压力传感器的发展

压力传感器的发展
压力传感器的发展

压力传感器的发展

传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。

压力传感器的发展历程

现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段:

(1) 发明阶段(1945-1960年):这个阶段主要是以1947年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S.Smith) 与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进

行测量。此阶段最小尺寸大约为1cm。

(2) 技术发展阶段(1960-1970年):随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。

(3) 商业化集成加工阶段(1970-1980年):在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。

(4) 微机械加工阶段(1980年-今):上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。

压力传感器国内外研究现状

从世界范围看压力传感器的发展动向主要有以下几个方向。

(1)光纤压力传感器;这是一类研究成果较多的传感器,但投入实

际领域的并不是太多。它的工作原理是利用敏感元件受压力作用时的形变与反射光强度相关的特性,由硅框和金铬薄膜组成的膜片结构中间夹了一个硅光纤挡板,在有压力的情况下,光线通过挡板的过程中会发生强度的改变,通过检测这个微小的改变量,我们就能测得压力的大小。这种敏感元件已被应用与临床医学,用来测扩张冠状动脉导管气球内的压力。可预见这种压力传感器在显微外科方面一定会有良好的发展前景。同时,在加工与健康保健方面,光纤传感器也在快速发展。

(2)电容式真空压力传感器;E+H公司的电容式压力传感器是由一块基片和厚度为0.8~2.8mm的氧化铝(Al2O3) 构成,其间用一个自熔焊接圆环钎焊在一起。该环具有隔离作用,不需要温度补偿,可以保持长期测量的可靠性和持久的精度。测量方法采用电容原理,基片上一电容CP 位于位移最大的膜片的中央,而另一参考电容CR 位于膜片的边缘,由于边缘很难产生位移,电容值不发生变化,CP 的变化则与施加的压力变化有关,膜片的位移和压力之间的关系是线性的。遇到过载时,膜片贴在基片上不会被破坏,无负载时会立刻返回原位无任何滞后,过载量可以达到100 %,即使是破坏也不会泄漏任何污染介质。因此具有广泛的应用前景。

(3)耐高温压力传感器新型半导体材料碳化硅(SiC) 的出现使得单晶体的高温传感器的制作成为可能。Rober.S.Okojie报导了一种运行试验达500 ℃的α(6H) SiC 压力传感器. 实验结果表明,在输入电压为5V,被测压力为6.9MPa 的条件下,23500℃时的满量程输出为44.66~20.03mV,满量程线度为20.17%,迟滞为0.17%在500℃条件下

运行10h,性能基本不变;在100℃和500 ℃两点的应变温度系数(TCGF), 分别为20.19%/℃和-0.11%/℃。这种传感器的主要优点是PN 结泄漏电流很小,没有热匹配问题以及升温不产生塑性变型,可以批量加工。Ziermann,Rene 报导了使用单晶体n 型β- SiC 材料制成的压力传感器,这种压力传感器工作温度可达573K,耐辐射。在室温下,此压力传感器的灵敏度为20.2muV/ VKPa。

(4)硅微机械加工传感器;在微机械加工技术逐渐完善的今天,硅微机械传感器在汽车工业中的应用越来越多。而随着微机械传感器的体积越来越小,线度可以达到1~2mm,可以放置在人体的重要器官中进行数据的采集。Hachol,Andrzej ;dziuban,Jan Bochenek 报导了一种可以用于测量眼球的眼压计,其膜片直径为1mm。在内眼压为60mmHg时,静态输出为40mV,灵敏度系数比较高。

(5)具有自测试功能的压力传感器;为了降低调试与运行成本,Dirk De Bruyker 等人报导了一种具有自测试功能的压阻、电容双元件传感器,它的自测试功能是根据热驱动原理进行的,该传感器尺寸为1.2mm×3mm×0.5mm,适用于生物医学领域。

(6)多维力传感器;六维力传感器的研究和应用是多维力传感器研究的热点,现在国际上只有美、日等少数国家可以生产。在我国北京理工大学在跟踪国外发展的基础上,又开创性的研制出组合有压电层的柔软光学阵列触觉,阵列密度为2438tactels/cm2,力灵敏1g,结构柔性很好,能抓握和识别鸡蛋和钢球,现已用于机器人分选物品。

压力传感器的发展趋势

当今世界各国压力传感器的研究领域十分广泛,几乎渗透到了各行各业,但归纳起来主要有以下几个趋势:

(1)小型化目前市场对小型压力传感器的需求越来越大,这种小型传感器可以工作在极端恶劣的环境下,并且只需要很少的保养和维护,对周围的环境影响也很小,可以放置在人体的各个重要器官中收集资料,不影响人的正常生活。如美国Entran 公司生产的量程为2~500PSI 的传感器,直径仅为 1.27mm,可以放置在人体的血管中而不会对血液的流通产生大的影响。

(2)集成化压力传感器已经越来越多的与其它测量用传感器集成以形成测量和控制系统。集成系统在过程控制和工厂自动化中可提高操作速度和效率。

(3)智能化由于集成化的出现,在集成电路中可添加一些微处理器,使得传感器具有自动补偿、通讯、自诊断、逻辑判断等功能。

(4)广泛化压力传感器的另一个发展趋势是正从机械行业向其它领域扩展,例如:汽车元件、医疗仪器和能源环境控制系统。

(5)标准化传感器的设计与制造已经形成了一定的行业标准。如ISO国际质量体系;美国的ANSI、ASTM标准、俄罗斯的OCT、日本的JIS标准。

随着硅、微机械加工技术、超大集成电路技术和材料制备与特性研究工作的进展,使得压力传感器在光纤传感器的批量生产、高温硅压阻及压电结传感器的应用成为可能,在生物医学、微型机械等领域,压力传感器有着广泛的应用前景。

图尔克接近开关参数详细介绍

图尔克接近开关是种开关型传感器,它即有行程开关、微动开关的特性,同时还具有传感性能好且动作可靠以及应用寿命长等特点。从而它被广泛的应用于机床、冶金、化工、轻纺和印刷等行业。 在自动控制系统中可作为限位、计数、定位控制和自动保护环节,图尔克接近开关具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。因此到目前为止,图尔克接近开关的应用范围日益广泛,其自身的发展和创新的速度也是极其迅速。 对于不同的材质的检测体和不同的检测距离,应选用不同类型的图尔克接近开关,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则: 1.当检测体为金属材料时,应选用高频振荡型图尔克接近开关,该类型图尔克接近开关对铁镍、A3钢类检测体检测比较灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。 2.当检测体为非金属材料时,如木材、纸张、塑料、玻璃和水等,应选用电容型图尔克接近开关。 3.金属体和非金属要进行远距离检测和控制时,应选用光电型接近开关或超声波型图尔克接近开关。 4.对于检测体为金属时,若检测灵敏度要求不高时,可选用价格低廉的磁性图尔克接近开关或霍尔式图尔克接近开关。

其次在图尔克接近开关技术指标检测相关介绍如下: 1.动作距离测定,当动作片由正面靠近图尔克接近开关的感应面时,使图尔克接近开关动作的距离为图尔克接近开关的最大动作距离,测得的数据应在产品的参数范围内。 2.释放距离的测定,当动作片由正面离开图尔克接近开关的感应面,传感器由动作转为释放时,测定动作片离开感应面的最大距离。 3.回差H的测定,较大动作距离和释放距离之差的绝对值。 4.动作频率测定,用调速电机带动胶木圆盘,在圆盘上固定若干钢片,调整传感器感应面和动作片间的距离,约为传感器动作距离的百分之80左右,转动圆盘,依次使动作片靠近图尔克接近开关,在圆盘主轴上装有测速装置,传感器输出信号经整形,接至数字频率计。此时启动电机,逐步提高转速,在转速与动作片的乘积与频率计数相等的条件下,可由频率计直接读出传感器的动作频率。 5.重复精度测定,将动作片固定在量具上,由开关动作距离的百分之120以外,从开关感应面正面靠近传感器的动作区,运动速度控制在0.1mm/s上。当传感器动作时,读出量具上的读数,然后退出动作区,使传感器断开。如此重复10次,计算10次测量值的最大值和最小值与10次平均值之差,差值大者为重复精度误差。 以上即是有关图尔克接近开关方面的相关内容桀骜,希望此篇文章会对大家能够有所帮助。另外,若是您还想要了解更多资讯,欢迎您致电南京凯基特电气有限公司进行详细知晓。

压力传感器的论文

压力传感器的论文 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对 测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况 下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有3类: 1. 基本的或未加补偿标定; 2. 有标定并进行温度补偿; 3. 有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。 传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少10倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压力,测得的压力将产生如图1所示的误差。 这种未经标定的初始误差由以下几个部分组成: a. 偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b. 灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。 c. 线性误差。这是一个对初始误差影响较小的因素,该误差的产生原因在于硅片的物理非线性,但对于带放大器的传感器,还应包括放大器的非线性。线性误差曲线可以是凹形曲线,也可以是凸形曲线。 d. 滞后误差:在大多数情形中,滞后误差完全可以忽略不计,因为硅片具有很高的机械刚度。一般只需在压力变化很大的情形中考虑滞后误差。 标定可消除或极大地减小这些误差,而补偿技术通常要求确定系统实际传递函数的参数,而不是简单的使用典型值。电位计、可调电阻以及其他硬件均可在补偿过程中采用,而软件则能更灵活地实现这种误差补偿工作。 一点标定法可通过消除传递函数零点处的漂移来补偿偏移量误差,这类标定方法称为自动归零。

MEMS压力传感器

MEMS压力传感器 姓名:唐军杰 学号:09511027 班级: _09511__

目录 引言 (1) 一、压力传感器的发展历程 (2) 二、MEMS微压力传感器原理 (3) 1.硅压阻式压力传感器 (3) 2.硅电容式压力传感器 (4) 三、MEMS微压力传感器的种类与应用范围 (5) 四、MEMS微压力传感器的发展前景 (7) 参考文献 (8)

内容提要 在整个传感器家族中,压力传感器是应用最广泛的产品之一, 每年世界性的压力传感器的专利就有上百项。微压力传感器作为微 型传感器中的一种,在近几年得到了快速广泛的应用。本文详细介 绍了MEMS压力传感器的原理与应用。 [关键词]:MEMS压力传感器微型传感器微电子机械系统 引言 MEMS(Micro Electromechanical System,即微电子机械系统) 是指集微型传感器、执行器以及信号处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器在航空、航天、汽车、生物医学、环境 监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的 应用前景。 MEMS微压力传感器可以用类似集成电路的设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过 程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使 压力控制变得简单、易用和智能化。传统的机械量压力传感器是基 于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此 它不可能如MEMS微压力传感器那样,像集成电路那么微小,而且 成本也远远高于MEMS微压力传感器。相对于传统的机械量传感器,MEMS微压力传感器的尺寸更小,最大的不超过一个厘米,相对于 传统“机械”制造技术,其性价比大幅度提高。

传感器论文

压力传感器的温控系统的研究 班级:学号: 姓名: 摘要:针对压力传感器易受温度影响,产生零点漂移、测量误差增大,从而产生测量误差等问题,本文设计了一种温度控制系统,根据科恩-库恩公式建立了系统的数学模型,采用参数自整定PID控制算法,克服了纯 PID 控制有较大超调量的缺点,从而减少了温度漂移对于测量值的影响,实现了一个温度控制系统。同时利用仿真软件建立系统的仿真模型,通过仿真和测试验证系统满足设计要求。很大程度上补偿了温度所应起的温漂对于测量值影响产生的误差,是压力传感器在高温工作情况下的稳定性的得到极大的提高。 关键字:温度传感器,温漂腔体仿真操作 0 引言 针对我国当对于压力传感器材料的研究的现进成果以及压力传感器技术在我国生产技术,社会生活,军事医学等方面的广泛运用,对于传感器各方面的研究就有极大的意义,同时也为我们研究传感器提供了有力的基础。sic的耐高温,抗腐蚀,抗辐射性能,因而使用SiC 来制作压力传感器,能够克服Si器件高温下电学、机械、化学性能下降的缺陷,稳定工作于高温环境,具有光明的应用前景。 但是界温度较大时,压力传感器受温度影响精度不高,会产生零点漂移等问题,从而增大测量误差。于是尝试加工一个腔体,把压力传感器和温度传感器放置在里面形成一个小的封闭腔体,在外界温度较高或较低的情况下,用加热装置先升温到几十度并维持这一温度,给压力传感器做零点补偿,提高压力传感器的测量精度。这样就克服了在大温度范围难以补偿的问题。本文对这个温度控制系统提出了解决方案,采用了PID参数自整定控制,模糊控制属于智能控制方法,它与 PID 控制结合,具有适应温控系统非线性、干扰多、时变等特点[1-3]。 1 硬件系统 用放置在腔体内的温度传感器测量恒温箱内的温度,产生的信号经过放大后输出反馈信号,再用单片机进行采样,由液晶显示恒温箱内的温度,并通过温度控制算法控制加热装置。所使用的单片机为STC125408AD,自带A/D转换、EPROM功能,内部集成MAX810专用复位电路(外部晶振20 MHz以下时,可省外部复位电路),ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器可通过串口(P3.0/ P3.1) 直接下载用户程序,数秒即可完成一片。 2 系统的控制模型 电加热装置是一个具有自平衡能力的对象,可用 一阶 惯性环节描述温控对象的数学模型[5-8] 。 G(S)=K/(t′S+1) (1) 式中: K为对象的静增益;t′为对象的时间常数。 目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。具体用科恩-库恩(cohen-coon)公式确定近似传递函数。 cohn-coon 公式如下: K= Δ C/ Δ M

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为

电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。 (4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。 通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 从世界范围看压力传感器的发展动向主要有以下几个方向。 2. 1 光纤压力传感器[5 ]

MEMS压力传感器论文

基于MEMS实现SOI压力传感器的设计研究 学院:机械与材料工程学院 专业班级:机械(专研)-14 学号:2014309020127 学生姓名:王宇 指导教师:赵全亮 撰写日期:2015年1月6日

目录 1.MEMS传感器概述 (1) 1.1 MEMS传感器研究现状 (1) 1.2 MEMS压力传感器分类 (1) 1.3MEMS压力传感器应用 (2) 2.基于MEMS实现SOI压力传感器的设计研究 (2) 2.1 SOI压力传感器简介 (2) 2.2 SOI压力传感器的理论及结构设计 (3) 2.3 SOI压力传感器总结 (6) 3.MEMS压力传感器发展趋势 (7)

1.MEMS传感器概述 1.1 MEMS传感器研究现状 进入21世纪以来,在市场引导、科技推动、风险投资和政府介入等多重作用下,MEMS传感器技术发展迅速,新原理、新材料和新技术的研究不断深入,MEMS传感器的新产晶不断涌现。目前,MEMS传感器正向高精度、高可靠性、多功能集成化、智能化、微型化和微功耗方向发展。 其中,MEMS技术也是伴随着硅材料及其加工技术、IC技术的成熟而发展起来的,它的运用带来了传感器性能的大幅度提升,其特点主要包括:1)质量和尺寸的减少;2)标准的电路避免了复杂的线路和外围结构;3)可以形成传感器阵列,获取阵列信号;4)易于处理和长的寿命;5)低的生产成本,这包括低的能源消耗,较少的用材;6)可以避免或者少用贵重的和对环境有损害的材料,其中压力传感器是影响最为深远且应用最为广泛的MEMS传感器。 1.2 MEMS压力传感器分类 MEMS传感器的发展以20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计为开端。压力传感器是影响最为深远且应用最广泛的MEMS传感器,其性能由测量范围、测量精度、非线性和工作温度决定。从信号检测方式划分,MEMS压力传感器可分为压阻式、电容式、压电式和谐振式等,其特点如下: 1)压阻式:通过测量材料应力来测量压力大小,它具有体积小、全动态测量范围的高线性度、较高的灵敏度、相对较小的滞后和蠕变的特点,此类型传感器多采用惠斯通电桥来消除温度影响; 2)电容式:通过测量电容变化来测量压力大小,相比较压阻式的传感器,它具有很高的灵敏度、低温度敏感系数、没有滞后、更高的长期稳定性,但同时它也有更高的非线性度、更大的体积,需要更复杂的检测电路和更高的生产成本; 3)谐振式:通过测量频率或频率的微分变化来测量压力大小,它可以通过诸如热、电磁和静电效应来改变膜片频率,并且可以通过真空封装来提高传感器精度; 4)压电式:压电传感器是利用某些电介质受力后产生的压电效应制成的传

传感器的尺寸对照表

格式宽度长度对角线面积焦距系数代表机型 中画幅33.044.055.014520.7宾得645D 全画幅24.036.043.4864 1.0全画幅单反Red Epic14.627.731.3404 1.3Red Epic 35电影机13.724.428334 1.4Red One Super 35mm13.824.628.0339 1.4佳能C300 APS-C15.623.628.3368 1.5其他APS-C格式单反APS-C14.922.327.3329 1.6佳能APS-C格式单反1.5"14.018.723.4262 1.9佳能G1 X 4/313.518.022.4243 2.04/3及M4/3相机 尼康CX8.813.215.8116 2.7尼康1系列 Super 167.412.514.593 3.0Super 16胶卷 2/3" 6.68.811.058 4.0富士X1- 1/1.7" 5.67.49.542 4.6佳能G12 1/1.8" 5.37.28.938 4.8高端便携相机 1/2" 4.8 6.48.031 5.4摄像头 1/2.5" 4.3 5.87.225 6.0低端便携相机 1/3" 3.6 4.8 6.0177.2摄像头

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城。https://www.360docs.net/doc/795337450.html,/

合金薄膜压力传感器的应用共15页

传感器原理及工程应用(论文) 合金薄膜压 力传感器的应用 学生姓名:张志强 指导教师:任爽 所在学院:信息技术学院 专业:电气工程及其自动化 学号:20094073120 中国·大庆 2019 年12 月

目录 前言........................................................ I I 1 合金薄膜压力传感器工作原理 (1) 2 合金薄膜高温压力传感器研究现状 (2) 2.1 镍铬系合金薄膜压力传感器 (2) 2.2 铂钨合金薄膜压力传感器 (3) 2.3 钯铬合金薄膜应变计 (3) 3 多功能传感器(MULTIFUNCTION) (4) 3.1 多功能传感器的执行规则和结构模式 (4) 3.2 多功能传感器的研制与应用现状 (4) 4 无线网络化(WIRELESS NETWORKED) (7) 4.1 传感器网络 (7) 4.2 传感器网络研究热点问题和关键技术 (7) 4.3 传感器网络的应用研究 (8) 结论 (10) 参考文献 (11)

前言 咨询公司INTECHNO CONSULTING的传感器市场报告显示,2019年全球传感器市场容量为506亿美元,预计2019年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景,一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-Mechanical Systems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2019-2019年复合年增长率预计会超过25%。 目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。

压力传感器的发展趋势和现状.

压力传感器的发展趋势和现状 南京宏沐科技有限公司 2012-02-14 09:41 传感器技术是现代测量和自动化系统的重要技术之一。随着硅、微机械加工技术、超大集成电路技术和材料制备与特性研究工作的进展,使得压力传感器在光纤传感器的批量生产、高温硅压阻及压电结传感器的应用成为可能,在生物医学、微型机械等领域,压力传感器有着广泛的应用前景。 1 压力传感器的发展趋势 当今世界各国压力传感器的研究领域十分广泛,几乎渗透到了各行各业,但归纳起来主要有以下几个趋势: (1 小型化目前市场对小型压力传感器的需求越来越大,这种小型传感器可以工作在极端恶劣的环境下,并且只需要很少的保养和维护,对周围的环境影响也很小,可以放置在人体的各个重要器官中收集资料,不影响人的正常生活。如德国HELM公司生产的量程为2~500PSI 的传感器,直径仅为1. 27mm ,可以放置在人体的血管中而不会对血液的流通产生大的影响。 (2 集成化压力传感器已经越来越多的与其它测量用传感器集成以形成测量和控制系统。集成系统在过程控制和工厂自动化中可提高操作速度和效率。 (3 智能化由于集成化的出现,在集成电路中可添加一些微处理器,使得传感器具有自动补偿、通讯、自诊断、逻辑判断等功能。 (4 广泛化压力传感器的另一个发展趋势是正从机械行业向其它领域扩展,例如:汽车元件、医疗仪器和能源环境控制系统。 (5 标准化传感器的设计与制造已经形成了一定的行业标准。如ISO 国际质量体系;美国的ANSI、ASTM标准、俄罗斯的ГOCT、日本的J IS 标准。

从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因 此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。

压力传感器原理及应用

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,江苏省苏科仪表有限公司技术部的同志就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

位移传感器常见故障的处理方法

一、供电电压要稳定,工业电源要求±0.1%的稳定性,比如基准电压10v,允许有±0.01v的波动,否则,会导致显示的较大波动。如果这时的显示波动幅度不超过波动电压的波动幅度,电子尺就属于正常。 二、供电电源要有足够的容量,如果电源容量太小,容易发生如下情况:合模运动会导致射胶电子尺显示跳动,或熔胶运动会导致合模电子尺的显示波动。特别是电磁阀驱动电源于电子尺供电电源在一起时容易出现上述情况,严重时可以用万用表的电压档测量到电压的波动。如果在排除了静电干扰、高频干扰、对中性不好的情况下仍不能解决问题,也可以怀疑是电源的功率偏小。 三、不能有外界的干扰,包括静电干扰和高频干扰。因此,设备的强电线路与电子尺的信号线应分开线槽。电子尺应使用强制接地支架,且使电子尺外壳(可测量端盖螺丝与支架之间的电阻,应小于1ω电阻)良好接地,信号线应使用屏蔽线,且在电箱的一端应予将屏蔽线接地或接直流电源负极。静电干扰时,一般万用表的电压测量非常正常,但就是显示数字跳动;高频干扰时其现象也一样。验证是不是静电干扰,用一段电源线将电子尺的封盖螺丝与机器上某一点金属短接即可,只要一短接,静电干扰立即消除。但高频干扰就难以用上述办法消除,而且机器手、变频节电器多出现高频干扰,可以用停止机器手或变频节电器的办法验证。 四、不能接错电子尺的三条线,1#、3#线是电源线,2#是输出线除1#、3#线电源线可以调换外,2#线只能是输出线。上述线一旦接错,将出现线性误差大,控制精度差,容易显示跳动等现象。如果出现控制非常困难,就应该怀疑是接错线。 五、安装对中性要好,角度容许±12°误差,平行度偏差容许±0.5mm,是指某一误差,如果角度误差和平行度误差都偏大,就会导致显示数字跳动。在这种情况下,一般可以用万用表的电压档测出电压的波动。一定要作角度和平行度的调整。请特别注意:在现场将电子尺的铝合金支架更换成不锈钢支架后,同时应将拉杆牵引安装位升高2 mm。否则,接地问题解决了,又形成了不对中的问题,必须同时解决。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/795337450.html,。

压力传感器的毕业设计英语论文

The Basic knowledge of Sensor and Development of Sensor The Basic knowledge of Sensor A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

航空新型传感器的发展现状分析

航空新型传感器的发展现状分析 微机电系统(Microelectro Mechanical Systems,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过几十年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。微传感器是采用微电子和微机械加工技术制造出来的航空新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。本文概述国内外目前已实现的微机械传感器特别是微机械谐振式传感器的类型、工作原理、性 能和发展方向。 微机械压力传感器是最早开始研制的微机械产品,也是微机械技术中最成熟、最早开始产业化的产品。从信号检测方式来看,微机械压力传感器分为压阻式和电容式两类,分别以体微机械加工技术和牺牲层技术为基础制造。从敏感膜结构来看,有圆形、方形、矩形、E形等多种结构。目前,压阻式压力传感器的精度可达 0.05%~0.01%,年稳定性达0.1%/F.S,温度误差为0.0002%,耐压可达几百兆帕,过压保护范围可达传感器量程的20倍以上,并能进行大范围下的全温补偿[1]。现阶段微机械压力传感器的 主要发展方向有以下几个方面。 (1)将敏感元件与信号处理、校准、补偿、微控制器等进行单片集成,研制智能化 的压力传感器。 这一方面,Motorala公司的YoshiiY等人在Transducer'97上报道的单片集成智能压力传感器堪称典范[2]。这种传感器在1个 SOI晶片上集成了压阻式压力传感器、温度传感器、CMOS电路、电压电流调制、8位MCU内核(68H05)、10位模/数转换(A/D)器、8位数模转换(D/A)器,2K字节EPROM、128字节RAM,启动系统ROM和用于数据通信的外围电路接口,其输出特性可以由MCU的软件进行校准和补偿,在相当宽的温度 范围内具有极高的精度和良好的线性。 (2)进一步提高压力传感器的灵敏度,实现低量程的微压传感器[3]。 这种结构以Endevco公司在1977年提出的双岛结构为代表,它可以实现应力集中从而提高了压阻式压力传感器的灵敏度,可实现10kPa以下的微压传感器。1989年复旦大学提出1种梁膜结构来实现应力集中,其结构可看作1个正面的哑铃形梁叠加在平膜

压力传感器应用论文.

传感器的应用 压 力 传 感 器 姓名:白智伟 学号:2011081403 班级:2011级电本2班 压力传感器 摘要:压力传感器以stc11f04e单片机为中心控制系统. 主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,电阻应变片受到拉伸或压缩应变片变形后,它的阻值将发生变化,从而使电桥失去平衡,产生相应的差动信号,再经相应的测量电路把这一电阻变化转换为电信号,然后用放大器将此信号放大。用双积分型A/D转换电路转换,将转变的数字量经单片机处理。最后由LCD将其显示。 关键词:stc11f04e;传感器;双积分型A/D转换电路。 一.系统设计 1.总体设计思路:

本设计主要由压力传感器,运算放大器,双积分型A/D转换电路,单片机,LCD显示屏构成。总体框架如下图1。 图1总体电路框图 二.各个单元电路设计 1.压力传感器的设计 采用电阻应变式压力传感器。是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把 4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 2.输入放大电路的设计 由于所测出的微压力传感器两端的电压信号较弱,所以电压在进行A/D 转换之前必须经过放大电路的放大。输入放大的主要作用是提高输入阻抗和,本设计采用OP07集成运算放大器构成同相比例放大电路,以提高电路的输入阻抗,以达到设计要求。 3.双积分式A/D转换器的设计

压力传感器文献综述

压力传感器文献综述 摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过部分文献资料对压力传感器的发展过程、研究现状和发展趋势做一简要介绍。关键词:压力;传感器; 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段(1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。(3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。(4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国长期安全和经济繁荣至关重要的22项技术中就有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速。目前,我国传感器行业规模较小,应用范围较窄。为此,我们亟须转变观念,将传感器的研发由单一型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键,它将成为21世纪信息产业新的经济增长点。改革开放30年来,我国传感器技术及其产业取得了长足进步,主要表现在:建立了传感技术国家重点实验室、微米/纳米国家重点实验室、国家传感技术工程中心等研究开发基地;MEMS、MOEMS等研究项目列入了国家高新技术发展重点;在“九五”国家重科技攻关项目中,传感器技术研究取得了51个品种86个规格新产品的成绩,初步建立了敏感元件与传感器产业;2007年传感器业总产量达到20.93亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定的应用。压力传感器的发展动向主要有以下几个方向: 2.1光纤压力传感器 这是一类研究成果较多的传感器,但投入实际领域的并不是太多。光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、

微压力传感器研究现状及发展趋势

大连理工大学研究生试卷 系别:机械工程学院 课程名称:微制造与微机械电子系统学号:21204035 姓名:李方元 考试时间:2013年1 月15 日类别标准分数实得分数平时 成绩 10 作业 成绩 90 总分100 授课教师刘冲 签字

微压力传感器研究现状及发展趋势 李方元 (大连理工大学大连) 摘要:MEMS器件中,微压力传感器是应用最为广泛的一种。本文主要介绍了微压力传感器的特点、应用,介绍了国内外的目前研究现状及发展趋势,以及我国与发达国家的差距。 关键词:MEMS 微压力传感器研究现状发展趋势 Micro pressure sensor research status and development trend Li Fang Yuan (Dalian university of technology Dalian) Abstract: the MEMS devices, micro pressure sensor is a kind of widely used. This article mainly introduced the micro pressure sensor characteristics, application, this paper introduces domestic and international current research situation and development trend in our country, and the gap with developed countries. Keywords: MEMS micro pressure sensor research situation development trend 0前言 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。本文主要介绍微压力传感器的一些知识。 MEMS传感器的发展以20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计为开端。压力传感器是应用最广泛的MEMS传感器.其性能由测量范围、测量精度、非线性和工作温度决定。从信号检测方式划分,MEMS压力传感器可分为压阻式、电容式和谐振式等;从敏感膜结构划分,可分为圆形、方形、矩形和E形等。它的工作原理是压力直接作用在传感器的膜片上,使膜片产生与介质压力成正比的微位移,使传感器的电阻发生变化,用电子线路检测这一变化,并转换输出一个对应于这个压力的标准信号。 微机械制造技术包括了清洗、氧化、光刻、刻蚀、离子注入或扩散、溅射、键合、封装技术等]5[。制作不同的微结构就需要合理的使用这些技术,通常用硅、石英和陶瓷材料为衬底,与薄膜技术相结合,并规范使用各项工艺技术就可以制作出精密的微器件,来用于实际测试中。其中最为关键的是后期封装工艺,它也是工艺上的一个难点,对微器件的性能有很大影响。 1微传感器特点及应用

相关文档
最新文档