污泥重金属处置方案-干化固化稳定

合集下载

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理危险废物焚烧飞灰是指在危险废物焚烧过程中产生的固体废物,其中含有大量的重金属元素。

这些重金属元素对人体和环境都具有很高的毒性和危害性,因此需要进行稳定化处理,以减少其对环境和人体的损害。

本文将介绍危险废物焚烧飞灰中重金属的稳定化处理方法。

一、重金属的稳定化处理方法1. 胶结法:将危险废物焚烧飞灰与胶结材料(如水泥、石灰等)进行混合,通过物理和化学反应,使重金属元素与胶结材料形成化合物或固体溶液,并使其变得稳定。

这种方法简便易行,成本低,处理效果较好。

2. 硫酸盐固化法:将危险废物焚烧飞灰与硫酸盐进行反应,生成稳定的硫酸盐沉淀物。

这种方法适用于重金属含量较高的飞灰,具有较好的稳定化效果。

4. 掩埋法:将危险废物焚烧飞灰直接掩埋在合适的地下场所,或与其他固体废物混合后进行掩埋。

这种方法能够有效地隔离和固化重金属,但存在着地下水和土壤污染的风险,需要严格控制和监管。

5. 电渗析法:利用电渗析技术分离和提取危险废物焚烧飞灰中的重金属元素,并将其沉积在电极上。

这种方法具有高效、环保的优点,但需要耗费较多的能源和设备。

1. 前处理:将危险废物焚烧飞灰进行分类、筛分和破碎,去除其中的杂质和有机物质,以提高后续处理的效果。

2. 稳定化处理:根据具体的处理方法选择合适的胶结材料或化学药剂,与危险废物焚烧飞灰进行混合反应,使重金属元素转化成稳定的化合物或溶液。

3. 固液分离:将稳定化处理后的危险废物焚烧飞灰与胶结材料或药剂通过离心、过滤等方法进行分离,得到稳定的固体废物和液体废物。

4. 固体处理:将稳定的固体废物进行填埋或其他合适的处理方法,以减少对环境和人体的危害。

5. 液体处理:对稳定的液体废物进行处理,例如中和、沉淀、过滤等,以达到排放标准或回收利用的要求。

1. 混合设备:用于将危险废物焚烧飞灰与胶结材料或化学药剂进行充分混合。

2. 反应器:用于进行胶结反应、硫酸盐反应或磷酸盐反应的设备。

重金属污泥固化脱水技术方案汇总

重金属污泥固化脱水技术方案汇总

重金属污泥固化脱水技术方案(30吨/日)重金属污泥固化脱水技术方案一、前言1、重金属污泥重金属污泥(以电镀污泥为例)主要来自于金属表面处理产业以及金属工业,其过程中产生的排放物,其中含有大量的铬、镉、铜、镍、锌等有毒重金属,成分十分复杂,被列入国家危险废物名单中的第十七类危险废物。

因此污泥须进一步中间处置后方能掩埋。

由于固化方法之操作工程简单及设备成本低廉,因此国内传统上皆采用固化方式对重金属污泥进行中间处理。

2、固化/稳定化技术在危险固体废物诸多处理手段中,固化技术是危险废物处理中的一项重要技术,通过固化剂和电镀污泥混合,将污泥内的重金属等有害物质封闭在固化体内而不被浸出,以达到消除污染的目的,具有固化材料易得、处理效果好、成本低的优势。

采用的固化材料有水泥、石灰、玻璃、HAS土壤固化剂和热塑料物质等。

二、固化/稳定化理论1、固化废物固化是用物理-化学方法将有害废物参合并包容在密实的惰性基材中,使其稳定化的一种过程。

通常被应用于以下方面:(1)对具有毒性或强反应性等危险废物进行处理,使其满足填埋处置的要求。

(2)其他处理过程中产生的残渣,例如焚烧产生的灰份的无害化处理,其目的是最其进行最终处置。

(3)在大量土壤被有害污染物所污染的情况下对土壤进行去污。

因此,危险废物固化/稳定化处理的目的,是使危险废物中的所有污染组分呈现化学惰性或者被包容起来,以便运输、利用和处置。

在一般情况下,稳定化过程是选用某种适当的添加剂与废物混合,以降低废物的毒性和减小污染物自废物到生态圈的迁移率。

因而,它是一种将污染物全部或部分地固定于作为支持介质、粘结剂或其他形式的添加剂上的方法。

固化过程是一种利用添加剂改变废物的工程特性(例如渗透性、可压缩性和强度等)的过程。

固化可以看作是一种特定的稳定化过程,可以理解为稳定化的一个部分。

但从概念上是有区别的,无论是稳定化还是固化,其目的都是减小废物的毒性和可迁移性,同时改善被处理对象的工程特性。

污泥重金属处置方案-干化固化稳定

污泥重金属处置方案-干化固化稳定

污泥固化施工方案固化目标根据《城镇污水处理厂污泥处置混合填埋泥质》(GB/T 23485-2009)规定的污泥填埋基本指标及《生活垃圾填埋污染控制标准》(GB16889-2008)相关规定,同时考虑到施工期间需要承受原位固化搅拌器等大型设备,污泥在经过28 d 固化龄期后需达到的指标如下表所示:污泥固化施工总体方案根据招标文件,污泥固化施工内容主要包括:(1)表层渗沥液导排;(2)原位固化污泥。

根据勘测资料,1#污泥坑和2#污泥坑均有不同深度的渗沥液,3#污泥坑基本无渗沥液,因此拟将渗沥液运至西坑尾垃圾填埋场的渗沥液处理站进行处理后,再进行原位固化施工。

:在充分考虑并对比了目前国内外常用的几种污泥固化封场施工方案的固化效果、经济可行性、技术可行性、公众接受程度等因素的基础上,决定采用原位污泥固化技术对填埋区内的污泥进行固化处理。

原位固化技术对污泥坑的扰动少、二次污染小;处理工艺简单、工程便于实施;固化污泥过程中不产生渗沥液;施工工期较短,在市政污泥处理应用方面已有工程实例。

综合考虑填埋场三个污泥坑的实际情况以及项目进展情况,沥溪填埋场污泥坑污泥固化工艺路线如下图所示:图污泥原位固化工艺流程图表层渗滤液排导(1)表层渗沥液水量污泥坑总面积为17502 m2,垃圾堆体面积19498 m2,根据勘测资料,三个污泥坑表层渗沥液的平均深度为:1#污泥坑渗沥液平均水深为,水面面积为5869 m2;2#污泥坑渗沥液平均水深为,水面面积为7905 m2;3#污泥坑基本无渗沥液。

总的渗沥液量为12756 m3,此量随着季节是变化的,本次计算量为四月份实测数据,属珠海当地梅雨季节,旱季时该量会有所减少。

、(2)表层渗沥液转运①施工前表层渗滤液转运根据现场勘查,目前场区内的渗沥液一部分通过一根D400的输送管排至一期的调节池,另外一部分通过一根D100的排水管道直接排至下游的市政污水管网。

为保证原位固化方案的有效实施,固化前,需先及时将三个污泥坑内的表层渗沥液排除,经与垃圾场管理人员沟通,拟将渗沥液利用槽罐车优先转运至西坑尾垃圾填埋场的渗沥液处理站进行处理。

重金属污泥的处理和综合利用

重金属污泥的处理和综合利用

重金属污泥的处理和综合利用摘要:近年来环境保护工作已引起各方面的重视,对各种废气废水加强了管理和处理。

但是,产生了各种不同性质的污泥。

由于污泥的处理和处置问题未得到妥善解决,会造成二次污染。

目前上海的污水量据不完全统计为490万吨/日,经脱水的污泥达100余万吨/日之多。

随着工业的发展和人口的增长,污泥量还在不断增加。

因此,解决污泥问题显然已是当务之急关键词:重金属污泥电镀污泥是污水处理后的副产品,是一种由有机残片、细菌菌体、无机颗粒、胶体等组成的极其复杂的非均质体。

城市化进程的加快以及工农业的迅速发展,大量产生的污泥已经对生态环境造成了严重的危害。

目前污泥的处置主要以转为农用、焚烧和填埋为主,但是由于污泥的含水率高、力学性质差、污染物含量高等特点,这些处理方式往往存在环境污染、处理成本过高或容易引起填埋场工程灾害等问题,难以满足大量产生的各种污泥处理处置的要求。

一、污泥的分类根据污泥的性质,可分为重金属和有机两类不同性质的污泥。

1、重金属污泥。

许多重金属元素如汞、镐、铬、铅、铜、镍等等均会形成有毒化合物。

其主要来自工业污染源,但必须经科学的处理和合理安置。

2、有机污泥。

纺织、化工、造纸、医药和食品等工业废水以及生活污水经处理后会产生大量含天然和人工合成有机物(如碳水化合物、脂肪、蛋白质、木质素、纤维素、苯酚、多环芳烃、有机氯、塑料等)的有机污泥,可以通过氧化分解为简单的无机物。

但人工合成具有稳定性较大的有机化合物能在人体内蓄积产生危害。

二、污泥处理处置的目的1、减量化:减少污泥最终处置前的体积以降低污泥处理及最终处置的费用;2、稳定化:通过处理使污泥稳定化,最终处置后污泥不再产生进一步的降解,从而避免产生二次污染;3、无害化:达到污泥的无害化与卫生化,如去除重金属或灭菌等;4、资源化:在处理污泥的同时达到变害为利、综合利用、保护环境的目的。

也就是说应在考虑环境效益和社会效益的前提下,尽可能提高其经济价值。

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理
危险废物焚烧过程产生的飞灰中含有大量的重金属元素,例如铅、镉、汞等。

这些重金属对人体和环境都具有较大的危害性,因此需要进行稳定化处理,以防止其对环境造成进一步污染。

稳定化处理是指将重金属元素转化为难溶、不可逆的化合物,从而降低其毒性和迁移性。

常见的稳定化处理方法包括固化、吸附和固体化等。

固化是将重金属与一些稳定剂进行反应,形成稳定的化合物,并将其固化在固体基质中。

固化剂通常选用硬化材料,例如水泥、石灰等。

通过与重金属反应,这些硬化材料能够将重金属元素稳定在降低其溶解度和迁移性。

固化还能够提高飞灰的物理强度,避免其在储存和运输过程中产生扬尘和溶解的风险。

吸附是使用吸附剂将重金属元素吸附在其表面,形成固体颗粒。

吸附剂通常选用活性炭、离子交换树脂等。

这些吸附剂具有很大的表面积和孔隙结构,能够有效地吸附重金属元素。

通过吸附处理,重金属能够被固定在吸附剂中,从而降低其迁移性和溶解度。

稳定化处理后的飞灰可以进行合理的处置和利用,例如填充材料、建筑材料等。

这样不仅能够减少对环境的污染,还能够回收利用其中的资源。

危险废物焚烧飞灰中重金属的稳定化处理是一项重要的环境保护工作。

通过选择适当的稳定化方法,能够有效地降低重金属元素的毒性和迁移性,减少对环境和人体的危害。

稳定化处理还能够使废物得到合理的处置和利用,实现资源的循环利用。

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理

危险废物焚烧飞灰中重金属的稳定化处理
危险废物焚烧飞灰中重金属的稳定化处理是指采取一系列方法和措施将焚烧飞灰中的重金属离子固化并固定在固体基质中,从而减少其对环境和人体的危害。

下面将简要介绍几种常用的危险废物焚烧飞灰重金属稳定化处理方法。

首先是化学固化方法。

该方法通过与重金属离子发生化学反应,使其转化为较为稳定的化合物或沉淀,从而固化重金属。

常用的化学固化方法包括添加固化剂和稳定化剂、改变pH值、盐类固化等。

添加固化剂和稳定化剂主要通过与重金属离子形成沉淀或化合物,将其固化;改变pH值能够使重金属离子发生沉淀反应,降低其水溶性;盐类固化主要利用盐类对重金属离子具有固化作用的特性。

最后是生物固化方法。

该方法利用特定的微生物对重金属离子发生生物转化作用,将其固化。

常用的生物固化方法主要包括微生物固化、植物修复和生物堆肥等。

微生物固化主要通过微生物对重金属离子的吸附、螯合、还原等作用,将其固定在生物体内;植物修复则是利用植物对重金属的吸收、转运和积累作用,将其固定在植物体内;生物堆肥是将焚烧飞灰与堆肥底料混合,通过微生物的作用将重金属固定在有机质中,形成稳定的产物。

固化稳定化

固化稳定化
22
硅酸盐沉淀 定义:利用硅酸根与重金属离子结合生成晶态和非晶态 硅酸盐混合物。 原理:重金属硅酸盐在pH=2-11大范围内的溶解度都较低, 易于形成沉淀,达到稳定化目的。但因生成物不 稳定而实际应用不多。 药剂:硅胶或二氧化硅胶体。
23
碳酸盐沉淀 原理:Ba、Cb、Pb等碳酸盐的溶解度低于其相应的氢氧 化物。但由于在pH值较低时,碳酸盐不稳定,有 CO2逸出,即使pH值较大,其最终产物仍是氢氧 化物而不是碳酸盐,故应用不多。
17
熔融固化技术
定义:又称玻化处理技术,是将废物与细小的玻璃质和 碎玻璃混合造粒成型后,在1000-1100 ℃高温条件 下共熔而形成玻璃质固化体的过程。 适用对象:各类工业废渣、被有机物污染的土壤。
18
第三节 药剂稳定化处理技术
药剂稳定化处理技术以处理含重金属废物为主,目 前常见的有:pH值控制技术、氧化/还原电位控制技术、 沉淀与共沉淀技术、吸附技术、离子交换技术、超临界 技术等。
28
超临界萃取应用时溶剂选择考虑因素 A、分配系数:决定了萃取溶剂的最少用量。有毒有害污 染物在两相间的分配系数。计算式为: K=平衡时的有机污染物在萃取液中的浓度(%w)除 以平衡时有机污染物在萃余液中的浓度(%w); B、价格与回收可能性:取决于萃取剂与污染物间密度差; C、临界温度和压力:越低越好,以降低成本; D、毒性、危害性和化学反应性:CO2因其无毒害作用, 作为超临界流体近来倍受关注。 E、其它:密度、表面张力等。
26
超临界处理技术基本概念
定义:利用超临界流体对废物进行氧化或萃取,以达到 控制污染的目的。根据其处理方法,通常分为超 临界萃取技术和超临界氧化技术两种。 超临界流体:当温度和压力超过一定值(即临界点)以 后,液相流体的性质将介于液体和气体之间,即 气液两相界限不可分。通常把温度和压力超过临 界点时的均相流体称为超临界流体,其性质介于 气体和液体之间,即流体的密度接近于液相,而 流体的扩散性及粘度则接近于气相。

污水处理中的污泥干化与稳定化处理

污水处理中的污泥干化与稳定化处理

学术研讨与培训
举办国际学术研讨会、技术培训 班等活动,促进国内外专家学者 和技术人员的交流与学习。
合作项目与示范工

开展跨国合作项目,建设污泥处 理示范工程,共同推动全球污泥 处理技术的发展和应用。
THANKS
感谢观看
工矿企业污水处理站
工矿企业污水处理站产生的污泥根据 需要可进行干化和稳定化处理。
02
CATALOGUE
污泥干化技术
自然干化
优点
成本低、操作简单、不消耗能源 。
缺点
受气候条件影响较大,干化周期 长,占地面积大。
机械脱水
优点
脱水效率高、可连续操作。
缺点
设备投资大、运行成本高、可能产生二次污染。
热干化
机械脱水
使用脱水机械将污泥中的水分 去除。
生物稳定
通过微生物的作用使污泥中的 有机物质分解和稳定。
化学稳定
利用化学药剂使污泥中的有害 物质转化或固定。
污泥干化与稳定化处理的应用
城市污水处理厂
河道湖泊治理
城市污水处理厂产生的污泥需要进行 干化和稳定化处理。
河道湖泊治理中产生的底泥可以进行 干化和稳定化处理。
热处理
热处理是一种通过高温处理将污泥中的有机物分解为气 体和残渣的过程。
热处理过程中产生的气体和残渣可以用于发电、供热或 直接燃烧等用途。
热处理可以有效地破坏污泥中的有害微生物和病原体, 提高其稳定性和安全性。
热处理需要消耗大量的能源和较高的成本,因此在实际 应用中受到限制。
其他稳定化处理技术
其他稳定化处理技术包括化学稳定化 、生物稳定化和物理稳定化等。
,增加了企业的经济负担。
技术挑战与对策
01
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污泥固化施工方案固化目标根据《城镇污水处理厂污泥处置混合填埋泥质》(GB/T 23485-2009)规定的污泥填埋基本指标及《生活垃圾填埋污染控制标准》(GB16889-2008)相关规定,同时考虑到施工期间需要承受原位固化搅拌器等大型设备,污泥在经过28 d 固化龄期后需达到的指标如下表所示:污泥固化施工总体方案根据招标文件,污泥固化施工内容主要包括:(1)表层渗沥液导排;(2)原位固化污泥。

根据勘测资料,1#污泥坑和2#污泥坑均有不同深度的渗沥液,3#污泥坑基本无渗沥液,因此拟将渗沥液运至西坑尾垃圾填埋场的渗沥液处理站进行处理后,再进行原位固化施工。

:在充分考虑并对比了目前国内外常用的几种污泥固化封场施工方案的固化效果、经济可行性、技术可行性、公众接受程度等因素的基础上,决定采用原位污泥固化技术对填埋区内的污泥进行固化处理。

原位固化技术对污泥坑的扰动少、二次污染小;处理工艺简单、工程便于实施;固化污泥过程中不产生渗沥液;施工工期较短,在市政污泥处理应用方面已有工程实例。

综合考虑填埋场三个污泥坑的实际情况以及项目进展情况,沥溪填埋场污泥坑污泥固化工艺路线如下图所示:图污泥原位固化工艺流程图表层渗滤液排导(1)表层渗沥液水量污泥坑总面积为17502 m2,垃圾堆体面积19498 m2,根据勘测资料,三个污泥坑表层渗沥液的平均深度为:1#污泥坑渗沥液平均水深为,水面面积为5869 m2;2#污泥坑渗沥液平均水深为,水面面积为7905 m2;3#污泥坑基本无渗沥液。

总的渗沥液量为12756 m3,此量随着季节是变化的,本次计算量为四月份实测数据,属珠海当地梅雨季节,旱季时该量会有所减少。

、(2)表层渗沥液转运①施工前表层渗滤液转运根据现场勘查,目前场区内的渗沥液一部分通过一根D400的输送管排至一期的调节池,另外一部分通过一根D100的排水管道直接排至下游的市政污水管网。

为保证原位固化方案的有效实施,固化前,需先及时将三个污泥坑内的表层渗沥液排除,经与垃圾场管理人员沟通,拟将渗沥液利用槽罐车优先转运至西坑尾垃圾填埋场的渗沥液处理站进行处理。

②转运车辆西坑尾垃圾填埋场的渗滤液处理能力为1000吨/天,垃圾场旱季的渗滤液量约450吨/天,目前尚有余力处理本工程垃圾场的渗滤液,污水导排时间安排41天,每天倒运至西坑尾的污水量为319m3,污泥区修建沙袋集水井,集水井底部设置排水泵,把污水抽到吸污车中,倒运至西坑尾垃圾场渗沥液处理站处理,运距5km左右。

原位固化方案施工设计(1)污泥固化设备【根据污泥的性质、深度,开发先进的污泥固化专用设备,建立由原位固化快速搅拌器、固化材料泵送装置并集成自动化控制系统的污泥固化设备系统(如下图所示),配套完善的污泥安全处理一体化施工工艺路线体系。

图原位固化设备系统工艺图(2)污泥固化工序①划分施工单元根据污泥深度初勘数据,基于现场施工机械控制范围、原位固化系统设备的工作范围及药剂添加量范围等参数,根据污泥坑的情况,沿污泥坑坝体及能上固化搅拌设备的污泥坑周边,划分单元格,并结合本项目现场情况采用环形推进施工方式和顺序推进施工方式对污泥坑污泥进行处理,如下图单元格划分示意图所示。

考虑挖掘机处理半径为6~7m,将污泥填埋区划分约为10m×6m的单元网格,便于施工机械操作和施工台班安排。

如果污泥特性变化较大,可根据实际现场实施条件进一步细分网格,便于下一步污泥固化施工操作和保证污泥固化效果。

环形推进施工单元格划分示意图1(以2#污泥坑为例){顺序施工单元格划分示意图2(以1#污泥坑为例)图单元格划分示意图②污泥参数确定在划分的单元网格正中间设定一个取样点,在取样点上按深度每隔3米取一泥样(采取铺设浮阀取样),测定该区域的污泥泥性,确定该区域固化剂的配比。

图采样点布置形式③固化设备就位根据制定的施工图,将专用原位固化设备布置到位,原则上先从污泥填埋深度浅的区域逐步推向污泥填埋深度深的区域。

结合本项目现场情况采用环形推进施工方式和顺序推进施工方式。

@原位固化系统设备系统整体体积大,无法整体转运,采用分块拆分运输、集中配套组合的方式。

根据设备系统整体结构特点将其分为三部分,即原位固化快速搅拌器、材料供料器(HR压力输料罐车)、主机设备(220型挖掘机)三部分,使用履带设备专业平板拖车拖运。

由于设备可自主移动,因此停放区域可以分定点停放区和施工运行临时停放点。

根据现场情况整体规划停放区,尽量缩短设备行走距离。

专用原位固化设备系统作业能力1000m3/d,作业深度为0~8m。

原位固化快速搅拌器安装在适合吨位的主机上,并在专业驾驶员的操作下进行固化剂和污染泥土在原位的稳定拌合作业,HR压力输料罐车则是在进行污泥原位固化处理时输送材料的一套系统化的输料设备可通过安装在驾驶室内的操控设备自行行走和设定所需输送材料的多少,并集成自动控制系统,形成整套污染泥土原位固化系统设备。

&图原位固化设备系统④设备供料专用原位固化设备系统污泥固化工作的固化剂材料供料方案:本方案采用50吨级散装粉料运输罐车在工作区域内为专业工料设备HR压力输料罐车实时供料,严格按照HR 压力输料罐车操作守则,一次供料量不超过理论最大容积的85%。

在加料时,在保证安全施工的前提下尽量缩短散装粉料运输罐车与HR压力输料罐车之间的距离,减少HR压力输料罐车的移动路程,以节省加料时间,提高工作效率。

由于该污泥原位固化项目需要大量固化材料,为降低成本,有效利用资源,可靠有序的保证污泥固化工作的固化材料供应,拟在厂区内设置材料中储区。

当外来散装粉料输送车不能及时往HR压力输料罐车供料时,从中储罐直接下料转运给HR压力输料罐车供料,外来散装粉料输送车多余的固化料也可以泵入中储罐储存。

具体方案为:在污泥坑附近设立固化材料中转站,容纳能力为400m³。

通过散装粉料罐车转运至中转站储料仓,在厂区内配置一台50吨级的散装粉料罐车作为专用转料设备,在固化工作施工时,对HR压力输料罐车进行实时供料。

材料运输、储存、供料的过程中要做好防潮工作。

安排专职人员负责材料的管理工作。

做好记录,严格控制材料的消耗。

在进场和出料时,需要经过地磅称重,保证药剂的使用精度。

!图固化材料中转站和散装粉料运输罐车⑤原位固化快速搅拌原位固化快速搅拌系统是根据填埋场污泥坑的现场环境,借助于挖掘机的液压动力和各项操作系统配合设计开发的液压驱动型搅拌系统,搅拌器功率及力矩大,不易被污泥的杂物缠绕,经过特殊设计水平滚轴和混合搅拌部件,在工作时,强力螺旋搅拌头(如下图所示)可以借助挖掘机长臂和转角在污泥内的上、下,左、右和前、后三维空间内任意运动,均匀搅拌混合从其中心端输出的固化粉体药剂和周围污泥,形成污泥固化区域。

】图强力螺旋搅拌头和原位固化搅拌作业图沥溪垃圾场污泥固化施工方案本垃圾填埋场污泥坑由1#、2#、3#三个坑组成,各自独立且都有施工道路和施工作业面,三个坑可采用一套原位固化设备先后进行施工。

1#、2#污泥坑需要首先对渗沥液排导后再进行固化施工,1#、2#污泥坑渗沥液总量为12756m3,1#、2#、3#污泥坑污泥总量为万m3。

(1)渗沥液排导沥溪垃圾场1#污泥坑渗沥液总量为,2#污泥坑渗沥总量为,3#污泥坑基本无渗沥液,总的渗沥液量为12756m3。

若每天倒运至西坑尾处理的污水量为319m3,则总共需要进行渗沥液排导处理的工期为41d。

污泥区地势较低处修建沙袋集水井,集水井两侧堆砌沙袋,四周用钢管护栏将沙袋支撑,沙袋集水井示意图如下图所示,若按每天抽渗沥液8小时计算,每小时需抽取渗沥液40 m3,设定沙袋集水井储水量为4h抽水量,则设置的沙袋集水井长度为4m。

采用排水泵将污水抽到吸污车中,倒运至西坑尾垃圾场渗沥液处理站处理,运距5km左右。

综合考虑安排两台载重为15吨的吸污车,每天往返转运渗沥液11次。

-图沙袋集水井横切面示意图(2)钢板铺设先固化区污泥由于施工后固化效果不能立即达到固化指标,为避免挖掘机等大型施工设备在先固化区平台作业时下陷等安全事故,施工设备在借助先固化区对未固化区进行污泥固化施工时,需在先固化区铺设10mm厚钢板。

(3)固化药剂搅拌固化药剂分为固化材料、辅材等,使用前需要在施工现场进行搅拌后用于固化施工,拟采用药剂干粉搅拌器对药剂进行混合搅拌,假设每立方米污泥添加的固化剂量为350 kg,按日处理污泥坑污泥1000m3计算,则药剂搅拌器每天需搅拌的药剂量为350吨。

(4)污泥固化采用一套原位固化设备,在不同的污泥坑先后进行污泥固化施工。

将污泥填埋区划分成若干个单元网格,每个污泥坑根据各自地貌特点按照不同的施工方式进行处理。

①单元格划分~将每一层污泥施工区域划分约为10m×6m的单元网格,然后用警戒带将施工区域内的每个单元网格标记出来,对每个单元网格按标准采样后采样测定该区域的污泥泥性,确定该区域固化剂的配比以及添加量。

根据资料,折算1#、2#、3#三个污泥坑平均深度分别为、、,则三个污泥坑每个单元格污泥量分别为330m3、420 m3和390 m3。

②压力输料罐车实时装料施工现场配置一台50吨级的散装粉料罐车作为专用转料设备,在固化工作施工时,对HR压力输料罐车进行实时供料,由于散装粉料罐车装料后总质量超过60吨,安全起见,散装粉料罐车装料后停留在坑边,每次装料时HR压力输料罐车上岸进行操作。

散装粉料罐车每次药剂装载量为额定装载量85%,约吨,拟装备的HR压力输料罐车每次药剂装载量约8吨,理论上散装粉料罐车能实时给HR压力输料罐车供料5次,则散装粉料罐车每天需往返填料9次,HR压力输料罐车需44次。

③污泥坑表面杂物清除污泥坑表面残存的漂浮物需要打捞去除,以免污泥固化施工时对固化设备作业造成影响。

在每个单元格固化施工前,使用挖掘机将污泥坑表面的漂浮物等杂物打捞,统一收集后运转到西坑尾垃圾场填埋处理。

④污泥固化施工由于3#污泥坑没有渗沥液,不需要考虑对其进行渗沥液排导后进行施工,因此拟首先对3#进行固化施工,2#污泥坑污泥量几乎等于1#和3#污泥坑污泥总量,平均污泥深度最深(5~8m), 渗沥液最多,施工难度最高,拟将其安排在最后。

因此三个污泥坑施工顺序先后为3#污泥坑、1#污泥坑、2#污泥坑。

在前期渗沥液排导完成、仪器调试完成后,开始实施污泥固化施工,采用原位固化设备在铺设钢板的施工区域进行污泥搅拌,原位污泥搅拌分为两个阶段:(A、第一次供料搅拌:将强力搅拌头以设定的速率沉入污泥,并根据设计的固化剂添加量适时喷粉作业,喷粉速率和提升速度根据网格单元内的污泥特性设定。

B、第二次供料搅拌:为弥补第一次搅拌的不足,提高药剂的利用率,达到污泥与药剂充分混合的效果,再次搅拌,可以提高沉管和升管速度。

相关文档
最新文档