纯电动汽车高压原理设计详解

合集下载

纯电动汽车高压电气系统设计原理

纯电动汽车高压电气系统设计原理

纯电动汽车高压电气系统设计原理来源:线束工程师技术丨编辑 / 小连整理 / 小连本文介绍了纯电动汽车高压电气系统原理设计的各个方面和注意事项,文章对多个研发项目中纯电动汽车高压电系统出现的故障及存在的安全隐患进行分析,并提出一整套针对高压电系统安全防护、故障处理及碰撞安全的设计方案,对纯电动汽车高压系统安全设计具有一定的参考意义。

以下为正文。

一、纯电动汽车电气系统安全分析纯电动轿车电气系统主要包括低压电气系统、高压电气系统及CAN 通讯信息网络系统。

1.低压电气系统采用 12 V 供电系统,除了为灯光照明系统、娱乐系统及雨刷器等常规低压用电器供电外,还为整车控制器、电池管理系统、电机控制器、DC/DC 转换器及电动空调等高压附件设备控制回路供电;2.高压电气系统主要包括动力电池组、电驱动系统、DC/DC 电压转换器、电动空调、电暖风、车载充电系统、非车载充电系统及高压电安全管理系统等;3.CAN 总线网络系统用来实现整车控制器和电机控制器、以及电池管理系统、高压电安全管理系统、电动空调、车载充电机和非车载充电设备等控制单元之间的相互通信。

人体的安全电压及电流纯电动汽车电压和电流等级都比较高,动力电压一般都在300~400 V(直流),电流瞬间能够达到几百安。

人体能承受的安全电压值的大小取决于人体允许通过的电流和人体的电阻。

有关研究表明,人体电阻一般在 1 000~3 000 Ω。

人体皮肤电阻与皮肤状态有关,在干燥、洁净及无破损的情况下,可高达几十千欧,而潮湿的皮肤,特别是受到操作的情况下,其电阻可能降到1 000 Ω 以下。

由于我国安全电压多采用 36 V,大体相当于人体允许电流 30 mA、人体电阻 1 200Ω的情况。

所以要求人体可接触的电动汽车任意2 处带电部位的电压都要小于36 V。

根据国际电工标准的要求,人体没有任何感觉的电流安全阈值是 2 mA,这就要求人体直接接触电气系统任何一处的时候,流经人体的电流应该小于2 mA 才认为整车绝缘合格。

电动汽车高压电气课件

电动汽车高压电气课件

高压电气系统概述
高压电气系统是电动汽车的重要 组成部分,负责提供动力和能源

高压电气系统包括电池组、电机 控制器、电机、车载充电机等关
键部件。
高压电气系统的设计、制造和安 装需要遵循相关标准和规范,以
确保安全可靠。
高压电气系统的组成
电池组
是高压电气系统的核心 部分,负责储存电能并
输出直流电。
电机控制器
新型高压电气系统的应用
随着研究的深入,新型高压电气系统将逐渐应用于实际生产中。这将有助于提高电动汽车的安全性和可靠性,同 时降低生产成本。
高压电气系统与其他系统的集成与优化
高压电气系统与动力系统的集成
为了提高电动汽车的性能,需要将高压电气系统与动力系统进行集成。这将有助于实现能源的更高效 利用,提高电动汽车的续航里程。
在制动或滑行状态下,将 车辆的动能转化为电能并 回收到电池中,提高能源 利用效率。
故障诊断与保护
对电机进行实时监测和故 障诊断,确保电机安全可 靠运行,并在必要时采取 保护措施。
充电机与充电接口
Байду номын сангаас
充电机
提供直流或交流充电功能,根据电池管理系统需求调整充电 电流和电压。
充电接口
连接充电机和车辆的高压电气接口,需满足安全、可靠、便 捷的要求。
高压电气系统与控制系统的优化
为了实现更好的控制效果,需要将高压电气系统与控制系统进行优化。这将有助于提高电动汽车的安 全性和稳定性。
高压电气系统的发展趋势与挑战
高压电气系统的发展趋势
随着技术的不断进步,高压电气系统将 朝着更高效、更安全、更智能的方向发 展。这将有助于提高电动汽车的性能和 用户体验。
是高压电气系统的控制 中心,负责调节电机的 工作状态和能量回收。

新能源汽车高压系统的设计原理及优化方法

新能源汽车高压系统的设计原理及优化方法

高压设备操作规范
设备操作前检查
在操作高压设备前,应 对设备进行全面检查, 确保设备状态良好,无 异常现象。
操作规范执行
严格按照高压设备操作 规范进行操作,避免因 误操作引发的高压电击 事故。
设备定期维护
定期对高压设备进行维 护保养,确保设备性能 稳定可靠,降低故障率 。
应急处理预案制定与执行
01
高压配电盒
分配电能,为各高 压负载提供电源。
高压系统发展趋势
高电压化
随着电池技术的不断进步,高压 系统的电压等级将不断提高,以 提高能量传输效率和续航里程。
集成化
高压系统将向集成化方向发展, 减少部件数量和连接点,提高系 统可靠性和安全性。
智能化
引入先进的传感器和算法,实现 高压系统的实时监测和智能控制 ,提高能源利用效率和安全性。
能量管理策略
电池管理系统(BMS)
01
通过BMS对电池组进行实时监测和控制,实现电池能量的高效
利用和安全管理。
整车控制器(VCU)
02
VCU作为整车能量管理的核心,根据车辆行驶状态和驾驶员需
求,合理分配能量,优化动力性能和续航里程。
能量回收系统
03
利用制动能量回收等技术,将车辆减速或制动时产生的能量转
02
高压系统设计原理
电气安全设计
高压系统隔离
采用绝缘材料、气隙和密封技术等手段,确保高压系统与车辆其 他部分的有效隔离,防止电流泄露和电击风险。
高压互锁回路
通过高压互锁回路的设计,确保在高压系统出现异常或故障时,能 够及时切断电源,保障人员和设备安全。
接地与漏电保护
建立可靠的接地系统,实时监测漏电流,确保在发生漏电时能够及 时报警并切断电源。

147_纯电动汽车高压原理设计

147_纯电动汽车高压原理设计

纯电动汽车高压原理设计一、纯电动汽车高压原理设计1.1 纯电动汽车高压主回路设计纯电动汽车的高压主回路如图1.1所示,由动力电池、正、负极接触器、预充电回路(预充电接触器和预充电阻)、高压负载(电机控制器和高压器件)组成。

其中,由于电机控制器和一些高压用电设备内部有较大的电容电路,为了高压电路接通瞬间的用电安全,设计了预充电回路,即预充电接触器和预充电阻。

图1.1 纯电动汽车高压主回路图1.2纯电动汽车的控制回路设计纯电动汽车的控制回路,是指纯电动汽车高压主回路里面高压接触器的低压控制回路以及控制器等低压控制装置在高压原理图中的控制回路,如图1.2所示,主要工作电压为12/24V。

图1.3 纯电动汽车的控制回路设计1.3纯电动汽车的高压检测回路设计纯电动汽车的高压原理图设计中,需要对高压回路中的电压、电流、绝缘电阻等高压信号进行实时检测,所以高压原理图中的高压检测设计是十分重要的,如图1.3所示。

图1.3高压检测设计1.4 纯电动汽车高压原理图设计如图1.4所示,为某车型纯电动汽车的高压原理图。

图中高压原理设计了高压配电系统的开盖互锁、高压接插件互锁、充电互锁、放电控制等高压安全控制电路。

图1.4 纯电动汽车高压原理图二、纯电动汽车高压器件选型2.1 高压接触器选型高压接触器起着高压回路接通与切断的作用,是高压回路重要开关,在选型时要根据高压电气参数做适当选择,主要指标有电压等级、电流承受能力、带载切断能力与次数、灭弧能力、辅助触点功能、安装方式与结构特点等,如图2.1为美国泰科高压接触器的外形图。

泰科LEV100 泰科EV200图2.1泰科接触器外形图2.2 高压熔断器选型高压熔断器起到对高压回路中高压线束以及高压用电器的过流保护的作用,即在大电流或短路电流通过的时候,及时熔断以保护高压用电器不因大电流的冲击而受到损害盒保护过流导致高压线束的升温甚至熔断起火。

高压熔断器选型也应考虑电压等级,电流分断能力,分断特性等要求,如图2.2为巴斯曼高压熔断器外形图。

新能源汽车高压互锁原理及故障诊断技术探究——以吉利帝豪EV300_为例

新能源汽车高压互锁原理及故障诊断技术探究——以吉利帝豪EV300_为例

122AUTO TIMENEW ENERGY AUTOMOBILE | 新能源汽车新能源汽车高压互锁原理及故障诊断技术探究——以吉利帝豪EV300为例柯裕伟南宁职业技术学院 广西南宁市 530008摘 要: 随着新能源汽车技术的快速发展,新能源汽车品质和市场认可度全面提升,受到市场的高度欢迎。

和传统汽车相比较,新能源汽车具有高压系统,对高压部件安全运行、维护和修理带来了严峻考验。

为确保新能源汽车高压系统的安全性和稳定性,高压互锁技术被广泛应用。

本文对高压互锁系统的结构、原理进行概述,并以吉利帝豪EV300电动汽车为例,进一步说明了高压互锁的故障诊断思路和具体解决办法。

关键词:新能源汽车 高压互锁 原理 故障诊断技术1 引言新能源汽车与传统汽车相比结构上增加了高压系统,高压零部件包括动力电池、驱动电机、高压配电箱(PDU)、电动压缩机、车载充电机(OBC)、PTC 加热器等,互相之间通过高压线束连接,组成了整车的高压系统。

高压系统动辄300V 以上的工作电压和上百安的工作电流对用电设备的安全运行及维修提出了更高的要求。

为保障新能源汽车的安全稳定运行,降低故障发生几率,高压互锁系统作为新能源汽车电气保护的一项重要措施,得到广泛应用。

2 高压互锁系统概述2.1 高压互锁的定义 高压互锁(HVIL),是高压互锁回路(Hazardous Voltage InterlockLoop)的简称,也叫做危险电压互锁回路(High Voltage Interlock System and Control Strategy)。

高压互锁是指使用低压信号监视高压回路完整性的一种安全设计方法。

对新能源汽车高压系统直接监测比较困难,所以通常是用低压信号来检测确认整车高压系统回路电气完整性,确保整车所有的高压部件和线束插接件都安装到位,无短路或断路的情况;能够识别回路的异常断开,并及时断开高压,避免出现安全事故。

2.2 高压互锁设计的目的高压互锁设计的目的是,指使用低压信号来检测确认整个高压系统电气的完整性,当回路断开或者完整性受到破坏,就启动安全措施。

纯电动汽车高压电气系统原理

纯电动汽车高压电气系统原理

纯电动汽车高压电气系统原理一、引言随着环保意识的不断提高,纯电动汽车越来越受到人们的关注。

纯电动汽车的高压电气系统是其关键部件之一,它负责将电池组储存的能量转化为驱动电机所需的直流高压电能。

本文将详细介绍纯电动汽车高压电气系统的原理。

二、纯电动汽车高压电气系统概述纯电动汽车高压电气系统主要包括以下部分:1. 电池组:用于储存能量;2. 交流/直流变换器:将交流充电桩提供的交流电转化为直流高压电;3. 高压配电盒:将直流高压电分配到各个用电设备中;4. 驱动控制器:控制驱动电机的转速和扭矩;5. 驱动电机:提供牵引力。

三、纯电动汽车高压电气系统原理1. 交流/直流变换器原理交流/直流变换器是纯电动汽车中最重要的部件之一,它负责将交流充电桩提供的交流低压(220V或380V)转化为直流高压电(通常为200V-400V)。

变换器由三个部分组成:整流器、滤波器和逆变器。

整流器将交流电转化为直流电,滤波器用于去除直流电中的杂波信号,逆变器将直流电转化为高频交流电,以便驱动驱动电机。

2. 高压配电盒原理高压配电盒是纯电动汽车中的一个关键部件,它负责将直流高压电分配到各个用电设备中。

高压配电盒通常由主接触器、保险丝、开关和连接线组成。

主接触器是用于控制高压系统开关的装置,保险丝用于保护高压系统不受过载损坏。

3. 驱动控制器原理驱动控制器是纯电动汽车中另一个重要部件,它负责控制驱动电机的转速和扭矩。

驱动控制器通常由微处理器、功率模块和传感器组成。

微处理器负责计算出需要输出的马达扭矩和转速信号,并通过功率模块将信号传输到驱动电机上。

4. 驱动电机原理驱动电机是纯电动汽车中最重要的部件之一,它负责提供牵引力。

驱动电机通常由电机本体、减速器、传感器和控制单元组成。

电机本体是驱动部分,减速器用于降低转速并增加扭矩,传感器用于检测电机转速和位置,控制单元用于控制电机的运行。

四、纯电动汽车高压电气系统安全纯电动汽车高压电气系统具有较高的危险性,因此安全是其设计和使用中最重要的考虑因素之一。

电动汽车高压原理设计

电动汽车高压原理设计

电动汽车高压原理设计摘要:随着电动汽车行业的蓬勃发展,电动汽车高压部分的重要性越来越受到人们的重视。

近些年来,电动汽车动力电池组、高压配电盒起火自燃的事故屡见不鲜,引起了政府企业的高度关注。

本文先对电动汽车的进行概念性阐述,再对高压原理进行分析,结合高压部分的安全策略,进行电动汽车高压原理的设计。

一、电动汽车的概述1.1电动汽车的定义与组成电动汽车(EV : electric vehicle)是指以动力电池组为动力,由电机驱动车辆行驶,符合国家道路安全法的车辆。

电动汽车与传统汽车最大的区别在于动力系统由电力系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电盒、电力附件组成。

其他部件:转向系统、减震系统、悬挂系统等则与传动车相似。

目前,电动汽车多采用永磁同步电机或交流异步电机作为驱动电机。

随着电机电控技术的发展,开关磁阻电机、轮边驱动技术也得到较快的发展。

现阶段,电动汽车多采用锂电池作为动力电池。

随着新型储能技术的发展,燃料电池、超级电容等技术必将占有一席之地。

1.2电动汽车的分类电动汽车的主要分类有:纯电动汽车(BEV : battery electric vehicle)、混合动力汽车(HEV : Hybrid electric vehicle)、燃料电池汽车(FCEV : fuel cell electric vehicle)。

纯电动汽车:驱动电机的能源完全来自于车载电源存储装置——动力电池。

混合动力汽车:驱动电机的能源来自常规动力燃油或者动力电池。

燃料电池汽车:以燃料电池作为动力源的汽车,燃料电池的化学反应中不会产生有害物,因此燃料电池汽车完全是无污染的汽车。

目前,受限于国内技术水平,国产电动汽车主要以纯电动汽车为主,车型多为6米以上乘用车或大巴车。

混合动力汽车与燃料电池汽车在国外发展较为迅速,但是生产规模及产量普遍较小。

在未来一段时间内,纯电动汽车将会是国内生产商的主要产能对象。

腾势d9高压原理

腾势d9高压原理

腾势d9高压原理
《腾势D9高压原理》
腾势D9是一款高性能电动汽车,其高压原理是其电动动力系统的核心。

高压原理是指电动汽车的高压供电系统,它通过将电能转化为高压电压,用于驱动电动机。

腾势D9的高压原理包括高压变流器和高压电池组。

高压电池组是电动汽车的能量存储单元,将电能储存起来,并在需要时释放电能给电动机使用。

而高压变流器则负责将电池组输出的直流电转换为交流电,并提供给电动机使用,从而驱动车辆前进。

高压原理的设计和实现,需要考虑到安全性、稳定性和效率性。

腾势D9在高压原理上采用了先进的技术和控制系统,确保高压供电系统的安全可靠,并在不同工况下能够提供稳定的电能输出。

通过高压原理的应用,腾势D9能够实现高效的能源利用率和卓越的动力性能。

同时,高压原理也是电动汽车实现零排放和低噪音行驶的关键技术之一。

总的来说,《腾势D9高压原理》是腾势D9电动汽车在动力系统方面的核心技术之一,它为车辆提供稳定、高效的动力输出,是电动汽车实现环保、节能和高性能的重要保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢!
纯电动汽车高压原理设计
2.1 纯电动汽车高压主回路设计
2.2纯电动汽车的控制回路设计
纯电动汽车的高压检测回路设计
纯电动汽车高压原理图设计
纯电汽车高压器件选型
3.1 高压接触器选型
高压接触器起着接通与切断高压回路的作用,是 高压回路重要电器件。 在选型时要根据高压电气参数做适当选择,主要 指标有电压等级、电流承受能力、带载切断能力 与次数、灭弧能力、辅助触点功能、安装方式与 结构特点等。
3.4 放电电阻和时间的确定
Vc=36V(安全电压),E为动力电池两 端电压,C为高压回路总电容值,t为放 电时间,R为放电电阻。 由此计算出放电电阻R和放电时间t。
高压原理设计中的改进和创新
1、互锁设计 2、预充电设计 3、放电设计 4、绝缘电阻实时监测系统设计 5、EMS和EMI设计(EMC)
1.3 电动汽车的历史
早在1873年,由英国人罗伯特· 戴维森用一次电池作动力发明了可供实用的电 动汽车,这比德国人戴姆勒和本茨发明汽油发动机汽车早了10年以上。 从1881年开始,广泛应用了可以充放电的二次电池,由此电动汽车需求量有 了很大提高。由于当时车用内燃机技术还相当落后,行驶里程短,故障多, 维修困难,而电动汽车却维修方便,所以在19世纪的下半叶成为交通运输的 重要产品。 当时汽车使用主要有蒸汽机汽车、电动汽车、内燃气车,由于受当时生产力 和发展的限制,电动汽车充电时间长、续驶里程短的问题还不突出,在1900 年美国制造的汽车数量中,电动汽车为15755辆,蒸汽机汽车1684辆,而汽 油机汽车只有936辆。 可是进入20世纪以后,由于内燃机技术的不断进步(启动电机技术的应用、 高性能点火装置等),1908年美国福特汽车公司T型车问世,以流水线生产 方式大规模批量制造汽车使汽油机汽车开始普及,致使在市场竞争中蒸汽机 汽车与电动汽车由于存在着技术及经济性能上的不足,使前者被无情的岁月 淘汰,后者则呈萎缩状态。
高压接触器
3.2 高压熔断器选型
高压熔断器起到对高压回路中高压线束以 及高压用电器的过流保护的作用。
高压熔断器选型也应考虑电压等级,电流 分断能力,分断特性等要求。
高压熔断器
3.3 预充电阻和预充时间
Vc为预充电容两端电压,E为动力电池两端 电压,C为预充总电容,t为充电时间,R为 预充电阻。 由上式计算出充电电阻R和预充电时间t。
纯电动汽车高压模拟实训 台
目录
电动汽车概述 纯电动汽车高压原理设计 纯电动汽车高压器件选型 高压原理设计中的改进和创新
电动汽车概述
1.1 电动汽车定义及组成
电动汽车(EV,electric vehicle)是指以车载电源为动力,由电 动机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。
电动汽车区别于内燃机汽车的最大不同点是动力系统由电力驱动 系统组成。 现阶段电动汽车用驱动电机广泛采用为永磁无刷或异步交流电机。
目前电动汽车上应用最广泛的动力电源是锂离子动力电池。
1.2 电动汽车的分类 电动汽车的种类: 纯电动汽车(BEV,battery electric vehicle ); 混合动力汽车(HEV,Hybrid-electric vehicle); 燃料电池汽车(FCEV,Fuel cell electric vehicle ) 串联式混合动力汽车(SHEV):车辆的驱动力只来源 于电动机。 并联式混合动力汽车(PHEV):车辆的驱动力由电动 机及发动机同时或单独供给。 混联式混合动力汽车(CHEV):同时具有串联式、并 联式驱动方式。
相关文档
最新文档