冶金炉渣结构理论

合集下载

冶金炉渣结构理论

冶金炉渣结构理论

4.2 三元系相图的基本知识及基本类型
4.2.1 三元系相图的基本知识 4.2.1.1 三元系立体相图
三元凝聚体系,自由度数 最大为3,表明体系有三个 独立变量,因此,相图要 用三维空间图形表达
C
共晶体的三元相图的空间图形
4.2 三元系相图的基本知识及基本类型
(1)三元系组成的表示法—浓度三角形
❖ 简单共晶体的三元立体相图:
初晶面:曲面tAe2’E’e1’、tBe1’E’e3’、 tCe3’E’e2’ 是固、液两相平衡共存的液相 面,自由度数为2(f=3+l-2=2)。 二元共晶线:液相面两两相交的交线,是两组 分同时从液相析出的液相线,此曲线上是液 相及两固相平衡,自由度数为l。 三元共晶点:二元共晶线最后交于E‘点,3组 分同时从液相析出。此点是四相平衡共存, 自由度数为零,是体系的最后凝固点。
4.2 三元系相图的基本知识及基本类型
4.2.2 三元系相图的基本类型
4.2.2.1 具有简单三元共晶体的相图
由三组分中两两形成二元共晶体构成的三元共晶系相图。 ❖ 结晶过程分析
4.2 三元系相图的基本知识及基本类型
❖ 结晶过程中各相量及成分的变 化:原物系点、液相点及析出的固 相点遵循直线规则,液相点及析出 的固相量可由杠杆原理计算。
❖ 浓度三角形内某点浓度的确定: ① 垂线长度法:由等边三角形内任意点向三边作垂线,每根垂线之长
代表它所指向的该顶角组分的浓度。
② 平行线法:通过等边三角形内任意点作3根平行于各边的直线,其在
边上所截线段之长,分别代表该平行线所对应顶角组分的浓度,而在三边 上所截线段长度之和等于三角形的边长。
4.2 三元系相图的基本知识及基本类型
(1)CaO—Si02系相图

冶金炉渣电子理论的研究

冶金炉渣电子理论的研究
学 与 量 子 统 计 原 理 , 出 炉 渣 正 规 离 子 理 论 给 出 得 的炉 渣 组 元 i 活 度 仅 是 局 部 活 度 的 结 论 。 炉 渣 的
点 状夹 杂物 , 接 影 响到 轴 承 钢 的 质量 。然 而 到 直
目前 为 止 , 冶 金 工 艺 理 论 中 , 钢 液 脱 氢 和 点 状 在 对
外精炼 技术 、 高功 率 电炉技 术 以及连铸 技 术等 , 超 其 中要着重 指 出 的是氧气 炼钢 技术 与氩 氧精 炼不 锈 钢技 术 的应用 与实 践 。这些 技术 的应 用不 仅使
冶 金 生 产 告 别 了 用 铁 矿 石 脱 碳 炼 钢 的 历 史 , 重 更
年获 得一 项前 苏联 国家发 明专利 j, 基 本原 理 其 是 : 大气 条 件 下 向钢 液 中 吹人 氩一 在 氯混 合 气 体 ,
夹 杂物 生成 和消 除 的机理 还没 有完 全研 究清 楚 。
在 炉 渣 电 子 理 论 基 本 原 理 的 指 导 下 . 究 人 研 员 已 经 成 功 地 在 大 气 条 件 下 , 碳 素 工 具 钢 中 氢 将 的 质 量 分 数 由 0 0 06 降 至 0 0 01/。这 一 研 . 0 . 0 6 9 究 成 果 已 在 前 苏 联 钢 厂 完 成 工 业 实 验 , 于 l 9 并 91
电子 热力学 函数理论 完 成 了炉渣 组 元 i 化学 势 的 推导 , 对气 相 中氧 分 压 具 有 电子 化 学 势 内涵 进 行 了论 述 , 得 出炉渣 局部 活度 的理 论计 算式 。 并 2 0世 纪 5 0年 代 , 冶金 生 产 开始 采 用 氧气 炼
钢 工 艺 , 殊 钢 生 产 采 用 了 氧 气 、 氧 、 空 等 炉 特 氩 真

炉渣基础知识

炉渣基础知识

炉渣基础知识炉渣是火法冶金过程中生成的浮在金属等液态物质外表的熔体,其组成以氧化物(二氧化硅,氧化铝,氧化钙,氧化镁)为主,还常含有硫化物并夹带少量金属。

以下是由我整理关于炉渣学问的内容,盼望大家喜爱!炉渣的介绍又称溶渣。

火法冶金过程中生成的浮在金属等液态物质外表的熔体,其组成以氧化物(二氧化硅,氧化铝,氧化钙,氧化镁)为主,还常含有硫化物并夹带少量金属。

炉渣的组分靠参加适量的熔剂(石灰、石英石、萤石等)进展调整。

在冶炼过程中通过对炉渣组分和性质的限制,能使脉石和氧化杂质的产物与熔融金属或硫顺当分别,脱除金属中的害杂质,汲取液态金属中的非金属夹杂物不干脆受炉气污染,富集有用的金属氧化物;在电炉冶炼中还是电阻发热体。

炉渣在保证冶炼操作顺当进展、冶炼产品质量、金属回收率等各方面起着确定性作用,例如炼钢作业中有炼好渣,才能炼好钢的说法。

依据冶金过程的不同,炉渣可分为熔炼渣、精炼渣、合成渣;依据炉渣性质,有碱性渣、酸性渣和中性渣之分。

很多炉渣有重要用处。

例如高炉渣可作水泥原料;高磷渣可作肥料;含钒、钛渣分别可作为提炼钒、钛的原料等。

有些炉渣可用来制炉渣水泥、炉渣砖、炉渣玻璃等。

相关阅读:火法冶金的操作流程矿石打算选矿得到的细粒精矿不易干脆参加鼓风炉(或炼铁高炉),须先参加冶金熔剂(能与矿石中所含的脉石氧化物、有害杂质氧化物作用的物质),加热至低于炉料的熔点烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;或加水混捏;然后装入鼓风炉内冶炼。

硫化物精矿在空气中焙烧的主要目的是:除去硫和易挥发的杂质,并使之转变成金属氧化物,以便进展复原冶炼;使硫化物成为硫酸盐,随后用湿法浸取;局部除硫,使其在造锍熔炼中成为由几种硫化物组成的熔锍。

冶炼此过程形成由脉石、熔剂及燃料灰分融合而成的炉渣和熔锍(有色重金属硫化物与铁的硫化物的共熔体)或含有少量杂质的金属液。

有复原冶炼、氧化吹炼和造锍熔炼3种冶炼方式:复原冶炼:是在复原气氛下的鼓风炉内进展。

有关炼钢炉渣的基本知识

有关炼钢炉渣的基本知识

3炉渣化学组成
不同冶炼方法对熔渣的要求不一样,其成分也不同; 同一冶炼方法的不同阶段熔渣成分是不断变化的。碱 性渣可以去除钢中的有害元素P、S,酸性渣可以降低 气体和夹杂,氧化渣可以向熔池传氧,还原渣可以脱 氧并提高脱硫效率。 根据炉渣的来源,炉渣化学组成见表5-4。(P52)
4炼钢生产过程中熔渣的主要作用
炼钢炉渣
一 有关炼钢炉渣的基本知识 二 炼钢过程中的主要渣系相图 三 熔渣的结构理论
一 有关炼钢炉渣的基本知识
1炼钢炉渣分类 2熔渣组成的主要来源 3炉渣化学组成 4炼钢生产过程中熔渣的主要作用 5固体保护渣用于连铸对提高产品的质量和产量起显著的 作用

1炼钢炉渣分类
根据炼钢过程目的的不同,炼钢炉渣可分为 类: 炼钢炉渣可分为4类 炼钢炉渣可分为 1)以铁水预脱硫为目的的还原渣。 2)精炼粗金属,其中元素氧化形成的氧化物组成的炉 渣,称为氧化渣,主要指转炉炼钢渣。 3)将原料中的某些有用成分富集于炉渣中,以利于下 道工序将它回收的炉渣,称为富集渣,例如吹炼含钒、 铌生铁得到的钒渣、铌渣等。 4)采用各种造渣材料预先配制的炉渣,称为合成渣。 如连铸用保护渣。炼钢工艺的发展对熔渣提出了新要 求,应选择、采用合适的渣系以满足冶金生产的需要。
3熔渣的分子离子共存理论
综合了分子理论和离子理论的优点,分子离子共存理论认为: (1)熔渣由简单阳离子和阴离子Fe2+、Ca2+、 O2-、S2-、F 等及未分解的化合物SiO2 、硅酸盐、磷酸盐、铝酸盐等组成; (2)离子和分子之间存在着动平衡关系,其反应遵守质量作 用定律; (3)认为熔渣中分子、离子是理想溶液。
2熔渣组成的主要来源
(1)生铁或废钢中所含元素(铝、锰、磷、硫、钒、 铬、铁等)氧化时形成的氧化物; (2)作为氧化剂或冷却剂使用的矿石和烧结矿等; (3)金属材料带入的泥沙或铁锈; (4)加入的造渣材料(石灰、石灰石、萤石、铁钒土、 粘土砖块等); (5)由炉衬浸蚀熔于炉渣的耐火材料; (6)脱氧剂、合金的脱氧产物,熔渣的脱硫产物。

有色金属冶金原理 火法冶金部分

有色金属冶金原理   火法冶金部分

炉渣酸碱度的表示:常用硅酸度和碱度来表示。 硅酸度=酸性氧化物中氧的质量之和/碱性氧化物中氧的 质量之和。 碱度=氧化钙(%质量)/氧化硅(%质量) 例题:
某铅鼓风炉还原炉渣成分为SiO2 36%、 CaO 10%、FeO 40%、 ZnO 8%。 酸性氧化物: SiO2 36 碱性氧化物: CaO 、FeO 、 ZnO 炉渣的硅酸度=
用等熔化温度曲线,可以查已知成分炉 渣的熔化温度。 熔化温度的变化是有规律的。即化合物 熔点最高,并向二元包晶点、共晶点方 向不断降低,再由二元包晶点、共晶点 向三元包晶点、三元共晶点方向降低, 三元共晶点的熔化温度最低。
第四节 熔融炉渣的结构
炉渣的结构与物理化学性能密切相关 目前难于直接测定炉渣的结构,可间接 推测。 存在两种理论:分子理论和离子理论。
第一节 概述
炉渣:熔化后称熔渣,是火法冶金的一 种产物。其组成主要来自矿石、溶剂和 燃料灰分中的造渣成分。主要是氧化物。 炉渣的作用: 主要作用是使矿石和溶剂中的脉石和 燃料中的灰分集中,并在高温下与主要 的冶炼产物金属、锍等分离。
炉渣的作用:
1.
2.
3.
4.
5.
6.
在炉渣中发生金属液滴或锍液滴的沉降分离,沉降 分离的完全程度对金属在炉渣中的机械夹杂损失起 着决定性作用。 对鼓风炉这一类竖炉来说,炉内可能达到的最高温 度决定于炉渣的熔化温度。 在金属和合金的熔炼和精炼时,炉渣与金属熔体的 组分相互进行反应,从而可以通过炉渣对杂质的脱 除和浓度加以控制。 在某些情况下,炉渣不是冶炼厂的废弃物,而是中 间产物。 熔渣是一种介质,在其中进行着许多极为重要的冶 金反应。金属在炉渣中的损失主要决定于这些反应 的完全程度。 在用矿热式电炉冶炼时,炉渣以及电极周围的气膜 起着电阻作用,并可用调节电极插入深度的方法来 调节电炉的功率。

炉渣的来源、组成和作用

炉渣的来源、组成和作用

在文学家的语言里,钢和渣是完全对立的,钢表示人的坚强,渣代表坏人坏事、无可救药。

但在冶金家的眼里,钢和渣是统一的:没有好渣,就没有好钢;把渣炼好,好钢自然就产生了。

所以,炼钢就是炼渣。

渣由熔化的氧化物形成。

炼钢反应产生的二氧化硅、氧化锰、五氧化二磷和氧化铁都进入到渣中。

为了造渣儿加入熔剂,其中含有氧化钙、氧化锰、氧化镁、三氧化二铝、氧化钙等。

钢中的硫也会成为硫化物转入渣中。

特殊情况下还会有其他氧化物,例如炼不锈钢时有氧化铬,炼高速工具钢时有氧化钨等。

所以,熔渣是以多种氧化物为主的复杂溶液。

酸性渣的主体是CaO – SiO2 – MnO – FeO 三种氧化物。

碱性氧化渣则以CaO – SiO2 –FeO 三组原为代表,其他物质按其性质归入某一类,如P2O5 呈酸性归入SiO2类,MnO带氧化性归入FeO 类。

碱性还原渣以CaO – SiO2 – Al2O3 三组元为代表。

炼钢实际上就是对生铁的一种精炼过程。

转炉炼钢:转炉的炉体可以转动,用钢板做外壳,里面用耐火材料做内衬。

转炉炼钢时不需要再额外加热,因为铁水本来就是高温的,它内部还在继续着发热的氧化反应。

这种反应来自铁水中硅、碳以及吹入氧气。

因为不需要再用燃料加热,故而降低了能源消耗,所以被普遍应用于炼钢。

吹入炉内的氧气与铁水中的碳发生反应后,铁水中的碳含量就会减少而变成钢了。

这种反应本身就会发出热量来,因而铁水不但会继续保持着熔化状态,而且可能会越来越热。

因此,为调整铁水的适合温度,人们还会再加入一些废钢及少量的冷生铁块和矿石等。

同时也要加入一些石灰、石英、萤石等,这些物质可以与铁水在变成钢水时产生的废物形成渣子。

因此,它们被称为造渣料。

转炉炼钢工艺流程:高炉铁水→铁水预处理→复吹转炉炼钢→炉外精炼→连铸→热轧电炉炼钢:电弧炉炼钢的热源是电能记电弧炉内有石墨做成的电极,电极的端头与炉料之间可以发出强烈的电弧,类似我们看到的闪电,具有极高的热能。

炉渣性质和活度计算-7

炉渣性质和活度计算-7

2.炉渣结构理论 2.炉渣结构理论
a.分子结构假说的要点 . (1)分子结构假说认为,炉渣是由简单氧化物或曰自由氧化物分子及 )分子结构假说认为, 其相互作用形成的复杂化合物分子所组成。该假说规定的简单氧化物 其相互作用形成的复杂化合物分子所组成 。 该假说规定的简单氧化物 分子有: 分子有 : CaO、MgO、MnO、FeO、SiO2 、 P2O5 、 Fe2O3 、 Al2O3 等 。 、 、 、 、 复杂化合物有 硅 酸 盐 : CaO•SiO2 、 2CaO•SiO2 、 3CaO•SiO2 、 2FeO•SiO2 、 • • • • 2MnO•SiO2等; • 磷酸盐: 磷酸盐:3CaO•P2O5、4CaO•P2O5等; • • 铝酸盐: 铝酸盐:2CaO•Al2O3等; • 铁酸盐: 铁酸盐:CaO•Fe2O3、3CaO•Fe2O3等。 (2)分子结构假说认为,炉渣中只有自由氧化物才能参与金属液间 )分子结构假说认为, 的反应。已经结合为复杂化合物的氧化物不再参与反应。 的反应。已经结合为复杂化合物的氧化物不再参与反应。
熔渣的化学性质375935lg可以用炉渣金属的平衡实验结果来计算然后依上式转化为c熔渣的硫化物容量一般需要实验测定或在实验数据的基础上建立半经验的模型估算通过与流动混合气体的平衡实验测定熔渣的硫化物容量c通过与金属液相平衡的实验测定熔渣的硫化物容量利用熔渣的碱度求硫化物容量高炉渣系3
熔渣的化学性质及组元 活度计算
2.炉渣结构理论 2.炉渣结构理论
例如,炉渣中只有自由 才参与钢渣的脱硫、 例如,炉渣中只有自由CaO才参与钢渣的脱硫、脱磷反应,而已 才参与钢渣的脱硫 脱磷反应, 经结合成2CaO•SiO2、3CaO•SiO2中的 中的CaO不再起脱硫、脱磷作用。 不再起脱硫、 经结合成 不再起脱硫 脱磷作用。 又如,炉渣的氧化能力只取决于渣中自由 的浓度, 又如,炉渣的氧化能力只取决于渣中自由FeO的浓度,而已经结合成 的浓度 2FeO•SiO2中的 中的FeO不再参与炉渣 金属液间的氧化反应。所以,当 不再参与炉渣—金属液间的氧化反应 不再参与炉渣 金属液间的氧化反应。所以, 向渣中加入SiO2时,由于 由于SiO2与CaO、FeO生成了复杂化合物,降低 生成了复杂化合物, 向渣中加入 、 生成了复杂化合物 了渣中自由CaO、FeO的浓度,炉渣的脱硫、脱磷能力及氧化能力均 的浓度, 了渣中自由 、 的浓度 炉渣的脱硫、 随之降低。 随之降低。 因此,炉渣和金属液间的化学反应常用物质的分子式表出, 因此,炉渣和金属液间的化学反应常用物质的分子式表出,它能 简单、直观地说明炉渣组成对反应平衡移动的作用。 简单、直观地说明炉渣组成对反应平衡移动的作用。 在假定炉渣是理想溶液时,自由氧化物的浓度就等于其活度。自由氧 假定炉渣是理想溶液时 自由氧化物的浓度就等于其活度。 化物的浓度等于化学分析所测定的氧化物总浓度与该氧化物结合浓度 之差, 之差,即

冶金原理精品课程-冶金炉渣

冶金原理精品课程-冶金炉渣

冶金原理精品课程
下一节
解决思路
一)了解炉渣中氧化物的分类 二)通过硅酸度、碱度控制渣型
冶金原理精品课程
上一节
教学内容

一)氧化物的分类 二)来自渣酸、碱度的计算冶金原理精品课程
一)氧化物的分类
1、冶金炉渣是极为复杂的体系,常由五、六 种或更多的氧化物组成,并含有如氟化物、 硫化物等化合物。 2、炉渣中含量最多的氧化物通常只有三个, 其总含量可达80%以上。对有色冶金中的大 多数炉渣来说,这三种氧化物是 SiO2 、 FeO 、 CaO,而另一些有色冶金炉渣则为 SiO2 、CaO、Al2O3
1、SiO2-CaO二元系

从图1-1可见,各种硅酸钙盐的熔化 温度都很高,熔点低于1873Κ的硅酸钙位 于含CaO32~59%的狭窄组成范围内,而 且如在含CaO59%时再增加CaO,则熔点将 急剧升高。所以纯石灰质的硅酸盐在熔化 温度上就不适于用作有色金属冶炼渣。但 CaO能使炉渣的密度降低,且石灰质硅酸 盐溶解重金属硫化物的能力比较小,所以 作为一个造渣成分,还是有其有利的一面
冶金原理精品课程
2、FeO-SiO2二元系

由图1-2可见,当SiO2含量在30%左 右时,系统的熔化温度最低(1460Κ左 右),与有色冶炼炉渣的熔化温度相近。 因此,单就熔点来说,理论上用熔化温度 为1473Κ,而成为接近纯2FeO· 2的炉 SiO 渣进行造硫或还原熔炼是可行的。
冶金原理精品课程
冶金原理精品课程
2、FeO-SiO2二元系


在图上部算出了液相中Fe2O3含量随着SiO2含量 而改变的曲线。当液相成分接近于铁橄榄石(2 FeO· 2)时,Fe2O3含量为2.25%。 SiO 如图1-2所示,这个二元系只有一个稳定的 化合物,叫做铁橄榄石,其熔点为1478Κ,它的 液相线是平滑的,说明它熔化后易分解。此外, 这个二元系有两个共晶,其共晶温度几乎相等 (1450Κ和1451Κ)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.3 二元系相图的基本类型 ❖曲线:饱和溶解度线。对
于液相线,它也是熔化终了 温度线,有时也表示液相分 层。自由度数:1,平衡相 数:2
❖垂直线:两组元生成化合
物。自由度数:1,平衡相 数:1
❖水平线:表示有晶型转变
或化学反应发生。自由度 数:0,平衡相数:3
4.1 钢铁冶金的主要二元渣系相图
即液相在固相S3周围与之反应,形成另外两个固相。这是 三元包晶反应,又称为三元转熔反应。它与二元包晶反应相似, 但不同的是却形成了两个固相。
4.2 三元系相图的基本知识及基本类型
4,2.1.2 三元立体相图的平面投影图
❖ 简单共晶体的三元立体相图:
初晶面:曲面tAe2’E’e1’、tBe1’E’e3’、 tCe3’E’e2’ 是固、液两相平衡共存的液相 面,自由度数为2(f=3+l-2=2)。 二元共晶线:液相面两两相交的交线,是两组 分同时从液相析出的液相线,此曲线上是液 相及两固相平衡,自由度数为l。 三元共晶点:二元共晶线最后交于E‘点,3组 分同时从液相析出。此点是四相平衡共存, 自由度数为零,是体系的最后凝固点。
4.2 三元系相图的基本知识及基本类型
4.2.2.4 具有一个不稳定二元化合物的相图
❖ 特征:浓度三角形某边上形成了一个不稳定的二元化合物。
❖三角形内箭头指向代 表温度下降,E点为三 元系的最低凝固点 ❖位于三角形ADC内的 物系点发生转熔反应后, 无液相剩余,最后在P 点最后冷凝 ❖位于三角形BDC内的 物系点发生转熔反应后, 有液相剩余,最后在E 点最后冷凝
4.2 三元系相图的基本知识及基本类型
❖平面投影相图:
❖除固相已分解,或仅在熔体中存在的物质外,体系中所有组 元及其化合物都有液相面。组元及其化合物数之和等于液相面 数,且在浓度三角形中,同分化合物的组成点都落在自己的液 相面内,异分化合物的组成点都落在自己的液相面外。
4.2 三元系相图的基本知识及基本类型
4.1 钢铁冶金的主要二元渣系相图
4.1.4 钢铁冶金的主要二元渣系相图
(1)CaO—Si02系相图
❖两个稳定化合物,Ca0·Si02(CS) 和2Cao·Si02(C2S) ;有两个不稳定 化合物3CaO·Si02(3CS) 3❖CaC0a·O-2CS2Si系O2(:C3具S2有)。一个共晶体:
❖等温线与等温截面图
等温线:等温平面与立体相图的液相面相截,所得截线在浓度 三角面上的投影。也可定义为熔化温度相等的组成点的连线。 等温截面图:在某一温度下的等温平面与立体相图相截,所得 截面在浓度三角面上的投影。 接界规则:液相区与二 相区的接界是曲线,液 相区与三相区的接界是 点,二相区与三相区的 接界是直线。相邻相区 的相数相差为一个,这 是接界规则。 应用:了解指定温度下, 体系所处相态,以及组 成改变时,体系相态的变化。
4.2 三元系相图的基本知识及基本类型
应用:可直接通过重心规则来求得一个物系或相点O分解为3个 相点的成分。如图4—14,O点犹如△M1M2M3的重心,△M1M2M3内 称为结线三角形。利用杠杆原理,可得出物系O分解后M1、M2、 M3物系的质量或质量分数:

4.2 三元系相图的基本知识及基本类型
4.1 钢铁冶金的主要二元渣系相图
(6)CaO-Fe203系相图
存在两个不稳定化合物CF、 CF2(1150-1240℃)和一个 稳定化合物C2F
4.2 三元系相图的基本知识及基本类型
4.2.1 三元系相图的基本知识 4.2.1.1 三元系立体相图
三元凝聚体系,自由度数 最大为3,表明体系有三个 独立变量,因此,相图要 用三维空间图形表达
SiO2 晶型转变关系: 第一类(横向):
α石英(六方双锥) α鳞石英(六方晶系板状) α方英石(立方八面体)
第二类(纵向):α、β、γ三种晶型的亚种。晶型结构相同, 只是晶格中原子的位置及四面体间的连接角发生了变化
迅速加热或冷却
4.1 钢铁冶金的主要二元渣系相图
SiO2 三类晶型转变时,会发生体积变化。
4.1 钢铁冶金的主要二元渣系相图
❖CS-SiO2系:包含一个共晶体和两 液相共存的相图,存在共晶反应和
偏晶反应:
共晶反应(1436℃):
L1 CS + SiO2 偏晶反应(1700℃):
L2
L1 + SiO2
❖ 水平线:CS、SiO2 及C2S的多晶 型转变线。
4.1 钢铁冶金的主要二元渣系相图
4.1 钢铁冶金的主要二元渣系相图
4.1.1 相律
描述体系的自由度数f与独立组元数C、平衡共存相数φ及 外界影响因素n之间关系的规律,可用下式表示:
f C n 常压下,n=1 f C 1
体系由化合物和一种以上的元素单质构成时,C等于体系中 化学元素数。
4.1 钢铁冶金的主要二元渣系相图
⑤交叉位规则。在浓度三角形中,组成为M1、M2、M3的3个 物系混合,得到一个位于△M1M2M3之外及M3M1和M3M2边延长线间 范围内的新物系P。 M1、M2、M3及P四者构成的位置关系称为交 叉位或相对位的关系。
P点的位置可由联结PM3, 交M1M2线于M’,应用杠杆原理求得: 由于m1+m2=m’,mp+m3=m’,所以:
L
C2S + C
在1250-1900℃内, C3S稳定存 在,超出此范围,发生共析反应:
元渣系相图
❖ C2S-CS系:具有一个不稳定化 合物(C3S2)的相图,有共晶反应, 也有包晶反应:
共晶反应(1455℃): L1 C2S + CS,
包晶反应(1475℃): L1+ C2S C3S2
4.2 三元系相图的基本知识及基本类型
4.2.2 三元系相图的基本类型
4.2.2.1 具有简单三元共晶体的相图
由三组分中两两形成二元共晶体构成的三元共晶系相图。 ❖ 结晶过程分析
4.2 三元系相图的基本知识及基本类型
❖ 结晶过程中各相量及成分的变 化:原物系点、液相点及析出的固 相点遵循直线规则,液相点及析出 的固相量可由杠杆原理计算。
背向规则:当等比例线 上物系点的组成点,在背 离其所在顶角的方向上移 动(C O1 02)时,体系将 不断析出组分C,而其内组 分C的浓度不断减少,但其 他两组分的浓度比则保持 不变。
4.2 三元系相图的基本知识及基本类型
③直线规则:当三角形内有两个物系M和N组成一个新的物系O 时,那么O点必定落在MN连线上,而其位置可由M及N的质量mM、 mN按杠杆原理确定,即
C
共晶体的三元相图的空间图形
4.2 三元系相图的基本知识及基本类型
(1)三元系组成的表示法—浓度三角形
❖ 浓度三角形内某点浓度的确定: ① 垂线长度法:由等边三角形内任意点向三边作垂线,每根垂线之长
代表它所指向的该顶角组分的浓度。
② 平行线法:通过等边三角形内任意点作3根平行于各边的直线,其在
边上所截线段之长,分别代表该平行线所对应顶角组分的浓度,而在三边 上所截线段长度之和等于三角形的边长。
4.1 钢铁冶金的主要二元渣系相图
❖ CS有两种晶型:αCS(假硅灰石)与βCS。后者在1210℃时 转变成同分熔化化合物的αCS(熔点为1544℃)。 ❖ C2S的晶型转变如下:
C2S有4种晶型:α、α’、β、γ。其中α’C2S有亚种 βC2S,它们可在675℃可逆而迅速地转变为βC2S。α’C2S γC2S时,体积增大约10%。
4.1 钢铁冶金的主要二元渣系相图
(2)Al2O3—Si02系相图
一般认为CaO-Si02系存在一个不稳定化合物(A3S2),分别存 在一个共晶反应和包晶反应:
共晶反应: L SiO2 + A3S2 包晶反应: L + A2O3 A3S2
4.1 钢铁冶金的主要二元渣系相图
(3)CaO-A203系相图
4.1.2 相图
什么是相图? 相图是描述凝聚相体系的组成和温度的相平衡关系
相图的作用 确定物质在高温下相互反应,形成不同相组分和其有关参数
及各相在不同条件下的相互转变关系,为选择某种性能的相成 分提供依据 相图的绘制方法
①实验测定法:淬冷法,热分析法 ②热力学计算法
4.1 钢铁冶金的主要二元渣系相图
液相成分变化的途径:
固相成分变化的途径:
4.2 三元系相图的基本知识及基本类型
4.2.2.2 具有一个稳定的二元化合物的相图
浓度三角形某边上形成了一个稳定的二元化合物。可分解 为两个简单三元共晶体的相图。鞍心点e3
4.2 三元系相图的基本知识及基本类型
4.2.2.3 具有稳定三元化合物的相图
浓度三角形中形成了一个稳定 的三元化合物。可分解为三个 简单三元共晶体的相图
4 冶金炉渣
❖ 炉渣及其分类
炉渣是火法冶金中形成的以氧化物为主要成分的多组分熔体, 根据冶炼过程目的的不同,炉渣可分为下列4类:
1)还原渣:以矿石或精矿为原料进行还原熔炼,未被还原 的氧化物和加人的熔剂形成的炉渣,如高炉渣;
2)精炼渣或氧化渣:精炼粗金属,由其中元素氧化形成的 氧化物组成的炉渣,如炼钢渣;
存在三个稳定化合物C12A7、 CA、CA2,可分解为四个二 元系来分析。
C12A7-CA和CA-CA2为生成共 晶的二元系,CaO-C12A7和 CA2-A2O3为既有共晶也有包 晶反应的二元系。
4.1 钢铁冶金的主要二元渣系相图
(4)FeO-SiO2系相图
存在一个稳定化合物F2S, 可分解为两个二元系来分析:
化学反应的类型: 1)分解类型 ① 共晶反应:液 固1+固2 ② 共析反应:固3 固1+固2 ③ 偏晶反应:液1 液2+固1 2)化合类型 ① 包晶反应(转熔反应):液+固1 固2 ② 包析反应:固1+固2 固3
❖曲线与水平线的交点:表示三相共存,它可能是共 晶点、偏晶点和包晶点,当化学反应在固相之间进行 时,可能是共析点和包析点。自由度数:0,平衡相 数:3 ❖线与线围成的区域:单相或两相区。单相区自由度 数:2,平衡相数:1;两相区自由度数:1,平衡相数:2
相关文档
最新文档