纳米技术与药物制剂

合集下载

药物制剂新技术

药物制剂新技术

药物制剂新技术药物制剂新技术是药学领域不断探索和发展的重要方向,其研究内容和应用涉及到材料科学、化学工程、生物技术等多个学科领域。

本文将从药物制剂新技术的意义、发展现状和未来趋势等方面进行探讨。

一、意义药物制剂新技术的研究与应用对于提高药物的生物利用度、降低毒副作用、改善药物的稳定性和控制释放速率等方面具有重要意义。

其对于新药的研发、已有药物的改良、治疗手段的创新等方面都有着重要的作用。

而且,随着生物技术的发展,药物制剂新技术还可以为生物大分子药开发提供更广阔的空间。

二、发展现状1. 纳米技术在药物制剂中的应用纳米技术是当前药物制剂研究的热点之一,主要包括纳米粒子、纳米载体等。

纳米技术可以提高药物的溶解度和稳定性,增加药物在体内的靶向性,降低药物的毒副作用等优点,已在抗癌药物、生物大分子药物等领域取得了重要突破。

2. 微流控技术在药物制剂中的应用微流控技术可以实现对药物的微观操控,包括微小尺寸的药物载体制备、微流控芯片的设计等方面的应用。

这一技术可以实现对微观尺度的药物携带和释放,有望在药物快速筛选、个性化用药以及药物的微量运输等方面得到应用。

3. 3D打印技术在药物制剂中的应用3D打印技术已经在医疗器械制造领域取得了较大进展,而在药物制剂方面也开始得到应用。

通过3D打印技术,可以根据个体需求设计和制备药物,为个性化治疗提供技术支持。

三、未来趋势1. 个性化药物治疗随着基因检测和生物信息学等技术的发展,个性化药物治疗将成为药物制剂研究的未来发展趋势之一。

药物制剂将向更加个性化、精准化的方向发展,以满足不同人群的个性化治疗需求。

2. 可穿戴药物制剂系统随着可穿戴技术的不断进步,可穿戴药物制剂系统将成为未来的研究热点。

这一系统可以实现对药物的长效控释、即时监测等功能,极大地提高了药物治疗的便利性和有效性。

3. 绿色环保制剂技术在药学领域,绿色环保技术也是一个重要发展方向。

未来的药物制剂技术将更多地关注节能减排、可降解材料等方面,以实现对环境的友好和持续发展。

药物制剂中纳米技术的应用

药物制剂中纳米技术的应用

药物制剂中纳米技术的应用在现代医学领域,药物制剂的发展日新月异,其中纳米技术的应用为药物的研发和治疗带来了革命性的变化。

纳米技术,简单来说,就是在纳米尺度(1 到 100 纳米)上对物质进行研究和操作的技术。

当应用于药物制剂时,它能够显著改善药物的性能,提高治疗效果,降低副作用,为患者带来更好的医疗体验。

一、纳米技术在药物制剂中的优势纳米技术在药物制剂中的应用具有诸多显著优势。

首先,纳米粒子能够增加药物的溶解度。

许多药物由于其化学结构和物理性质,在水中的溶解度较低,这限制了它们在体内的吸收和生物利用度。

通过将药物制成纳米粒子,可以增大药物与溶剂的接触面积,从而提高溶解度,使药物更容易被人体吸收。

其次,纳米技术能够实现药物的靶向输送。

传统的药物制剂在进入人体后,往往会分布到全身各个部位,只有一小部分能够到达病变部位,这不仅降低了药物的治疗效果,还可能导致全身性的副作用。

而纳米粒子可以通过表面修饰,使其具有特定的靶向性,能够识别并结合病变细胞或组织表面的受体,从而将药物精准地输送到病变部位,提高药物的治疗指数。

此外,纳米粒子还能够延长药物的作用时间。

药物在体内的代谢和排泄速度较快,导致其疗效持续时间较短。

纳米粒子可以通过控制药物的释放速度,实现药物的缓慢释放,从而延长药物的作用时间,减少给药次数,提高患者的依从性。

二、纳米技术在药物制剂中的应用形式纳米脂质体纳米脂质体是由磷脂双分子层组成的封闭囊泡,内部可以包裹水溶性或脂溶性药物。

它具有良好的生物相容性和生物可降解性,能够有效地保护药物免受体内环境的影响,提高药物的稳定性。

纳米脂质体还可以通过修饰表面的配体,实现对肿瘤细胞等特定细胞的靶向输送。

纳米胶束纳米胶束是由两亲性聚合物在水溶液中自组装形成的纳米粒子。

它的疏水内核可以包裹脂溶性药物,亲水外壳能够增加纳米粒子在水溶液中的稳定性和溶解性。

纳米胶束同样可以进行表面修饰,实现药物的靶向输送。

纳米混悬剂纳米混悬剂是将药物颗粒分散在稳定剂中形成的纳米级分散体系。

纳米技术在药物中的应用

纳米技术在药物中的应用

纳米技术在药物中的应用纳米技术是一种应用于纳米尺度的技术,其在药物领域的应用日益广泛。

纳米技术可以改变药物的生物利用度、药效、毒性和靶向性,为药物研发和治疗带来了新的可能性。

本文将探讨纳米技术在药物中的应用,包括纳米药物的制备方法、优势和挑战,以及目前的研究进展和未来发展方向。

一、纳米药物的制备方法纳米药物是指通过纳米技术将药物载体缩小至纳米尺度的药物制剂。

常见的纳米药物制备方法包括纳米粒子、纳米乳液、纳米胶束和纳米脂质体等。

其中,纳米粒子是将药物包裹在纳米尺度的颗粒中,具有较高的药物负载量和稳定性;纳米乳液是将药物悬浮在水相中形成乳液,易于口服给药和靶向传递;纳米胶束是将药物包裹在胶束结构中,可提高药物的水溶性和生物利用度;纳米脂质体是将药物包裹在脂质双层结构中,具有良好的靶向性和生物相容性。

二、纳米药物的优势和挑战纳米药物相比传统药物具有许多优势,主要包括增强药物的溶解度、稳定性和生物利用度,减少药物的毒性和副作用,提高药物的靶向性和疗效。

然而,纳米药物也面临着一些挑战,如制备工艺复杂、质量控制困难、长期毒性和生物安全性等问题,需要进一步研究和解决。

三、纳米技术在药物中的应用1. 靶向治疗:纳米技术可以通过改变药物的载体和表面修饰,实现对肿瘤等靶点的精准识别和治疗,提高药物的局部浓度和疗效,减少对健康组织的损伤。

2. 控释释放:纳米技术可以设计具有可控释放性质的纳米药物载体,实现药物在体内的持续释放和稳定血药浓度,提高药物的生物利用度和疗效。

3. 诊断影像:纳米技术可以将荧光染料或对比剂包裹在纳米载体中,用于生物成像和诊断,提高医学影像的分辨率和准确性。

4. 免疫治疗:纳米技术可以将免疫调节剂载入纳米载体中,用于免疫治疗和疫苗传递,提高免疫系统的应答和治疗效果。

四、研究进展和未来发展方向目前,纳米技术在药物领域的研究进展迅速,已经有许多纳米药物进入临床试验阶段。

未来,纳米技术在药物中的应用将更加广泛,包括个性化治疗、精准医学和智能药物等方面的发展。

纳米技术在药物制剂中的应用研究

纳米技术在药物制剂中的应用研究

纳米技术在药物制剂中的应用研究一、引言纳米技术作为一种在微观尺度下制备、控制和操作物质的方法,近年来得到了广泛的应用。

药物制剂是纳米技术最早应用的领域之一。

本文将探讨纳米技术在药物制剂中的应用研究。

二、纳米技术在药物制剂中的应用1. 纳米粒子药物制剂纳米粒子药物制剂是指将药物包裹在纳米级别的颗粒中,以提高药物的生物利用度、改善药物的溶解性和稳定性。

纳米粒子药物制剂包括纳米乳液、纳米乳剂、纳米微球、纳米胶囊等。

由于纳米粒子药物制剂具有较小的粒径,因此可以在体内穿过细胞膜,实现靶向输送,具有很好的治疗效果。

2. 脂质体药物制剂脂质体药物制剂是指将药物包裹在脂质体内,以改善药物的生物利用度和稳定性。

脂质体药物制剂具有较好的药物包裹效率和释放效果,能够提高药物的反应速度和作用时间。

3. 纳米磁性粒子药物制剂纳米磁性粒子药物制剂是指将药物包裹在纳米磁性粒子内,以达到靶向输送和定位治疗的目的。

纳米磁性粒子药物制剂可以通过磁场作用,实现对药物的控制释放和定向输送。

4. 纳米胶束药物制剂纳米胶束药物制剂是指将药物包裹在多聚物分子中,形成纳米级别的胶束,以达到提高药物的生物利用度和稳定性的目的。

纳米胶束药物制剂具有较好的负载能力和控制释放效果,能够提高药物的反应速度和作用时间。

三、纳米技术在药物制剂中的优势与挑战1. 优势(1)提高药物的生物利用度和稳定性,降低药物副作用。

(2)实现药物的靶向输送和定位治疗,提高治疗效果。

(3)能够制备多种形态的药物制剂,满足不同疾病治疗的需求。

2. 挑战(1)纳米制剂的制备比较复杂,成本较高。

(2)药物包裹率和释放效果不稳定,制剂的质量难以保证。

(3)纳米制剂在体内代谢和排泄过程中的安全性和毒性问题需要进一步研究。

四、结论纳米技术在药物制剂中的应用有着广泛的前景,但也面临着一定的挑战。

我们需要进一步加强研究,提高制剂的稳定性和质量,确保纳米制剂的临床应用安全可靠。

关于药物制剂技术开发应用新进展的参考文献

关于药物制剂技术开发应用新进展的参考文献

药物制剂技术开发应用新进展在当今医学领域,药物制剂技术的发展日新月异。

药物制剂技术是指利用药物学、化学工程学、生物工程学等知识和技术,对药物进行有效、安全、合适的载体设计和制备,以便给药时能够达到预期的疗效。

随着科学技术的不断进步,药物制剂技术应用的新进展呈现出许多新的特点,这些特点都对制剂的研发和应用产生了深远的影响。

一、纳米技术在药物制剂中的应用纳米技术是一种近年来备受瞩目的新技术,它在药物制剂技术中的应用也日益广泛。

通过纳米技术,药物可以被包裹在纳米粒子中,从而提高药物的生物利用度和生物分布,减少药物的毒副作用,提高药效并降低用药剂量。

这种技术的出现,为制剂的研发和应用带来了新的突破口。

二、仿生技术在药物制剂中的创新仿生技术是将生物学原理与工程学技术相结合,通过仿生的方法研究和制造产品。

在药物制剂领域,利用仿生技术,可以设计出更加接近生物体内部环境的制剂,从而提高药物的稳定性和靶向性。

这种新的制剂技术可以更好地满足个性化治疗的需求,为临床应用提供更多可能性。

三、3D打印技术在制剂制备中的突破随着3D打印技术的不断进步,3D打印在医药领域的应用也日益广泛。

在药物制剂方面,利用3D打印技术可以根据个体患者的特点,制备符合个性化治疗需求的药物制剂,有效提高了药物的治疗效果和患者的依从性。

这种技术的出现,使得药物制剂研发更加灵活多样化。

总结而言,药物制剂技术的新进展,包括纳米技术、仿生技术和3D打印技术的应用,为药物制剂的研发和应用带来了新的机遇和挑战。

我们相信,在不久的将来,随着这些新技术的不断发展成熟,药物制剂将更好地服务于人类健康事业。

以上是对药物制剂技术开发应用新进展的一些个人看法和理解,希望能够给您带来一些帮助。

如果有什么不足或者需要进一步了解的地方,欢迎您随时向我提问。

祝好!药物制剂技术开发应用的新进展,正是当前医药领域的热点之一。

随着科学技术的进步和创新,药物制剂技术不断推陈出新,为药物治疗提供了更多可能性和选择。

纳米技术在药物制剂中的应用与前景

纳米技术在药物制剂中的应用与前景

纳米技术在药物制剂中的应用与前景随着科技的发展和进步,纳米技术逐渐在药物制剂领域中被广泛应用。

纳米技术的应用,使得制药领域的药物制剂更加高效、精准,同时也提供了更多的治疗选择。

那么,纳米技术在药物制剂中的应用与前景有哪些呢?一、纳米技术在药物制剂中的应用1.纳米药物传输系统纳米药物传输系统是将药物通过纳米技术封装成纳米粒子,可以通过人体血液循环系统将药物输送到靶区,并进行精准、有针对性的治疗。

这一方法可以减少药物的毒副反应以及提高药物的治疗效果。

例如,通过纳米技术制作出的纳米粒子可以将含有药物的磷脂质体包覆在表面,使药物被更好地保护,降低了药物被代谢和排出的速度,从而达到更好的治疗效果。

2.纳米基因传递系统纳米基因传递系统是将基因通过纳米技术封装成纳米粒子,使其能够穿过细胞膜并传递到细胞内部,进而改变细胞的遗传信息,从而达到治疗目的。

例如,将过表达特定基因的纳米粒子输送到肿瘤细胞中,可以通过改变肿瘤细胞的遗传信息,让其死亡或减弱对化疗的抗性,从而提高药物的治疗效果。

二、纳米技术在药物制剂中的前景1.精准医学随着纳米技术的发展,纳米粒子从单独的药物载体转变成为了能够携带不同种类的药物和治疗途径的药物载体。

这一技术可以使医生根据患者的情况制定个性化的治疗方案,从而更加有效地治疗病患。

例如,将扩增的DNA包覆在金纳米棒表面,可以通过控制其结构、形状和大小,让其只进入到目标细胞内,从而实现治疗靶向性的增强。

2.提高药物效果纳米技术的应用可以实现药物的更好转化和输送,同时也避免了药物在体内的实际衰减,这大大提高了药物的治疗效果。

这种技术可以让药物更好地到达病灶,以最小的剂量发挥最大的作用,减少药物的副作用,提高疗效。

例如,通过纳米技术将含有氟胞嘧啶的纳米粒子输送到病变的卵巢癌细胞中,可以更好地降低其化疗的剂量,达到更好的化疗效果,同时降低了其副作用。

3.对药物敏感性的提高通过纳米技术,可以让药物对病灶更加敏感,从而提高治疗效果。

纳米技术在药物制剂中的应用优势

纳米技术在药物制剂中的应用优势

纳米技术在药物制剂中的应用优势随着科学技术的不断发展,纳米技术在药物制剂领域中扮演着重要的角色。

纳米技术的特殊性质和应用优势使其成为开发创新药物和优化药物传递的理想选择。

本文将探讨纳米技术在药物制剂中的应用优势,并解释其对药物治疗的潜在影响。

一、增强药物溶解性和稳定性纳米技术可以将药物分子通过可控的方法制成纳米尺寸的颗粒,从而增强药物的溶解度和稳定性。

由于纳米颗粒具有较大的比表面积,可以更好地与体内液体接触,提高溶解度。

此外,通过封装药物分子在纳米载体中,药物分子可以在其内部得到保护,从而提高药物的稳定性,延长药物在体内的作用时间。

二、改善药物传递和靶向性纳米技术可以改善药物在体内的传递和靶向性。

纳米载体可以通过不同途径进入体内,如口服、注射等途径。

在体内,纳米载体可以充分利用血液循环系统,通过血液流动将药物分子输送到目标器官或组织。

此外,通过修饰纳米载体的表面,例如附加特定的配体或抗体,可以使纳米载体选择性地与目标细胞或组织发生相互作用,提高药物的靶向性。

三、增强药物穿透性和生物利用度纳米技术可以增强药物的穿透性,改善药物在体内的吸收和生物利用度。

纳米载体可以通过调整其成分、形状和表面特性,增强药物在生物屏障中的穿透性,例如肠道、血脑屏障等。

此外,纳米载体还可以通过增加药物与细胞膜的接触面积,促进药物的吸收和通过细胞膜的转运,提高药物的生物利用度。

四、实现缓释和控释纳米技术可以实现药物的缓释和控释。

通过纳米载体和药物分子之间的相互作用,药物可以被封装在载体内部,并通过缓慢释放的方式释放出来。

这种缓释和控释的方式可以提高药物的治疗效果,并减少药物的毒副作用。

总结起来,纳米技术在药物制剂中的应用优势主要体现在增强药物溶解性和稳定性、改善药物传递和靶向性、增强药物穿透性和生物利用度,以及实现药物的缓释和控释等方面。

随着纳米技术的进一步发展和应用,相信它将在药物领域中发挥着更为重要的作用,为药物治疗提供更多的选择和可能性。

药物制剂的生物纳米技术研究

药物制剂的生物纳米技术研究

药物制剂的生物纳米技术研究随着科学技术的不断进步和人们对健康需求的增加,药物制剂的研究与创新也日益受到重视。

生物纳米技术作为一项新兴的技术领域,正逐渐应用于药物制剂的研究与开发中。

本文将详细介绍药物制剂的生物纳米技术研究的相关内容。

一、生物纳米技术概述生物纳米技术是生物学、物理学、化学和工程学等多个学科交叉的领域,它主要研究和应用纳米材料在生物体内的作用、纳米材料与生物体相互作用的机制以及纳米技术在生物领域的应用。

生物纳米技术具备材料尺寸与生物分子尺寸相近的特点,因此可以更好地与生物体相容并实现精确的药物传递。

二、药物制剂中的纳米技术应用1. 纳米载体技术纳米载体技术是一种将药物封装在纳米粒子中进行传递的方法。

纳米载体可以提高药物的稳定性,并在体内实现药物的靶向输送。

例如,通过改变纳米粒子的表面性质,使其更容易与靶细胞结合,提高药物的靶向性,减少对正常细胞的损伤。

2. 纳米薄膜技术纳米薄膜技术可以制备出一种具有纳米级多孔结构的薄膜,这种薄膜能够实现药物的缓慢释放。

通过控制薄膜中的孔径大小和孔壁结构,可以调控药物的释放速度和持续时间,从而提高药物的治疗效果。

3. 纳米传感技术纳米传感技术是一种通过对生物体内微量物质的监测和检测,实现对疾病诊断和治疗效果评估的方法。

利用纳米级传感器可以实现对生物体内某些重要生物指标的实时监测,并传递给医生或患者。

这种技术有助于提高疾病的早期诊断率和治疗效果。

三、生物纳米技术在药物制剂研究中的应用案例1. 纳米载体技术在抗肿瘤药物传递中的应用通过合成纳米载体,将抗肿瘤药物封装在纳米粒子中,可以实现药物的靶向输送。

研究表明,纳米载体技术能够提高药物在肿瘤细胞内的富集度,并减少对正常细胞的毒副作用,从而提高抗肿瘤药物的治疗效果。

2. 纳米薄膜技术在皮肤病治疗中的应用通过制备具有纳米级多孔结构的薄膜,可以将药物封装在薄膜内部,并实现药物的缓慢释放。

这种技术在皮肤病治疗中具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米技术与药物制剂1前言纳米技术是近年来发展很快的新型技术,它的基本涵义是在纳米尺寸(10-9~10- 7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新物质。

已经广泛应用于材料、制造等各个领域,为人类生活带来了种种变化。

在药剂学领域一般将纳米粒的尺寸界定在1~1000 nm,纳米药物主要是将药物的微粒或将药物吸附包裹在载体中,制成纳米尺寸范围的微粒,再以其为基础制成不同种类的剂型。

由于纳米药物制剂具有独特的小尺寸效应和一定的表面效应等特性,因而表现出许多优异的性能和全新的功能,其将使药物的生产实现低成本、高效率、自动化、大规模;药物的作用将实现器官靶向化,在临床使用中有着广泛的应用前景。

正因为纳米技术用于药物制剂中的种种优异性能,所以现就常用的纳米技术应用于药物制剂的近况做一简述。

2纳米技术研究应用概况2.1 国外研究应用概况德国柏林医疗中心利用纳米技术将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞和磁性纳米粒子浓缩在一起,肿瘤部位完全被磁场封闭,通电加热时温度达47℃,慢慢杀死癌细胞,而周围的正常组织丝毫不受影响。

科学家用磁性纳米粒成功分离了动物的癌细胞和正常细胞,已在治疗人骨髓癌的临床实验中初获成功。

美国麻省理工学院的研究人员正在研究一种只有20nm的药物炸弹,它进入人体后可以识别癌细胞,一旦认出癌细胞后就爆炸,杀死癌细胞。

他们还研究了一种称为“微型药房”的微型芯片,里面包含上千个纳米药包,其中可以包含抗生素或止痛药,让人吞服或植入皮下,可以起到长期的治疗作用。

这种微型芯片装上“智能化”的传感器,可适时适量的释放药物。

英国Rice大学的研究人员发明了一种纳米壳,是一种用金覆盖的玻璃微珠。

该纳米壳注入体内后,在外部施加强烈红外辐射,利用其红外吸收性质在特定时间内传递药物分子,实现药物的纳米化传递。

该纳米壳用于癌症治疗,可有望杀死癌细胞而不损伤正常组织。

2.2 国内研究应用概况安信纳米生物科技(深圳)有限公司利用纳米技术已研制生产出一种“广谱速效纳米抗菌颗粒”纳米银颗粒,并以此为原料成功地开发出纳米药物。

其中创伤贴、溃疡贴、烧烫伤贴等3种纳米医药产品已投放市场。

这种粒径为25nm的纳米抗菌颗粒,经临床应用和多家权威机构检测,证实是一种非常安全的抗菌剂。

它无毒、无味、无刺激、无过敏反应,遇水杀菌力更强,是一种不产生耐药性的纯天然抗感染药物。

徐向田最近发明了一种可防治非典的纳米中药。

将双花、黄芪、冬凌草等中药炮制后,采用微波萃取,减压浓缩和超高速射流技术,制成纳米中药粉剂。

该纳米中药粉剂按要求制成合剂或注射剂后,体外试验发现有抗SARS病毒作用。

3 纳米制剂的作用特点和缺陷3.1 纳米药物制剂的优良性状3.1.1 药物溶解度增大根据固体剂型的溶出方程,可知难溶性药物的溶解与比表面积有关,粒子越小,比表面积越大,溶解性能就好,疗效就高。

制成的纳米药物制剂就是将水溶性不佳或难溶药物的分子制成囊状物或包在聚合物基质中加工成纳米颗粒,增大了药物的溶解度,从而大大提高某些药物的生物利用度。

3.1.2 口服药物吸收良好,生物利用度增强近年来,已有越来越多的药物,特别是肤类,蛋白质抗原类等大分子物质及许多不良反应较大的药物,通过制成口服纳米粒载药系统,可以防止药物被胃肠道的酸和酶所破坏纳米粒子避免了被包裹的药物受到胃酸和分解蛋白酶的降解作用,而且纳米粒子能够促进那些被包裹的吸收特性很差的口服药物在肠道的传递,这样被纳米粒子包裹的药物就可以作为持久的口服药物载体,从而提高生物利用度优于传统药物治疗效果的多肤类药物由于其固有的缺点,如口服易被蛋白水解酶降解等近年来在这方面有了较大的进展,许多报道表明,如果把药物分子适当地包裹,就可能起保护作用,并且促进药物的吸收利用,产生明显的生物学效果。

3.1.3 药物靶向作用增强药物靶向性是指药物能高选择性的分布于作用对象,从而增强疗效减少副作用其作用对象从靶器官靶细胞到最为先进的细胞内靶结构,而这三级靶向治疗方法均可通过纳米技术得以完成纳米粒子或纳米胶囊在与药物形成复合物后,根据不同的治疗目的,通过不同的方式进入机体,经血液循还选择性定位于特定的组织和细胞,以达到治疗的目的宋存先等利用聚乳酸一乙醇酸制备了包载抗细胞增生药物细胞松弛素的生物降解性纳米微球,以犬为实验动物模型,研究了在血管内的吸收和定位的可能性和最佳条件结果表明载药可穿透结缔组织并被靶部位的血管壁吸收,并使其在血管局部组织内缓慢释放药物,从而维持长期局部有效药物浓度。

3.2 纳米制剂的缺陷纳米药物是一种极富发展潜力的新型药物,但由于对药物微粒的生成机理以及其在体内的抗病机理等了解还不是很透彻。

主要还存在成本高与产业化难度大的问题,将药物制成脂质体、毫微粒(囊)、胶体溶液等将会在一定程度上提高制作成本。

目前,将该类技术产业化还有设备、仪器、监控方面的难度。

4纳米药物载体理想的纳米药物载体应具备以下性质:①具有较高的载药量;②具有较高的包封北海;③有适宜的制备及提纯方法;④载体材料可生物降解,毒性较低或没有毒性;⑤具有适当的粒径与粒形;⑥具有较长的体内循还时间。

延长纳米粒在体内的循环时间,能使所载的有效成分在中央室的浓度增大且循环时间延长,这样药物能更好地发挥全身治疗或诊断作用,增强药物在病灶靶部位的疗效。

在此,主要介绍几种常见的纳米药物载体。

4.1 纳米磁性颗粒当前药物载体的研究热点是磁性纳米颗粒,特别是顺磁性或超顺磁性的纳米铁氧体颗粒在外加磁场的作用下,温度上升至40~45℃,可达到杀死肿瘤的目的。

张阳德等人开展了磁纳米粒治疗肝癌研究,研究内容包括磁性阿霉素白蛋白纳米粒在正常肝的磁靶向性、在大鼠体内的分布及对大鼠移植性肝癌的治疗效果等。

结果表明,磁性阿霉素白蛋白纳米粒具有高效磁靶向性,在大鼠移植肝肿瘤中的聚集明显增加,而且对移植性肿瘤有很好的疗效。

向娟娟等人采用葡萄糖包覆的氧化铁纳米颗粒作为基因载体,发现其表现出与DNA的结合力和抵抗DNA的SE消化。

孙丽英等人研究纳米磁粒子对肝癌的诊断,可以在肝癌早期就发现肿瘤,并使用纳米磁粒子治疗肝癌,效果很好。

国外纳米磁粒子药物载体的研究大多数用于癌症的诊断和治疗。

用外加磁场进行定向定位固定药物磁粒子,然后使用交变磁场加热磁子消灭癌细胞。

近年来纳米技术在恶性肿瘤早期诊断与治疗应用方面最成功的是铁氧体纳米材料及相关技术。

4.2 高分子纳米药物载体纳米药物载体研究的另一个热点就是高分子生物降解性药物载体或基因载体,通过降解,载体与药物-基因片段定向进入靶细胞之后,表层的载体被生物降解,芯部药物释放出来发挥疗效,避免了药物在其他组织中释放。

目前恶性肿瘤诊断与治疗研究和发明中,超过60%的药物或基因片段采用可降解性高分子生物材料作载体,如聚丙交脂(PLA)、聚已交脂(PGA)、聚已内脂(PCL)、PMMA、聚苯乙烯(PS)、纤维素、纤维素-聚乙烯、聚羟基丙酸脂、明胶以及他们之间的共聚物和生物性高分子物质,如蛋白质、磷脂、糖蛋白、脂质体、胶原蛋白等,利用它们的亲和力与基因片段和药物结合形成生物性高分子纳米颗粒,再结合上含有RGD定向识别器,靶向性与目标细胞表面的整合子结合后将药物送进肿瘤细胞,达到杀死肿瘤细胞或使肿瘤细胞发生基因转染的目的。

美国密西根大学的Donald Tomalia等已经用树形聚合物发展了能够捕获病毒的“纳米陷阱”,其体外实验表明“纳米陷阱”能够在流感受病毒感染细胞之前就捕获它们,使病毒丧失致病的有力。

用于肿瘤药物输送的纳米高分子药物载体可延长药物在肿瘤中的存留时间。

研究表明:高分子纳米抗肿瘤药物延长了药物在肿瘤内停留时间,减慢了肿瘤的生长,而且纳米药物载体可以在肿瘤血管内给药,减少了给药剂量和对其他器官的毒副作用。

纳米药物载体还可增强药物对肿瘤的靶向物异性,把抗肿瘤药包覆到聚乳酸(PLA)纳米粒子上或聚乙二醇(PEG)修饰的PL纳米粒子上,给小鼠静脉注射后,发现前者的血药浓度较低,这说明PEG修饰的纳米粒子减少了内皮系统的吸收,使肿瘤组织对药物吸收增加。

纳米高分子药物载体还可以通过对疫苗的包裹,提高疫苗吸收和延长疫苗的作用时间,纳米高分子药物载体另一个重要的作用是用于基因的输送,进行细胞的转染等。

5药物制剂中的纳米粒类型5.1 纳米球( nanospheres)和纳米囊( nanocapsules)纳米球和纳米囊是大小在10~1000nm之间的固态胶体颗粒,一般由天然高分子物质或合成高分子物质构成,可作为传导或输送药物的载体。

由于材料和制备工艺的差异,可以形成纳米球与纳米囊,二者统称纳米粒或毫微粒。

根据材料的性能,适合于不同给药途径,如静脉注射的靶向作用、肌内或皮下注射的缓控释作用。

5.2 纳米脂质体( nanoliposomes)粒径控制在100nm左右并用亲水性材料如PEG进行表面修饰的纳米脂质体在静注后兼具“长循环”和“隐形”或“立体稳定”的特点,可减少肝脏巨噬细胞对药物吞噬、提高药物靶向性、阻碍血液蛋白质成分与磷脂等结合、延长体内循环时间等。

5.3 固体脂质纳米粒(solid lipid nanoparticle,SLN)固体脂质纳米粒是正在发展的一种新型纳米给药系统,系以生理相容的高熔点脂质为骨架材料,将药物分散其中制成的粒径约为50~1000nm的固体胶粒给药体系。

SLN性质稳定,制备简便,主要用于静脉给药,达到靶向或控释作用,也用于口服给药,以控制药物在胃肠道内的释放,亦可用于局部给药。

于波涛等以物理凝聚法制备5-氟尿嘧啶类脂纳米粒(5-FuE-SLN),小鼠体内分布研究表明该类脂纳米粒有明显的肝靶向性。

5.4 纳米胶束( nanomicelles)纳米胶束又称聚合物胶束,是近几年正在发展的一类新型的纳米载体。

有目的合成水溶性嵌段共聚物或接枝共聚物,使之同时具有亲水性基团和亲油性基团,在水中溶解后自发形成高分子胶束,完成对药物的增溶和包裹,因具有亲水性外壳及疏水性内核,适合于携带不同性质的药物,亲水性外壳还具备“隐形”的特点。

5.5 纳米乳(nanoemulsion)纳米乳是粒径为1~100nm的乳滴分散在另一液体中形成的胶体分散系统。

将少量的乳化剂与辅助乳化剂混合到油水两相系统中可形成透明的、均匀的、且热力学稳定的纳米体系。

纳米乳可采用微流化法制备,用作难溶于水的药物载体,以及使油溶性药物分散在水中便于给药和吸收及靶向传递药物。

5.6 纳米混悬剂(nanosuspension)纳米混悬剂是在表面活性剂和水等附加剂存在下,采用特殊工艺技术和设备直接将药物粉碎制成的纳米悬浮制剂。

与传统剂型相比,纳米混悬剂除增加粘附性和晶体结构中无定形粒子外,还可使在水溶性和脂溶性介质中都难溶的药物的饱和溶解度及溶出速率大大增加,适合于多种途径给药以提高吸收或靶向性,尤其适合大剂量的难溶性药物的口服吸收或注射给药。

相关文档
最新文档