细胞内的物质转运和质膜传递机制
细胞膜与物质跨膜运输

2、胆固醇
双性分子。只存在于真核细胞 膜上,含量一般不超过膜脂的 1/3,植物细胞膜中含量较少。 功能是提高脂双层的力学稳定 性,调节脂双层流动性,降低 水溶性物质的通透性。
非极性尾部 固醇环结构 极性头部
在缺少胆固醇培养基中,不能合 成胆固醇的突变细胞株很快发生 自溶。
2、糖脂
糖脂也是两性分子,结构与磷
小鼠细胞
膜蛋白 (抗原)
人细胞
异核细胞 小鼠膜蛋白抗体 + 荧光素
小鼠膜蛋白抗体 +小 鼠膜蛋白(抗原)
人膜蛋白抗体 + 罗丹明
人膜蛋白抗体+人膜 蛋白(抗原) 孵育(37℃,40分钟)
光致漂白荧光恢复法(FRAP)
Fluorescence recovery after photobleaching
0.23 0.7 1.5 1.5-4 3.2
一、细胞膜的化学组成
红细胞血影(细胞膜最佳研究材料)
成熟的红细胞没有细胞器; 质膜是红细胞唯一的膜结构; 红细胞质膜易于提纯和分离。
是将分离的红细胞放入低渗溶液 中,水渗入到红细胞内部,红细 胞膨胀、破裂,从而释放出血红 蛋白,当红细胞的内容物渗漏之 后、质膜可以重新封闭起来称为 红细胞血影。
质网膜、高尔基复合体膜、溶酶 体膜、核膜等,称为细胞内膜。 除线粒体膜以外的内膜结构共同 构成真核细胞的内膜系统。
生物膜
生物膜(biomembrane)
细胞膜和细胞内膜的总称。
生物膜
细胞膜 细胞内膜: ……
细胞膜 细胞质
任何生物膜在电镜下都呈现“暗—明—暗”
三层结构,故将这三层结构称为单位膜。
生物膜
1.脂双层为液晶态二维流体 生理条件下,膜脂分子既有固体分子排列 的有序性,又具有液体的流动性,是居于 晶态和液态之间的液晶态。 温度的改变使膜可以在液晶态和晶态之间 转换,这种膜脂状态的改变称为相变。发 生相变的临界温度称为膜的相变温度。 液晶态的膜处于流动状态,与运动状态的 膜蛋白协同完成膜的各项功能活动。
《生理学》细胞的基本功能——1细胞的跨膜运输方式

亲水性极性基团 磷酸和碱基) (磷酸和碱基)
二、细胞膜的物质转运功能 半透膜
哪些物质可以通过细胞膜 哪些物质可以通过细胞膜? 物质可以通过细胞膜 这些物质是如何通过细胞膜的? 如何通过细胞膜的 这些物质是如何通过细胞膜的?
O2 , 能源物质 氨基酸 脂类 各种离子等
细
胞
CO2 CO2 代谢尾产物
水的跨膜转运
单纯扩散——水虽是极性分子 水虽是极性分子 单纯扩散 但分子极小,又不带电荷。 但分子极小,又不带电荷。 渗透 (osmosis) 溶液拖曳 (solvent drag) 易化扩散——水通道 (water channel) 易化扩散 水通道 水孔蛋白 (aquaporin, AQP)
Water channel
单纯扩散( (一)单纯扩散(simple diffusion)
一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。 一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。
特点: 特点:
1、顺浓度差 2、不需要膜蛋白帮助 3、不消耗能量 4、转运脂溶性物质(非极性分子)如O2和CO2 转运脂溶性物质(非极性分子)
细胞膜结构 液态镶嵌模型 (fluid mosaic model)
以液态的脂质双分子层为基本框架, 以液态的脂质双分子层为基本框架 , 其中镶嵌有不同生理 功能的蛋白质和少量多糖。 功能的蛋白质和少量多糖。
基架: 基架:液态的脂质双分子层 中间: 中间:镶嵌许多结构和功能 不同的蛋白质
疏水性非极性基团 长烃链) (长烃链)
2. 继发性主动转运
Secondary Active Transport
1)概念:利用原发性主动转运所造成的某种物质的势 概念: 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 转运体蛋白(转运体, 转运体蛋白(转运体,transporter) 2)特点 间接耗能(钠泵) 间接耗能(钠泵) 膜转运体(特殊蛋白质) 膜转运体(特殊蛋白质)
细胞生物学-6物质的跨膜运输与信号传递

受体介导的胞吞作用
受体介导内吞的基本特点
①配体与受体的结合是特异的, 具有选择性; ②要形成特殊包被的内吞泡。将成纤维细胞
培养在加有转铁蛋白-铁标记的低密度脂蛋 白(LDL)的培养基中,可清楚地观察到这一 过程
基本过程
大致分为四个基本过程∶①配体与膜受体结 合形成一个小窝(pit); ② 小窝逐渐向内凹 陷,然后同质膜脱离形成一个被膜小泡;③ 被膜小泡的外被很快解聚, 形成无被小泡, 即初级内体;④ 初级内体与溶酶体融合,吞噬 的物质被溶酶体的酶水解
两个大亚基(α亚基)和两 个小亚基(β亚基)组成。 α亚基是跨膜蛋白,在 膜的内侧有ATP结合位 点;在α亚基上有Na+和 K+结合位点
Na+/K+ ATPase的结构
工作原理
Na+/K+ ATPase 工作原理示意图
ATPase Pumps—Ca2+ 泵 结构
ATPase Pumps—质子泵
协同作用
协同作用
在动物、植物细胞由载体蛋白 介导的协同运输异同点的比较
协同运输的方向
葡萄糖与Na+离子的协同运输
细菌的主动运输
细菌的主动运输—磷酸化运输
• 又称为基团转运。其机理是通过对被转运到细胞内的分子进 行共价修饰(主要是进行磷酸化)使其在细胞中始终维持"较 低"的浓度, 从而保证这种物质不断地沿浓度梯度从细胞外 向细胞内转运
胞饮作用与吞噬作用主要有三点区别
特征 胞饮作用
吞噬作用
内吞泡的大小 小于 150nm
大于 250nm。
转运方式 连续发生的过程
需受体介导的 信号触发过程
内吞泡形成机制 需要笼形蛋白形成包被
生物必修一第四章细胞的物质输入和输出知识点

生物必修一第四章细胞的物质输入和输出知识点
生物必修一第四章关于细胞的物质输入和输出的知识点主要包括:
1. 细胞膜(细胞质膜):细胞膜是细胞的外层边界,通过选择性渗透作用来控制物质
的输入和输出。
2. 渗透:指溶质在溶剂中的扩散。
渗透作用可以使水和其他物质通过细胞膜进入和离
开细胞。
3. 渗透压:指细胞内外水分子浓度的差异所产生的压力。
4. 渗透调节:细胞通过改变渗透物质浓度和水分子的运动来调节细胞内外渗透压的平衡,维持细胞内外环境的稳定。
5. 主动运输:细胞膜通过选择性通道和蛋白质携带器来主动转运物质,需要消耗能量。
6. 被动运输:利用浓度梯度使物质自动通过细胞膜进入或离开细胞,不需消耗能量。
7. 渗透透过细胞膜:水通过细胞膜进入细胞内或离开细胞外的过程,包括均衡渗透、
胀溃和渗透调节等。
8. 胀溃现象:当细胞浸泡在低浓度或高浓度的溶液中时,细胞内外渗透压不平衡,导
致细胞体积增大或减小,最终导致细胞死亡。
9. 胞吞作用:细胞通过细胞膜将固体颗粒或液滴包裹进细胞内部,形成胞吞小泡,并
通过胞吞小泡融合或分泌到细胞外部。
10. 胞吐作用:细胞通过胞吞小泡合并成一个大的胞吐小泡,将内部物质释放到细胞外。
以上是生物必修一第四章细胞的物质输入和输出的一些重要知识点,希望对你有帮助。
第4章细胞膜与物质的跨膜运输

2. 影响膜流动的因素
脂肪酸链的饱和度和长度:脂肪酸链所含双键越 多越不饱和,使膜流动性增加。长链脂肪酸相变 温度高,膜流动性降低。
胆固醇:胆固醇的含量增加会降低膜的流动性。 卵磷脂/鞘磷脂:该比例高则膜流动性增加,是因
为鞘磷脂粘度高于卵磷脂。 其他因素:膜蛋白和膜脂的结合方式、温度、酸
碱度、离子强度等。
功能: 从结构及组分分析, 脂筏在膜内形成有效的平 台, 它有两个特点: 一是蛋白质聚集在脂筏内,便 于相互作用; 二是脂筏提供的环境有利于蛋白质 的构象变化.脂筏与膜的信号转导、蛋白质转运均 有密切的关系。
2020/4/4
27
(五)细胞膜的主要功能
1. 为细胞的生命活动提供相对稳定的内环境; 2. 选择性的物质运输,包括代谢底物的输入与代谢
用。细胞外被、质膜和表层胞质溶胶构成细胞表
面。
2020/4/4
13
一、细胞膜的不对称性
质膜的内外两层的组分和功能有明显 的差异,称为膜的不对称性。 膜脂、膜蛋 白和复合糖在膜上均呈不对称分布,导致 膜功能的不对称性和方向性,即膜内外两 层的流动性不同,使物质传递有一定方向, 信号的接受和传递也有一定方向等。
2020/4/4
24
(二)单位模型(unit membrane model)
J. D. Robertson 1959年用超 薄切片技术获得了清晰的细胞 膜照片,显示暗-明-暗三层结 构,厚约7.5nm。这就是所谓 的“单位膜”模型。它由厚约 3.5nm的双层脂分子和内外表 面各厚约2nm的蛋白质构成。 单位膜模型的不足之处在于把 膜的动态结构描写成静止的不 变的。
膜脂的不对称性还表现在膜表面具有胆固醇 和鞘磷脂等形成的微结构域-脂筏。
细胞膜的物质转运功能

细胞膜的物质转运功能作者:***来源:《中学生理科应试》2024年第04期19世纪末,德国生物学家Pfeffer提出了“细胞内压力”理论:细胞能通过消耗能量来改变细胞内外物质的浓度差异,这一理论并未得到广泛认同。
20世纪50年代,比利时生物化学家De Duve等人首次发现了ATP酶的存在,并证明它在细胞内的能量代谢过程中起着关键作用,这些发现为后来主动运输的研究奠定了基础。
一、原发性主动转运原发性主动转运指细胞通过直接消耗代谢能量驱动某些特定物质从低浓度一侧向高浓度一侧的跨膜运输,这种方式的主要特点是需要直接的能量供应,并且不受其他物质的运输影响。
1.钠钾泵钠钾泵是一种存在于细胞膜上的蛋白质,负责维持细胞内离子浓度的平衡。
它是细胞能量代谢和信号传导的重要组成部分。
它利用ATP的能量,将细胞内的3个Na+排出到细胞外,同时将2个K+摄入到细胞内。
这种离子交换使得细胞内外的离子浓度保持一定的比例,从而维持细胞的正常功能,如维持细胞膜电位的稳定,保证神经冲动的传递和肌肉收缩等功能的正常进行。
2.质子泵(1)P型质子泵,称为H+泵或H+-ATP水解酶,分布在植物细胞、真菌细胞和细菌细胞的质膜上,通过水解ATP并使自身磷酸化,引起自身构象变化,使得H+泵出细胞,使细胞膜周围环境pH<7。
(2)V型质子泵,通过水解A'rP来驱动其功能,本身不发生磷酸化,主要作用是从细胞质基质中氢离子(H*)泵入溶酶体或液泡中。
维持溶酶体和大型液泡内的低pH环境。
(3)F型质子泵(ATP合酶)顺浓度梯度运输H+,将释放的能量用于ATP的合成,可在线粒体的氧化磷酸化和叶绿体的光合磷酸化过程中观察到。
(4)特色的质子泵——光驱动泵,如绿色植物叶绿体类囊体膜上的一种由光驱动的质子泵,吸收光能后从类囊体外部向内部逆浓度输送2个H+。
例1 某细菌细胞膜上的光驱动蛋白可作为“质子泵”可将H+泵到细胞外,形成的H+浓度梯度可用于ATP合成等生命活动。
第四章 细胞的物质运输

与胞吞作用相反的过程,与分泌活动相关
结构性分泌、调节性分泌
结构性分泌途径 (constitutive pathway of secretion) 分泌蛋白合成后立即包装入高尔基复合体的分泌囊泡中,然后 被迅速带到细胞膜处排出。 存在于多数细胞中
调节性分泌途径 (regulated pathway of secretion)
①溶酶体酶在内质网合成并部分糖基化,然后运送到GC
②在GC的顺面扁平囊,溶酶体酶蛋白上部分甘露糖被磷酸 化为M6P ③在GC的反面扁平囊,M6P被膜上受体识别并结合,被 选择性富集,并以出芽方式形成运输小泡
④运输小泡与内体融合形成内溶酶体
⑤M6P与受体分离,受体通过芽生小泡被转运回GC膜 ⑥ M6P脱磷酸根成为甘露糖
自动力蛋白
第四节 细胞内蛋白质的加工和分泌
一、蛋白质在内质网的加工修饰
内质网膜腔侧面上进行
糖基化(N-连接) 二硫键的修饰
蛋白质的正确折叠
•N-连接寡糖来源:
多萜醇
•寡糖组成:由2 N-乙
酰葡萄糖胺,9 甘露
糖、3 葡萄糖 酶:糖基转移酶 •初步加工:3个葡萄 糖在RER内切除
二、蛋白质在高尔基体的加工修饰
GC扁平囊不同区室进行
N-连接寡糖进一步加工:
高甘露糖型 复合型
高甘露糖型:
GC中再切除3 甘露糖,最后为2 N-乙酰葡萄糖胺
和6 甘露糖
复合型:
GC中切除6 甘露糖,加上3 N-乙酰葡萄糖胺、3 半
乳糖、3 唾液酸、岩藻糖
O-连接寡糖链形成:
全部在高尔基复合体内进行 先连接N -乙酰葡萄糖胺再连接其他糖基
细胞内膜泡运输的类型及其特点

细胞内膜泡运输是一种细胞内的物质传递过程,它涉及将物质从细胞质膜转移到内膜系统中的内质网、高尔基体、溶酶体和分泌泡等结构。
细胞内膜泡运输有多种类型,包括出芽运输、跨膜运输、网格蛋白依赖的运输和C盈泡依赖的运输等,以下是每种类型的特点。
1. 出芽运输:这是细胞内膜泡运输的最基本形式,即细胞内膜泡的形成是通过细胞膜上突起的芽体形成。
这种运输的速度较慢,但可实现长时间的跨膜运输,并能够在细胞内进行长距离的物质传递。
2. 跨膜运输:细胞可以通过一系列的跨膜运输机制将物质从细胞质膜转移到内膜系统。
这些机制包括通过多种转运蛋白介导的主动运输、易化扩散等被动运输,以及类似于小肠吸收养分的门控转运。
这种跨膜运输的特点是选择性高,高效地将特定的物质转移到特定位置。
3. 网格蛋白依赖的运输:网格蛋白是一种包被蛋白质,用于将货物从细胞质膜或内膜系统中的凹陷区域转移到内质网等结构。
通过网格蛋白包被的货物在膜之间形成囊泡,这些囊泡随后与目标结构融合。
这种运输的特点是快速、高效,并且具有高度选择性和特异性。
4. C盈泡依赖的运输:C盈泡是一种细胞器,参与蛋白质的合成、折叠和修饰等过程。
当C 盈泡与细胞膜融合时,可以形成内膜泡,将蛋白质从C盈泡系统转移到内质网等结构中。
这种运输的特点是高效、快速,并且能够实现从细胞质膜到内质网的跨膜运输。
总的来说,细胞内膜泡运输具有选择性、高效性和准确性的特点,是细胞内物质分拣和定位的关键机制之一。
它通过不同的运输类型实现跨膜和长距离的物质传递,从而保证细胞内各种功能的正常进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞内的物质转运和质膜传递机制细胞是生物体中最基本的单位,是生命存在的基础。
而细胞内的物质传递和质膜传递机制则是维持生命的基础。
本文将从细胞内学的角度来探讨细胞内物质转运和质膜传递机制。
细胞内物质转运
细胞内物质转运是指分子、离子等物质在细胞内的传递过程。
这些物质在细胞内的传递涉及到多种因素,如分子大小、电荷、浓度梯度、基质pH值等等。
在细胞内物质传递过程中,主要有以下几种机制:
扩散
扩散是指物质在不需要另一个作用力推动的情况下,由高浓度区向低浓度区移动的过程。
扩散是一种非常普遍的现象,常见于细胞膜、胞质和细胞核的内部。
主动转运
主动转运是指在不依赖浓度梯度的情况下将物质从低浓度区传递到高浓度区。
这个过程通常需要耗费能量,并且需要一些特殊的细胞器帮助进行。
被动转运
被动转运是指物质在不依赖能源的情况下由高浓度区向低浓度区进行传递。
这个过程通常得益于扩散的作用。
细胞内的物质转运是细胞内物质传递的重要组成部分,它保障了细胞内各结构的有序运转,维护了细胞正常的代谢过程。
质膜传递机制
质膜是细胞外和细胞内之间的分隔膜,是细胞内部结构和外部环境之间的重要通道。
而质膜传递机制则是指,物质从细胞外或细胞内通过膜进入或出去的过程。
在质膜传递过程中,主要有以下几种机制:
扩散传递
在膜的存在下,物质可通过扩散直接传递。
例如,氧气、二氧化碳等小分子物质就可以通过生物膜传递。
主动传递
主动传递是指物质在不依赖浓度梯度的情况下由低浓度区向高浓度区进行传递。
这一转移通常需要耗费能量,例如ATP。
被动传递
被动传递是指物质在不依赖能源的情况下从高浓度区传递到低浓度区。
这个过程也得益于扩散的作用。
质膜传递机制是一个复杂而广泛的主题,而且其机制和生物体各个层面的相互作用非常密切,涉及诸如信号转导、细胞-细胞相互作用、病原体侵入等等多个方面的内容。
总结
细胞内的物质转运和质膜传递机制是一个非常重要的话题,它是维持生命正常运转的基础。
在探讨这一话题的时候,我们需要考虑诸多因素,如不同的物质构成、细胞内部各结构的相互作用等等。
正是因为这一机制的复杂性和多层次的关系,才使我们需要更加深入地去研究和探讨。
只有加深对这一话题的理解,才能在临床方面更好地应用和推广。