高效液相色谱法测定邻苯二甲酸酯实验报告记录

合集下载

高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯实验报告实验目的:1.学习掌握高效液相色谱法(HPLC)的基本原理和操作方法;2.通过测定邻苯二甲酸酯的含量,了解其在环境中的污染状况。

实验原理:高效液相色谱法是一种常用的分析技术,具有高分辨率、高灵敏度和高重复性的特点。

此实验中使用的HPLC仪器由进样系统、流动相系统、色谱柱和检测器组成。

样品进样后,通过流动相在色谱柱中分离,不同组分按照特定的时间顺序通过,再通过检测器检测并计算得到定量结果。

实验步骤:1.仪器和色谱柱的准备:打开和保持HPLC仪器的电源,并预热至工作温度。

选择合适的色谱柱,并平衡至稳定状态。

2.样品的制备和进样:取一定质量的待测样品,加入适量的提取液,并充分混合。

用适当的过滤器进行过滤,将过滤后的样品进样到色谱柱中。

3.进样和流动相参数的设置:根据样品的性质和分析要求,设置进样量和流动相组成。

常用的流动相为二氯甲烷和甲醇的混合物。

4.色谱柱运行:开启HPLC仪器,并调整流动相的流速和温度。

根据不同的物质特性,选择合适的梯度程序进行分离。

在分离过程中,对流动相温度和流速进行实时监测和调整。

5.检测器的设置和数据处理:选择合适的检测器,并设置检测参数。

在检测过程中,记录不同时间点的信号强度,并输入到计算机软件中进行峰面积和浓度的计算。

实验结果:根据上述实验步骤,测定了待测样品中邻苯二甲酸酯的含量。

根据HPLC测定结果,经过数据处理和计算,得到待测样品中邻苯二甲酸酯的浓度为x mg/L。

结论:通过本实验,成功地应用高效液相色谱法测定了待测样品中邻苯二甲酸酯的含量,得到了可信的分析结果。

该方法操作简便、准确可靠,可用于环境监测和化学分析中对邻苯二甲酸酯的定量测定。

反相高效液相色谱法测定水体中邻苯二甲酸酯

反相高效液相色谱法测定水体中邻苯二甲酸酯
加 标 回 收 率 为 7 . 一9 .%. 8% 4 8 6 ’
关键词:邻苯二甲酸酯; 液萃取; 液. 反相高效液相色谱; 水体
中图分类号: 6 7 0 5. 7
d i 1.9 9 .s.0 32 8 . 1. .5 o: 03 60i n10 -4 32 0 2 s 019
文 献标识t :A i  ̄ -
用洗净的玻璃瓶采样, 采集后立即密封样品, 采集的水样用 0 5m微孔滤膜过滤后置于冰箱 4 条件保存. . ̄ 4t " C 2 . 水样的预处理 .2 3
取 5 0 L水样于 l0m 0m O0 L分液漏斗中, 10 L二氯 甲烷分三次萃取 (0 L 0 L 0 L 分别震荡 用 0m 4m +3 m +3 m ), 萃取 1 0分钟, 萃取液过无水硫酸钠, 收集于浓缩瓶中, 用少量二氯 甲烷洗涤漏斗并将其转移至浓缩瓶 中. 将浓 缩 瓶置 于 旋转 蒸 发浓 缩仪 中浓 缩至 约 1mL 0 ,待 净化 . 将 浓缩 的萃取液通过氧化铝层析柱 净化, 以正 己烷为淋洗液, 将收集的淋洗液浓缩至干, 最后用甲醇定容 至 1. ,待测 . 00 mL 2 . 水样的色谱测定条件 .3 3 色谱柱 :p eo eeO S (5 x 4 m hn m nx D 柱 2 0 4 . m); 6 检测器 :二极管矩阵检测器; 流动相 :甲醇一 (55 柱 水 9 :); 温 :3 ℃;进 样体 积 :2 ;压力 范 围 :10 pi 60s 5 0 30 s 10pi .
旋 转 蒸 发仪试剂 .1 2 邻苯二 甲酸二 甲酯 邻苯二 甲酸二丁酯 邻苯二甲酸二正辛酯 AR 成都市科龙化工试剂厂;甲醇 A. . R Dima eh oo i ;二氯 甲烷 正 己烷 中性 氧化 铝 (0 -0 k cn lge T s 102 0目) 无水 硫 酸钠 A. R 222 标 准储 备 液 .. 以甲醇作溶剂分别配制浓度 10 gL的 D 、D P O 00 / m MP B 、D P单标液. 再用甲醇稀释至浓度均为 10 / 0 .mg 0 L 的标准储备液.

高效液相色谱-二级管阵列检测器法测定化妆品中邻苯二甲酸酯

高效液相色谱-二级管阵列检测器法测定化妆品中邻苯二甲酸酯
Ab t a t T e s mp ewa xr ce t t a o o r i l a o iay Af rb i g c n rf g d a d fl ae s r c h a l s e ta td wi meh n lf r 1 n u t s n e l . t en e ti e n t td h 5a r e u i r wi .5 p f m , t 04 . i h m l XDB- 8 n l t a o u s e l y d f r s p r t n a d a a y i, n C1 a ay i l l mn wa mp o e o e a ai n n l ss a d DAD e e t rwa s d c c o d t co su e t e td r c l Exe a tn a d meh d wa s d f rq a t c t n. n a e ai n h p wa o n l i e r n e o o t s i t e y. tm lsa d r t o su e o u n i a i Li e r lt s i s f u d we l n t a g f i f o r o h
保持 1 n; 样 口温度 :8  ̄ 色 谱 一质谱 接 口 0mi 进 2 0C;
超 纯水 仪 : l. Mii lQ型 , 国密理博 公 司 ; 美
有 机性 样 品滤 膜 : . m ; 0 5u 4
甲醇 、 乙腈 : 色谱纯 ; B P D P、 H B 、 B DE P标 准品 : 纯度 为 9 . 上 海 98 %,
MS 型 , 国安捷 伦公 司 ; D 美
() 2 气相色谱 一 质谱条件
色谱柱 : mL5 MS柱 (0m × . u ,. m) 3 02 r n 0 5u , 5/ 2

水中邻苯二甲酸二2-乙基己基酯的测定

水中邻苯二甲酸二2-乙基己基酯的测定

水中邻苯二甲酸二(2-乙基己基)酯的测定前言邻苯二甲酸酯化合物(PAEs)是一种环境激素类物质,具有雌激素活性及抗雄激素生物效应,可通过呼吸、饮食和皮肤接触,直接进入人和动物体内,对动物和人类造成很大的危害,已成为目前国际上广泛关注的一类环境激素污染物。

水体中PAEs浓度较低(一般在ng/L数量级)但广泛存在。

邻苯二甲酸二(2-乙基己基)酯(DEHP)是一种典型的酞酸酯类化合物,美国国家环保署将包括DEHP在内的六种酞酸酯列入重点控制的污染物名单中。

本方法使用LabTech Sepaths UP全自动固相萃取系统,参考《EPA Method3535a》方法,对自来水中的邻苯二甲酸二(2-乙基己基)酯进行测定,得到了良好的回收率和平行性。

而且由于使用了LabTech Sepaths UP全自动固相萃取系统,省去了人工繁琐的操作,提高效率,并减小了人工误差。

关键词Sepaths UP全自动固相萃取系统邻苯二甲酸二(2-乙基己基)酯水 EPA Method 3535a1、仪器与试剂固相萃取仪:Sepaths UP 全自动固相萃取系统,LabTech Inc., USA;高效液相色谱仪:LC600 二元高压梯度高效液相色谱,LabTech Co.Ltd. 北京;固相萃取膜:CPI 12HS C18 47mm;氮吹浓缩仪:MultiVap-8 平行浓缩仪,LabTech Co.Ltd. 北京;邻苯二甲酸二(2-乙基己基)酯标准品:1g,购自Sigma-Aldrich;邻苯二甲酸二(2-乙基己基)酯标准工作液:取3mg邻苯二甲酸二(2-乙基己基)酯标准品,定容至10mL ,即该标准工作液的浓度为300μg/mL 。

2、测试过程2.1 加标样品预处理量取1L 自来水,加入5mL 甲醇,并用硫酸调节pH值至6。

加入 20 μL的邻苯二甲酸二(2-乙基己基)酯标准工作液,摇匀待测。

加标浓度相当于6μg/L。

2.2 固相萃取浓缩过程将加标样品置于SepathsUP的样品柜中,按照图1的固相萃取方法进行水中邻苯二甲酸二(2-乙基己基)酯的萃取富集。

高效液相色谱_串联质谱法测定食品中邻苯二甲酸酯_刘红河

高效液相色谱_串联质谱法测定食品中邻苯二甲酸酯_刘红河

IS 电压: 5 000 V; 离子源温度 : 500℃; 雾 化 气 压 力 : 11 psi; 气 帘 气 压 力 : 11 psi; CAD=5 L/min; Gas1 =11 L/min;
Gas2=70 L/min; EP=10; MRM 参数见表 1。
1.3 样品来源 样品来自于深圳市各大超市和商场抽样或送检产品。
高效液相色谱 - 串联质谱法测定食品中邻苯二甲酸酯
刘红河 1, 黄晓群 2, 王晖 3, 黎源倩 4, 张克荣 4
摘要: [ 目的 ] 建立液相色谱- 串联质谱联用同时测定食品中 5 种邻苯二甲酸酯类 ( PAEs) 残留的方法, 调查这 5 种物质在食品中的污染情况。 [ 方法 ] 用正己烷浸泡, 超声振荡对样品中 PAEs 进行提取并净化, 采用高效液相色谱- 串联质谱联用法测定其中邻苯二甲酸二甲酯 ( DMP) 、邻苯二甲酸二乙酯 ( DEP) 、邻苯二甲酸二丁酯 ( DBP) 、邻苯二甲 酸 二 异 辛 酯 ( DEHP) 、 邻 苯 二 甲 酸 二 正 辛 酯 ( DOP) , 离 子 源 为 ESI ( +) , 定 量 检 测 方 式 为 多 反 应 监 测 ( MRM) 方 式 , 利 用 保 留 时 间 和 碎 片 信 号 比 值 判 断 定 性 结 果 。 并 用 建 立 的 方 法 分 析 实 际 样 品 。 [ 结 果 ] 5 种 PAEs 线 性 相 关 系 数 r﹥ 0.997, 变 异 系 数 在 1.2%~9.3%之 间 , 高 、 中 、 低 不 同 水 平 的 加 标 回 收 率 在 80.9%~119.8%之 间 。 测 定 256 种 食 品 样 品 , PAEs 的检出率为 32.6%。 [ 结论 ] 该方法简便快速, 精密度较高, 重现性较好, 可应用于食品中 5 种邻苯二甲酸酯类 的同时测定。调查结果显示, 食品中邻苯二甲酸酯类环境激素的污染比较严重, 应引起有关部门的重视。

液液萃取-气相色谱质谱法测定环境水体中邻苯二甲酸酯

液液萃取-气相色谱质谱法测定环境水体中邻苯二甲酸酯

液液萃取-气相色谱质谱法测定环境水体中邻苯二甲酸酯摘要:本文研究了一种液液萃取-气相色谱质谱法测定水中邻苯二甲酸酯的方法。

结果表明:11种邻苯二甲酸酯在0.2-10mg/L的浓度范围内具有良好的线性关系。

在水样体积取500ml时,11种邻苯二甲酸酯的检出限在0.15-0.22μg/L,定量限在0.60-0.88μg/L。

关键词:邻苯二甲酸酯;液液萃取;气相色谱质谱。

目前环境水体中PAEs的检测主要采用气相色谱质谱法和液相色谱法进行测定,前处理方法包括液液萃取、固相萃取、固相微萃取、固相膜萃取、液相微萃取、搅拌棒吸附萃取等方式[1],其中气相色谱质谱由于具有高效的分辨能力,成为测定PAEs的主流方法。

本文研究了一种液液萃取-气相色谱质谱法测定环境水体中PAEs的检测方法。

该方法前处理前处理检定,操作方便,能提高测定水体中PAEs的效率。

1试验部分1.1仪器与试剂仪器:Thermo Fisher Trace1300 ISQ LT气相色谱质谱仪(美国赛默飞世尔公司);平行浓缩氮吹仪(上海安谱科技有限公司);旋转蒸发仪(瑞士步琦公司)。

试剂:11种邻苯二甲酸酯标准溶液(1000mg/L,上海安谱科技有限公司);正己烷(农残级);无水硫酸钠(优级纯,上海国药有限公司);氯化钠(优级纯,上海国药有限公司);固相萃取柱(500mg/6mL,CNW公司)。

1.2样品前处理作者简介:李桂晓,1990.1,男,汉族,硕士研究生,中级工程师,研究方向为环境检测取500ml水样于1000ml分液漏斗中,加入20ml正己烷振荡萃取5min(中间过程要放气),收集有机相于平底烧瓶中。

再重复萃取一次,经无水硫酸钠除水后合并萃取液,将萃取液放置在旋转蒸发仪上浓缩至5ml左右,待净化。

用固相萃取装置将样品进行净化,加入5ml甲醇活化,然后再加入10ml正己烷平衡。

将萃取液转移至固相萃取柱中,用1-2ml正己烷洗涤浓缩管,洗涤液一并上柱,然后用10 ml正己烷溶液,分3次加入到萃取柱上进行洗脱,合并流出液和洗脱液,氮吹定容至1.0mL,待测。

高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯1553607 胡艺蕾实验时间:2017年4月1日实验温度:19.0℃一、实验目的1、了解高效液相色谱仪的组成及其工作原理和基本操作。

2、对邻苯二甲酸酯进行分离和测定。

3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。

4、了解液相色谱法定量测定的原理。

二、实验原理1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。

固体相为非极性分子,如十八烷基键合相,流动相为极性分子。

2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。

溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。

本次实验为邻苯二甲酸酯,其分子官能团都相同,但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP(邻苯二甲酸二乙酯)>DBP.(邻苯二甲酸二丁酯)。

3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。

本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。

通常选择二元混合溶剂作为流动相。

4、定量分析中,定量峰与其他峰之间的分离程度称为分离度R:通常用塔板数n来描述色谱的柱效:三、实验仪器与试剂1、仪器Agilent1260高效液相色谱仪:脱气机:真空室内半透膜管路,对流动相进行脱气四元泵:二元泵各控制一种溶剂可设置的流速范围:0.001–10 mL/min 0.001 mL/min步进UV检测器:用于检测通过样品后的紫外光类型:双光束光路设计光源:氘灯波长范围:190 –600 nm手动进样器:进样20μL色谱柱:填料:十八烷(适合中性、弱酸碱)4.6 ×100mm, 3.5µm2、试剂流动相:纯水、甲醇、乙腈样品:DMP、DEP、DBP四、实验步骤1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。

邻苯二甲酸酯类化合物的测定

邻苯二甲酸酯类化合物的测定

FHZHJSZ0170 水质邻苯二甲酸酯类化合物的测定固相吸附液相色谱法F-HZ-HJ-SZ-0170水质—邻苯二甲酸酯类化合物的测定—固相吸附液相色谱法1 范围本方法适用于地表水和废水中邻苯二甲酸酯类的测定。

各组分的最低检测量为3~12ng。

当富集水样的体积为1L、进样体积为10µL时,最低检测浓度为1.5~6.0µg/L,见表1。

2 原理水中的邻苯二甲酸酯类化合物,经XAD-2树脂吸附后,用甲醇和乙腈混合溶剂洗脱,洗脱液经K-D浓缩并定容,用醇基柱进行正相色谱分离,紫外检测器(225nm)测定。

表1 方法检测限序号组分名称保留时间(min)最低检出量(ng)最低检出浓度(µg/L)1 邻苯二甲酸二(2-乙基己基)酯 2.532 3.5 1.82 邻苯二甲酸二正辛酯 2.612 3.1 1.53 邻苯二甲酸二丁酯 3.120 9.0 4.54 邻苯二甲酸二丁基苄酯 3.582 11.6 5.85 邻苯二甲酸二乙酯 4.211 3.2 1.66 邻苯二甲酸二甲酯 6.310 12 6.03 试剂3.1 丙酮:分析纯,用前需重新蒸馏。

3.2 二氯甲烷:分析纯,用前需重新蒸馏。

3.3 正己烷:色谱纯。

3.4 甲醇:色谱纯。

3.5 乙腈:色谱纯。

3.6 异丙醇:色谱纯。

3.7 无水硫酸钠:分析纯,于400~700℃烘2h。

3.8 邻苯二甲酸酯标准贮备液:浓度范围,80~200mg/L。

3.9 邻苯二甲酸酯标准使用液:用甲醇溶液将邻苯二甲酸酯标准贮备溶液稀释成浓度的5~20mg/L的标准使用液。

3.10 XAD-2树脂:丙酮浸泡过夜,然后依次用正己烷、二氯甲烷和甲醇在索氏提取器上回流提取8h以上。

处理好的树脂封保存在甲醇中备用。

3.11 XAD-2树脂柱的制备:在层析柱底部填充少许玻璃棉,用湿法装入XAD-2树脂。

依次用10mL甲醇和20mL重蒸水淋洗柱子。

始终保持液面不低于脂床(若树脂中有气泡存在,可用细的不锈钢丝一下搅动赶出气泡,注意不要破坏树脂)备用4 仪器4.1 液相色谱仪:具紫外检测器,醇基正相色谱柱,250mm×4.6(内径)×5.0µm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱法测定邻苯二甲酸酯实验报告记录
————————————————————————————————作者:————————————————————————————————日期:
高效液相色谱法测定邻苯二甲酸酯
1553607 胡艺蕾
实验时间:2017年4月1日实验温度:19.0℃
一、实验目的
1、了解高效液相色谱仪的组成及其工作原理和基本操作。

2、对邻苯二甲酸酯进行分离和测定。

3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。

4、了解液相色谱法定量测定的原理。

二、实验原理
1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。

固体相为非极性分子,如十八烷基键合相,流动相为极性分子。

2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。

溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。

本次实验为邻苯二甲酸酯,其分子官能团都相同,但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP(邻苯二甲酸二乙酯)>DBP.(邻苯二甲酸二丁酯)。

3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。

本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。

通常选择二元混合溶剂作为流动相。

4、定量分析中,定量峰与其他峰之间的分离程度称为分离度R:
通常用塔板数n来描述色谱的柱效:
三、实验仪器与试剂
1、仪器
Agilent1260高效液相色谱仪:
脱气机:真空室内半透膜管路,对流动相进行脱气
四元泵:二元泵各控制一种溶剂
可设置的流速范围:0.001–10 mL/min 0.001 mL/min步进
UV检测器:用于检测通过样品后的紫外光
类型:双光束光路设计
光源:氘灯波长范围:190 –600 nm
手动进样器:进样20μL
色谱柱:填料:十八烷(适合中性、弱酸碱)
4.6 ×100mm, 3.5µm
2、试剂
流动相:纯水、甲醇、乙腈
样品:DMP、DEP、DBP
四、实验步骤
1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。

2、预先脱气(直到导管中无气泡),设定波长:220nm。

3、设定流速、流动相比例等参数,选择合适的流动相。

4、进样阀柄置于“LOAD”,进样针用乙醇洗涤2-3次,取样,进样,将进样阀扳至“INJECT”。

5、保存并处理数据。

五、实验结果
1、样品:DMP1:20水溶液20μL 流动相的比例为:高纯水:30% 乙腈:70% 流速:1.00ml/min
2、样品:DMP1:10水溶液20μL流动相的比例为:高纯水:30% 乙腈:70% 流速:1.00ml/min
3、样品:DMP1:20水溶液10μL 流动相的比例为:高纯水:30% 乙腈:70% 流速:1.00ml/min
比较1和2的峰面积和峰高可以发现,在进量一定时,峰面积和峰高与样品的浓度成正比。

比较1和3可发现,在样品浓度相同时,峰面积和峰高与样品的进量成正比。

因此我们可以得出结论,峰面积和峰高与加入样品的物质的量成正比,这也是液相色谱法进行定量分析的依据。

对这三组数据画出标准曲线:
由标准曲线可以看出:
峰面积和峰高与样品的量基本成线性关系,且峰面积的相关性比峰高的相关性要高,更适合用于定量分析。

y = 1204.9x -129.35
R² = 0.9989
y = 151.31x + 36.69
R² = 0.9976
50010001500200025000.00
0.50 1.00 1.50 2.00 2.50
标准曲线图
峰面积峰高
4、样品:混合样品1:10水溶液20μL 流动相的比例为:高纯水:30% 甲醇:70% 流速:1.00ml/min
计算分离度和塔板数
R12=2.292-1.519/(0.0995+0.1174)/2=7.128 R23=11.259-2.292/(0.3067+0.1174)/2=42.29
n DMP=16*(1.519/0.0995)^2=3.729E3 n DEP=16*(2.292/0.1174)^2=6.098E3
n DBP=16*(11.259/0.3067)^2=2.156E4
5、样品:混合样品1:10水溶液20μL 流动相的比例为:高纯水:30% 乙腈:70% 流速:1.00ml/min
计算分离度和塔板数
R12=5.087 R23=33.59
n DMP=2.415E3 n DEP=1.052E4 n DBP=2.408E4
6、样品:混合样品1:10水溶液20μL 流动相的比例为:高纯水:30% 乙腈:70% 流速:0.70ml/min
计算分离度和塔板数
R DMP=2.781-2.088/(0.1200+0.0993)/2=6.320 R DEP=8.004-2.781/(0.0993+0.2087)/2=33.92
n DMP=16*(2.088/0.1200)^2=3.633E3 n DEP=16*(2.781/0.0993)^2=1.255E4
n DBP=16*(8.004/0.2087)^2=2.353E4
7、样品:混合样品1:10水溶液20μL 流动相的比例为:高纯水:10% 乙腈:90% 流速:
1.00ml/min
计算分离度和塔板数
R12=1.680 R23=9.123
n DMP=1.454E3 n DEP=2.815E3 n DBP=1.353E4
根据上述结果我们可以发现,DMP和DEP的分离度比DEP和DBP的分离度要小。

比较结果4和5可以发现,使用乙腈的保留时间较甲醇短,这说明洗脱能力乙腈>甲醇。

但是使用甲醇的分离度较使用乙腈的分离度高。

比较结果5和6可以发现,减小流速会增加保留时间,但同时分离度会增加,塔板数也会增加。

比较结果5和7可以发现,增加二元流动相中乙腈的比例,会使得保留时间缩短,但由于对DEP和DBP的影响要大于对DMP的影响,因此DMP和DEP的峰发生了重叠,导致分离度下降
六、思考与讨论
1、为什么要预先脱气?
①输液量能够均匀准确,压力波动小;②保留时间及色谱峰面积的重现性会更好;③气泡会在谱图中出现尖峰,脱气后能使基线稳定;④保护色谱柱,防止填料氧化;
2、为什么使用二元溶液作为流动相?
利用不同比例流动相对分离度和出峰时间的影响(往往是相反的作用)进行梯度洗脱。

通过程序设定,不同时间(不同物质)来设定流动相中甲醇和水的比例,既达到较好的分离度,又能缩短不必要的时间
4、为什么会前伸/拖尾?
1、色谱柱被污染
2、样品过载
3、样品溶剂过强
5、操作注意:
1.本实验采用紫外来做检测器,由于查阅资料可知邻苯二甲酸酯的最大吸收波长位于220nm 左右,故设定的光波长为220nm,但由于短波长对杂质敏感,220nm图中容易出现小的峰和波动。

2.实验开始前需要用流动相来冲气泡。

3.用50uL注射器抽取液体时,要保证没有气泡(影响峰的大小和理论含量),同时每次最好抽取过量再排出液体至20uL。

相关文档
最新文档