信息传输技术的发展—发展史与未来趋势

合集下载

移动通信技术的发展历程与未来趋势

移动通信技术的发展历程与未来趋势

移动通信技术的发展历程与未来趋势移动通信技术的发展是现代通信领域最为惊人的成就之一。

在过去的几十年里,移动通信技术已经从简单的语音通话发展到高速数据传输和多媒体通信。

未来,移动通信技术还将继续向着更高的速度、更广的覆盖范围和更高的可靠性发展。

在本文中,我们将探讨移动通信技术的发展历程与未来趋势,并深入了解这一领域的发展方向。

一、发展历程1. 1G时代在20世纪70年代至80年代初,移动通信技术迈出了第一步,打开了人们通信方式的新篇章。

这一时期的移动通信技术被称为1G(第一代移动通信技术),其最主要的特点是模拟信号的传输,通话质量受限且容易受到外界干扰。

1G时代的代表性技术是AMPS(先进移动通信方式系统),这一技术为后续移动通信技术的发展奠定了基础。

2. 2G时代进入20世纪90年代,随着数字技术的普及和应用,移动通信技术进入了2G时代。

2G时代的代表性技术是GSM(全球系统移动通信),其采用数字信号传输和TDMA技术,不仅提高了语音通话质量,还为短信和数据业务的发展提供了条件。

2G时代的技术突破为移动互联网的发展奠定了基础。

3. 3G时代随着移动通信技术的不断进步,人们对于移动通信的需求也日益增加,特别是对数据业务的需求。

2000年代初,3G时代的移动通信技术应运而生。

3G时代的代表性技术是WCDMA(宽带码分多址),其大大提高了移动互联网的速度和覆盖范围,也为视频通话和流媒体业务的发展提供了支持。

4. 4G时代进入21世纪,移动通信技术又迈入了4G时代。

4G时代的代表性技术是LTE(长期演进),其采用全IP网络架构和OFDMA技术,大幅提高了移动通信的速度和稳定性,也为物联网和云计算的发展提供了支持。

5. 5G时代目前,全球正在迅速推进5G技术的研发和应用。

5G时代的移动通信技术将极大地提高网络的传输速度和容量,实现更低的时延,为物联网、智能制造和智慧城市等领域的发展提供了基础支持。

二、未来趋势1. 极高速率和低时延未来,移动通信技术的发展核心将围绕着极高速率和低时延展开。

无线通信的发展

无线通信的发展

无线通信的发展无线通信是指通过无线电波或者红外线等无线电技术进行信息传输的方式。

随着科技的不断进步和人们对通信需求的增长,无线通信技术得到了迅猛发展。

本文将从无线通信的起源、发展历程以及未来趋势等方面进行详细介绍。

一、无线通信的起源无线通信的起源可以追溯到19世纪末的无线电技术的发展。

当时,人们开始意识到电磁波的存在,并开始研究如何利用电磁波进行信息传输。

1895年,意大利物理学家马可尼首次成功实现了无线电波的传输,这标志着无线通信技术的诞生。

二、无线通信的发展历程1. 早期的无线通信技术在20世纪初,无线通信技术主要应用于军事通信和海上通信等领域。

无线电报机的发明使得远距离通信成为可能,极大地促进了人类社会的发展。

然而,早期的无线通信技术存在着传输距离有限、信号干扰等问题,无法满足日益增长的通信需求。

2. 无线通信的革命——挪移通信技术的诞生20世纪70年代,挪移通信技术的浮现彻底改变了人们的通信方式。

首先是1G (第一代)挪移通信技术的诞生,使得人们可以在挪移状态下进行通信。

然后是2G(第二代)挪移通信技术的浮现,实现了数字化通信,提供了更高的通信质量和更多的功能。

3. 无线通信的进一步发展随着挪移通信技术的不断发展,3G(第三代)和4G(第四代)挪移通信技术相继问世。

3G技术实现了更快的数据传输速度和更多的应用功能,4G技术则进一步提升了数据传输速度和网络容量。

这些技术的发展使得人们可以随时随地享受高速稳定的无线通信服务。

4. 5G时代的到来目前,全球正迅速进入5G时代。

5G技术具有更高的传输速度、更低的延迟和更大的网络容量,将为人们带来更加智能化和高效的通信体验。

5G技术不仅将广泛应用于挪移通信领域,还将推动工业互联网、智能交通、物联网等领域的发展。

三、无线通信的应用领域无线通信技术的发展使得人们的生活更加便利,应用领域也日益扩大。

以下是几个主要的应用领域:1. 挪移通信挪移通信是无线通信的核心应用领域。

无线通信技术的发展与趋势

无线通信技术的发展与趋势

无线通信技术的发展与趋势随着科技的不断进步,无线通信技术在过去几十年里取得了巨大的发展。

从早期的2G网络,到如今的5G网络,无线通信技术正以前所未有的速度改变着我们的生活和工作方式。

本文将探讨无线通信技术的发展历程以及未来的趋势。

第一部分:早期的无线通信技术早期的无线通信技术以2G网络为代表,使用了数字信号传输技术。

这一技术的全球标准化推动了全球通信业务的繁荣发展。

2G网络的推出,使得人们可以通过手机进行语音通话、短信发送以及基础的互联网浏览。

然而,2G网络的带宽相对较低,速度较慢,并且无法满足人们对于快速数据传输的需求。

第二部分:3G技术的兴起随着人们对于互联网的需求日益增加,3G技术应运而生。

3G技术采用了更高的频段和更先进的调制解调器技术,使得数据传输速度得以大幅提升。

3G技术不仅实现了互联网的快速浏览,还为人们带来了更多的应用,如邮件、社交媒体以及视频通话等。

3G技术的普及使得人们可以更加方便地进行远程办公和学习,极大地改善了人们的生活和工作效率。

第三部分:4G网络的崛起4G网络是无线通信技术的重要里程碑。

它在提供更高速的上网体验的同时,还支持了更多的应用和服务。

4G网络的大规模部署使得高清视频流媒体成为了可能,人们可以随时随地观看高质量的视频内容。

此外,4G网络还支持了移动支付、物联网等新兴行业的发展,为社会带来了更多的便利。

第四部分:5G技术的前景如今,人们对于5G技术的期待越来越高。

5G技术被认为是“万物互联”的基础,它将带来超高速的数据传输、低延迟的通信以及更强大的网络容量。

5G技术将极大地推动智能城市、自动驾驶、智能家居等领域的发展。

此外,5G技术还将为医疗、教育、工业等领域带来更多创新和改变。

结论无线通信技术的发展经历了从2G到5G的迅猛变革,每一代的技术都为人们带来了更便捷的通信方式和更多的应用。

未来,5G技术的推广将为社会带来更多的发展机遇和创新突破。

随着技术的进一步发展,我们有理由相信,无线通信技术将继续引领着人类社会的进步与发展。

信息技术的发展历程及其未来趋势

信息技术的发展历程及其未来趋势

信息技术的发展历程及其未来趋势篇一:新一代信息技术的发展趋势新一代信息技术的发展趋势新一代信息技术产业新一代信息技术产业的本质内涵是“新一代”,必须明白“新一代”究竟“新”在哪里。

信息领域的各个分支——集成电路、计算机、通信、软件等都在进行代际转移。

??? 集成电路制造已进入“后摩尔”时代;计算机系统开始进入“云计算”时代;无线通信正在从3G(3rd generation,即第三代移动通信)走向4G(4th generation,即第四代移动通信)时代;软件行业已进入端到端设计(也有人称之为跨界垂直整合)时代。

?从传统电子信息产业到新一代信息技术产业是产业的“代际变迁”。

IDC公司(全球著名的咨询公司)把新一代信息技术产业称为“第三平台”。

该公司认为,1985年以前普遍采用的大型主机是第一代IT(information technology,即信息技术)平台;1985-2005年流行的是以个人计算机、互联网和服务器为主的第二代IT架构(computers as networks);从2005年开始,以云计算、移动互联网、大数据、社交网络为特征的新一代IT架构(被称为第三代IT平台, computers as datacenters)正在蓬勃发展之中。

2013年全球IT支出约37万亿美元。

IDC公司预测,至2020年,第三代IT平台的市场规模将达到53万亿美元。

2013-2020年,IT部门90%的增长将由第三平台驱动。

信息技术产业的发展趋势是从制造业为主转向软件和服务业;从inside到outside(从重视产品到重视生态环境);从scaleup(纵向扩展)到scale out(横向扩展);从关注设备、软件到更关注数据;从赛博空间(cyberspace)到人机物三元融合世界。

新一代信息产业的热点不是以加工为主的制造业,而是以制造业为基础的自主设计的软件和服务业,即构建新的端到端设计的产业生态环境。

互联网的发展历史和未来趋势

互联网的发展历史和未来趋势

互联网的发展历史和未来趋势互联网的出现和发展为人类社会带来了巨大的变革和进步。

本文将介绍互联网的发展历史、现状以及未来的发展趋势。

一、互联网的发展历史互联网的发展可以追溯到20世纪60年代,当时美国军方为了实现军事信息的安全通信,研发了一种分布式网络系统,这就是互联网的雏形。

随着时间的推移,互联网开始传播到学术界和商业界。

1989年,英国计算机科学家蒂姆·伯纳斯-李发明了万维网,这是一种用于在不同计算机之间共享文档的系统,其核心是超文本传输协议(HTTP)和超文本标记语言(HTML)。

万维网的发明使得互联网更加易用和实用。

1990年代,随着互联网技术的逐渐成熟,世界各地的人们开始广泛使用互联网进行信息传递和交流,这被誉为互联网的爆发期。

互联网公司如谷歌、亚马逊和微软迅速崛起,并开创了电子商务和在线服务的新时代。

二、互联网的现状目前,全球互联网用户已经超过45亿,覆盖了世界上大部分地区和人口。

互联网已经成为人们日常生活中不可或缺的一部分,涵盖了各个领域,包括通信、商务、娱乐、教育和医疗等。

移动互联网的兴起更是给互联网的发展带来了一个新的突破。

智能手机和移动应用程序的普及使得人们能够随时随地使用互联网,获得各种信息和服务。

社交媒体如Facebook、微信和Instagram等也成为人们交流和分享的重要平台。

此外,云计算、大数据、人工智能等技术的发展也对互联网的未来产生了深远的影响。

云计算使得数据存储和计算变得更加灵活和高效,大数据分析为企业和政府提供了更好的决策支持,而人工智能则能够加速各行各业的自动化和智能化。

三、互联网的未来趋势1. 物联网的兴起:物联网是指通过各种传感器和设备将物理世界与互联网连接起来,实现智能化和自动化。

未来,物联网将在智能家居、智慧城市、智能交通等领域发挥重要作用,为人们提供更便捷和舒适的生活方式。

2. 5G技术的应用:5G技术的推广和应用将极大地提升互联网的速度和稳定性。

光纤通信技术的发展历程,应用方向及未来发展趋势

光纤通信技术的发展历程,应用方向及未来发展趋势

光纤通信技术的发展历程,应用方向及未来发展趋势
光纤通信技术是指利用光纤作为传输介质进行信息传输的技术。

该技术的发展历程可以追溯至20世纪60年代初期,当时科学家们开始研究光的传输特性并提出了使用光纤进行通信的想法。

随着技术的发展和突破,光纤通信开始进入实用化阶段。

1977年,一家名为Corning Glass Works的公司成功地开发出了低损耗的光纤,使得光纤通信技术得以大规模应用。

此后,光纤通信技术得到了快速的发展,并催生了众多相关产业的兴起。

目前,光纤通信技术广泛应用于通信、互联网、医疗、军事等众多领域。

其主要优势在于传输速度快、带宽大、抗干扰能力强、数据安全性高等。

同时,光纤通信技术也在不断地发展和完善,未来有望实现更加高速、高效、可靠的传输。

未来发展趋势方面,光纤通信技术将在以下几个方面有所突破: 1.高速传输技术的发展:随着信息量的不断增大,光纤通信技术需要不断提高传输速度。

目前,科学家们正在研究利用光子晶体等材料来实现更高速的传输技术。

2.技术的智能化发展:未来光纤通信技术将越来越具有智能化特征,例如光纤传感技术可以应用于智能家居、智能交通等领域。

3.新型光纤材料的研究:科学家们正在研究开发新型光纤材料,例如光纤光栅等,以提高光纤通信技术的应用范围和效率。

总的来说,光纤通信技术的发展历程和应用方向非常广泛,未来的发展趋势也是非常光明的。

我们有理由相信,在不久的将来,光纤
通信技术将会更好地服务于人类社会的各个领域。

移动通信发展历程与趋势

移动通信发展历程与趋势

移动通信发展历程与趋势移动通信发展历程与趋势移动通信已经成为现代社会中不可或缺的一部分,它为人们提供了便捷的通讯手段和多样化的服务。

本文将详细介绍移动通信的发展历程和当前的趋势。

一、移动通信的起源移动通信的起源可以追溯到20世纪初的无线电通信技术。

最早的无线通信是通过无线电波传输信息,但当时的通信范围有限,主要用于海上通信和军事应用。

20世纪中叶,随着半导体技术的发展,移动通信进入了第一个阶段——模拟通信时代。

这个时期出现了第一代移动通信系统,如美国的AMPS和的1G系统。

模拟通信时代的主要特点是通信质量较差,容量有限,但对于当时的人们来说已经是一种突破性的进步。

二、数字通信时代的到来20世纪90年代,数字通信技术的快速发展引领了移动通信的第二阶段——数字通信时代。

数字通信技术通过将语音和数据转化为数字信号,实现了更高质量的通信和更多样化的服务。

在数字通信时代,第二代移动通信系统如GSM、CDMA等得到了广泛应用。

这些系统具有更高的通信质量和更大的容量,可以支持不仅仅是语音通信,还能实现短信、彩信等功能。

三、3G和4G时代21世纪初,移动通信进入了3G时代。

第三代移动通信系统利用宽带和无线互联网技术,实现了移动宽带通信,使得人们可以随时随地上网、观看视频等。

3G时代的代表性技术包括WCDMA和CDMA2000等。

接着,移动通信进入了4G时代,采用LTE技术实现了更高速率的移动宽带通信,为人们提供了更丰富的移动应用体验。

四、5G时代的趋势当前,移动通信正朝着5G时代迈进。

5G技术具有更高的数据传输速率、更低的延迟和更多连接设备的能力,将推动智能交通、工业自动化、医疗健康等领域的发展。

5G时代的主要趋势包括虚拟化网络、物联网、边缘计算、等。

预计在不久的将来,人们将享受到更快速、更智能化的移动通信服务。

本文档涉及附件:1:移动通信发展数据统计报告(附件1)2:移动通信技术概述PPT(附件2)本文所涉及的法律名词及注释:1:频谱:无线电通信中用于传输信号的一定范围的频率。

信息技术的过去在现未来

信息技术的过去在现未来
深。
信息技术的核心领域
计算机科学与技术
包括计算机系统结构、计算机 软件与理论、计算机应用技术
等。
通信技术
包括通信原理、通信网络技术 、移动通信等。
人工智能与机器学习
包括深度学习、自然语言处理 、计算机视觉等。
物联网技术
包括物联网感知技术、物联网 通信技术、物联网应用技术等

信息技术的创新与应用
云计算
作方式。通过对海量数据的分析和挖掘,人们可以获得更多的洞察和预
测能力。
02
云计算和物联网
云计算和物联网技术的出现使得信息的存储、处理和应用变得更加灵活
和高效。人们可以通过云计算平台随时随地访问和使用各种应用和服务,
而物联网则实现了物与物之间的智能互联。
03
5G和6G通信技术
5G和6G通信技术的发展将进一步提高数据传输的速度和质量,推动信
信息技术的过去在现未来
目录
• 信息技术的发展历程 • 信息技术的现状与特点 • 信息技术对社会的影响与变革 • 信息技术的未来趋势与展望 • 信息技术面临的挑战与机遇
01 信息技术的发展历程
早期的信息技术
语言和符号
电报和电话
人类最早的信息技术可以追溯到语言 和符号的出现,这些语言和符号被用 来记录和传递信息。
对生活方式的影响
改变了交流方式
信息技术的发展使得人们可以通 过互联网、社交媒体等方式进行 远程交流,打破了传统面对面交
流的限制。
丰富了娱乐生活
信息技术为人们提供了音乐、电影、 游戏等多样化的娱乐方式,丰富了 人们的业余生活。
便利了日常生活
信息技术在购物、出行、医疗等各 个领域的应用,为人们的日常生活 提供了极大的便利。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息传输技术的发展—发展史与未来趋势公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-信息传输技术的发展——“发展史与未来趋势”组长、组员1、组员2、组员3辽东学院信息工程学院,B1x0x班摘要:自人类文明起源以来,对于人们传输信息就有很多种方式、方法。

从以语言为主,通过人力、马力、烽火等原始手段传输信息的方式,到以文字、邮政、印刷等方式更广地传输信息的方式,随着近代科学技术的发展,又实现了通过电报、电话、广播等方式传输信息,再到现代的信息时代,除了语言之外,还包括了图像、声音、多媒体等各种信息,传输技术利用电流、电磁波、声波、光波等多种传输介质实现多样化信息的传输。

信息传输技术爆炸式的推动了信息交流,同时也推动着信息技术的进一步发展。

随着宽带技术的发展,人们能更加便捷的“访问世界”。

通过数据通信、传真,可视电话、可视图文等服务形式,将大量的初等、中等、高等教育的课程及其它科学技术、生活、市场、金融、体育、娱乐、医疗等信息以联机方式存放,用户可有选择地获取信息。

当这样的公共信息基础设施同家庭信息系统相连接,就彻底地改变了信息获取和利用的方式,进而也改变了社会的教育模式。

现代是一个信息时代,对于未来信息传输技术的发展,大数据成为趋势。

光是极具发展潜力的传输介质,光势必会在未来信息传输技术中占有一席之地。

硅光子技术超高效率、超低耗能也是看点之一。

关键词:数据通信;发展史;数据传输方式;未来趋势一、信息传输技术的发展史(一)、原始时代信息传输技术原始时代没有文字,原始人通过一些辅助的东西或简单的图画来表述信息。

例如北美的印第安人离家狩猎,在屋子旁边钉下几根带有横杆的木橛,一根表示要过一昼夜才回来,两根表示两昼夜。

还有“结绳记事”,根据绳子上打结的个数和绳子的颜色来记录容易忘记的事情。

(二)、古代信息传输技术随着生产力的提高,人们的认识也一步一步由低级向高级发展,人类进入了文明社会,信息技术也有了新的发展。

文字的出现时信息传输技术的一大变革。

甲骨文是我国最早的文字,它最初是在原始画的基础上发展起来的。

文字的发明使得人们能够方便的进行信息的传输。

(三)、现代信息传输技术19世纪上半叶科学技术的发展,有力地推动了军事通讯技术的进步,突出地表现在电报的运用和电话的发明上。

19世纪30年代,欧洲和美洲先后出现了商用电报机。

在这方面有代表性的发明家是英国的高斯、韦伯和美国的莫尔斯。

1833年,高斯和韦伯制作出第一个可供实用的电磁指针电报机。

此后不久,另一个年轻的英国人库克和伦敦高等学院的教授惠斯登发明了新型电报机,并取得第一个专利。

1837年,美国人莫尔斯的发明,把电报技术向前大大推进了一步。

他用一套点、划符号代表字母和数字(即莫尔斯电码,并设计了一套线路,发报端是一个电键,该电键把以长短电流脉冲形式出现的电码馈入导线,在接收端电流脉冲激励电报装置中的电磁铁,使笔尖在不断移动的纸带上记录下电码。

经过不断改进,这套电报系统于1844年达到实用阶段,在巴尔的摩和华盛顿之间首次建立了电报联系。

英国的胡克首先提出在远距离上传输语音的建议。

1837年,美国医生佩奇发现,当铁的磁性迅速改变时,会发出一种音乐般的悦耳声音,这种声音的响度随磁性变化的频率而改变。

他把这种声音称作“电流音乐”。

大约在1860年,德国的赖斯第一次将一曲旋律用电发送了一段距离,他把这个装置叫作“电话”,这个名称于是沿用下来。

直到1876年,美国的贝尔终于发明了第一台电话机。

电话及此前发明的电报的运用,使军事通讯产生了革命性的变革。

19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。

从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。

1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。

他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。

1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。

电磁波的发现产生了巨大影响。

不到6年的时间,俄国的波波夫、意大利的马可尼分别发明了无线电报,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般涌现出来。

1904年英国电气工程师弗莱明发明了二极管。

1906年美国物理学家费森登成功地研究出无线电广播。

1907年美国物理学家德福莱斯特发明了真空三极管,美国电气工程师阿姆斯特朗应用电子器件发明了超外差式接收装置。

1920年美国无线电专家康拉德在匹兹堡建立了世界上第一家商业无线电广播电台,从此广播事业在世界各地蓬勃发展,收音机成为人们了解时事新闻的方便途径。

1924年第一条短波通信线路在瑙恩和布宜诺斯艾利斯之间建立,1933年法国人克拉维尔建立了英法之间和第一第商用微波无线电线路,推动了无线电技术的进一步发展。

电磁波的发现也促使图像传播技术迅速发展起来。

1922年16岁的美国中学生菲罗.法恩斯沃斯设计出第一幅电视传真原理图,1929年申请了发明专利,被裁定为发明电视机的第一人。

1928年美国西屋电器公司的兹沃尔金发明了光电显像管,并同工程师范瓦斯合作,实现了电子扫描方式的电视发送和传输。

1935年美国纽约帝国大厦设立了一座电视台,次年就成功地把电视节目发送到70公里以外的地方。

1938年兹沃尔金又制造出第一台符合实用要求的电视摄像机。

经过人们的不断探索和改进,1945年在三基色工作原理的基础上美国无线电公司制成了世界上第一台全电子管彩色电视机。

直到1946年,美国人罗斯.威玛发明了高灵敏度摄像管,同年日本人八本教授解决了家用电视机接收天线问题,从此一些国家相继建立了超短波转播站,电视迅速普及开来。

图像传真也是一项重要的通信。

自从1925年美国无线电公司研制出第一部实用的传真机以后,传真技术不断革新。

1972年以前,该技术主要用于新闻、出版、气象和广播行业;1972年至1980年间,传真技术已完成从模拟向数字、从机械扫描向电子扫描、从低速向高速的转变,除代替电报和用于传送气象图、新闻稿、照片、卫星云图外,还在医疗、图书馆管理、情报咨询、金融数据、电子邮政等方面得到应用;1980年后,传真技术向综合处理终端设备过渡,除承担通信任务外,它还具备图像处理和数据处理的能力,成为综合性处理终端。

静电复印机、磁性录音机、雷达、激光器等等都是信息技术史上的重要发明。

此外,作为信息超远控制的遥控、遥测和遥感技术也是非常重要的技术。

遥控是利用通信线路对远处被控对象进行控制的一种技术,用于电气事业、输油管道、化学工业、军事和航天事业;遥测是将远处需要测量的物理量如电压、电流、气压、温度、流量等变换成电量,利用通信线路传送到观察点的一种测量技术,用于气象、军事和航空航天业;遥感是一门综合性的测量技术,在高空或远处利用传感器接收物体辐射的电磁波信息,经过加工处理或能够识别的图像或电子计算机用的记录磁带,提示被测物体一性质、形状和变化动态,主要用于气象、军事和航空航天事业。

随着电子技术的高速发展,军事、科研迫切需要解决的计算工具也大大改进。

1946年美国宾夕法尼亚大学的埃克特和莫希里研制出世界上第一台电子计算机。

电子元器件材料的革新进一步促使电子计算机朝小型化、高精度、高可靠性方向发展。

20世纪40年代,科学家们发现了半导体材料,用它制成晶体管,替代了电子管。

1948年美国贝尔实验室的肖克莱、巴丁和布拉坦发明了晶体三极管,于是晶体管收音机、晶体管电视、晶体管计算机很快代替了各式各样的真空电子管产品。

1959年美国的基尔比和诺伊斯发明了集成电路,从此微电子技术诞生了。

1967年大规模集成电路诞生了,一块米粒般大小的硅晶片上可以集成1千多个晶体管的线路。

1977年美国、日本科学家制成超大规模集成电路,30平方毫米的硅晶片上集成了13万个晶体管。

微电子技术极大地推动了电子计算机的更新换代,使电子计算机显示了前所未有的信息处理功能,成为现代高新科技的重要标志。

为了解决资源共享问题,单一计算机很快发展成计算机联网,实现了计算机之间的数据通信、数据共享。

通信介质从普通导线、同轴电缆发展到双绞线、光纤导线、光缆;电子计算机的输入输出设备也飞速发展起来,扫描仪、绘图仪、音频视频设备等,使计算机如虎添翼,可以处理更多的复杂问题。

20世纪80年代末多媒体技术的兴起,使计算机具备了综合处理文字、声音、图像、影视等各种形式信息的能力,日益成为信息处理最重要和必不可少的工具。

二、信息传输技术的应用(一)、卫星通信技术卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。

高阶调制高效编码技术可应用于卫星通信高速传输需求场合,节省带宽,Ka 频段卫星通信技术解决个别点位高速通信需求及远望测量船、直升机等特殊载体通信。

卫星通信相控阵天线应用于车载、船载、机载卫通站及便携式卫通站,减少对载体的安装要求。

(二)、光纤通信技术光纤通信技术是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。

光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业检测,控制,而且在军事领域的用途也越来越为广泛。

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。

广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。

可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。

该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。

对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。

很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。

但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。

相关文档
最新文档