距为3.4 nm;两条长链上对应碱基以连接成对,对应碱基的互补关系为:,碱基对位于双螺旋结构内侧,每个螺距有10对碱基,两个相邻碱基对平面的垂直距离为0.34 nm。
目的要求通过制作DNA分子双螺旋结构模型,深入理解DNA双螺旋结构的特点。
实验过程一、材料用具硬塑方框2个(长约10cm),细铁丝2根(长约0.5m),球形塑料片(代表磷酸),双层五边形塑料片(代表脱氧核糖),四种不同颜色的长方形塑料片(代表四种不同碱基),粗铁丝2根(长约10cm),代替氢键的连接物(如订书钉)。
二、方法步骤1.取一个硬塑方框,在硬塑方框一侧的两端各拴上一条长0.5m的铁丝。
2.将一个剪好的球形塑料片(代表)和一个长方形塑料片(四种不同颜色的长方形塑料片分别代表四种不同的),分别用订书钉连接在一个剪好的五边形塑料片(代表)上,制成一个个含有不同碱基的脱氧核苷酸模型。
3.将12个制成的脱氧核苷酸模型,按碱基(从上到下)GAAAGCCAGTA T的顺序依次穿在一条长细铁丝上。
按同样方法制作好DNA的另一条链(注意碱基的顺序及脱氧核苷酸的方向),用订书钉将两条链之间的连接好。
4.将两条铁丝的末端分别拴到另一个硬塑方框一侧的两端,并在所制模型的背侧用两根较粗的铁丝加固。
双手分别提起硬塑方框,拉直双链,旋转一下,即可得到一个DNA分子的模型。
三、结果记录由每小组选一个代表介绍本小组的作品并说明DNA分子结构特点, 老师与其他同学给予评价和记录,并评选出最优秀的制作小组。
四、实验结论DNA分子具有特殊的空间结构规则的双螺旋结构,这一结构的主要特点是:(1)(2)(3)五、实验评价所制作的模型与你的预期相吻合吗?如果不吻合,你认为是什么原因造成的?误区警示本实验制作过程中的注意事项:(1)制作“脱氧核苷酸模型”:按照每个脱氧核苷酸的结构组成,挑选模型零件,组装成若干个脱氧核苷酸。
DNA双螺旋结构

总结: 总结:
由两条链组成,反向平行方式盘旋成双 螺旋结构。 分子中脱氧核糖核酸和磷酸交替连接, 排列在外侧,形成骨架,碱基排列在内 测。 两条链上的碱基通过氢键连接成碱基对, 碱基对遵循碱基互补配对原则。
DNA分子的复制 分子的复制
1.DNA的解旋 的解旋 亲代DNA分子,利用细胞提供的能量,在 解旋酶的作用下,氢键断裂,部分双螺旋链解旋为两条平行 双链。 2.RNA引物的生成 以单股DNA为模板,在引物酶作用下, 引物的生成 合成小段(由几十个核苷酸组成)RNA引物。 3.DNA的生成 以单股DNA为模板,在DNA聚合酶作用下, 的生成 在RNA引物末端合成DNA。 4.切掉引物生成冈崎片段 在核酸酶作用下切掉引物。 切掉引物生成冈崎片段 在DNA聚合酶作用下,将引物部位换上DNA,此时的DNA片 段(由1 000~2 000个核苷酸组成)称为冈崎片段(1968年 日本科学家冈崎等人首先提出的)。 5.DNA片段的连结 片段的连结 在连结酶作用下,将冈崎片段连接 起来,形成一条完整的新的DNA链,新链与旧链构成DNA双 链。
DNA双螺旋结构的特点
碱基互补配对原则: 一、碱基互补配对原则: 碱基互补配对原则 DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G) 和胞嘧啶(C)、胸腺嘧啶(T) 配对碱基总是A与T和G与C。碱基对以氢键维系, A与T 间形成两个氢键,G与C间形成三个氢键。 只有嘌呤与嘧啶间配对才能满足螺旋对于碱基 对空间的要求。
二、DNA双螺旋结构: (1)主链 由脱氧核糖核酸和磷酸基 主链 通过酯键交替连接而成。主链有二 条,它们似“麻花状”绕一共同轴心 以右手方向ห้องสมุดไป่ตู้旋, 相互平行而走向 相反形成双螺旋构型。主链处于螺 旋的外则。 (2)碱基对 碱基位于螺旋的内则,它 碱基对 们以垂直于螺旋轴的取向通过糖苷 键与主链糖基相连 。
dna的二级结构特点

dna的二级结构特点DNA是生物体内遗传信息传递的重要分子,其结构对于生物体的生命活动具有重要意义。
DNA的二级结构是指DNA分子中两条多核苷酸链之间的相互作用。
其中,最为经典的就是DNA双螺旋结构。
DNA双螺旋结构由两条反平行的多核苷酸链组成,这两条链以螺旋的形式缠绕在一起。
螺旋的直径约为2纳米,螺距为3.4纳米。
DNA双螺旋结构的稳定性主要依赖于氢键。
氢键是碱基间的相互作用力,它们保证了两条链之间的紧密联系。
在DNA双螺旋结构中,碱基之间的配对遵循A-T和C-G的规则。
腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,而胞嘧啶(C)与鸟嘌呤(G)之间形成三个氢键。
这种氢键配对使得DNA分子具有较高的稳定性。
DNA的二级结构在生物体内具有重要的功能。
首先,它为遗传信息的传递提供了稳定的模板。
在细胞分裂过程中,DNA通过复制将自己的遗传信息传递给子代,保证生物体的遗传特性。
其次,DNA的双螺旋结构为RNA合成提供了基础。
在转录过程中,DNA的一条链作为模板合成RNA,进而实现遗传信息的表达。
此外,DNA的二级结构还参与了基因表达调控、染色质结构维持等生物过程。
在实际应用中,对DNA二级结构的研究有助于我们深入了解生命现象,为基因工程、生物信息学等领域提供理论基础。
例如,通过研究DNA的结构,科学家们发现了许多与疾病相关的基因突变,为疾病的诊断和治疗提供了线索。
同时,对DNA二级结构的研究也为新型药物设计和基因治疗策略提供了理论依据。
总之,DNA的二级结构在生物体内具有重要意义,它不仅保证了遗传信息的稳定传递,还参与了多种生物过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA(脱氧核糖核酸)是一种生物分子,是生物体内遗传信息的载体。
它由两条反向平行的脱氧核苷酸链缠绕成螺旋结构,这种结构被称为DNA的双螺旋结构。
DNA的双螺旋结构由两条脱氧核苷酸链围绕着一个共同的轴心旋转而成,每条链都由脱氧核苷酸单元组成,其中包括脱氧核糖、磷酸和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)。
这两条链按照互补配对原则,即A与T配对,C与G配对,相互连接在一起。
DNA的双螺旋结构具有两个主要的平面,一个是螺旋平面,另一个是垂直于螺旋平面的平面。
在螺旋平面上,脱氧核苷酸链呈右手螺旋结构,而在垂直平面上,脱氧核苷酸链呈左手螺旋结构。
DNA的双螺旋结构是生命的基础之一,它存储了生物体的遗传信息,并且能够通过DNA复制和基因表达来传递这些信息。