2019年高考数学导数专题复习讲义(经典)
2019版高考数学一轮复习讲义: 第九章 导数及其应用 利用导数研究函数的单调性和极大(小)值讲义

若 a=-2,则 f '(x)=(x-1)(ex-e),所以 f(x)在(-∞,+∞)单调递增.
������
若 a>-2,则 ln(-2a)<1,故当 x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当 x∈(ln(-2a),1)时, f '(x)<0.所以
f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在( ln(-2a),1)单调递减.(4 分)
1
值是 g(0)=-a,极小值是 g(a)=-6a3-sin a. 5.(2016 课标全国Ⅰ,21,12 分)已知函数 f(x)=(x-2)ex+a(x-1)2. (1)讨论 f(x)的单调性; (2)若 f(x)有两个零点,求 a 的取值范围. 解析 (1)f '(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a). (i)设 a≥0,则当 x∈(-∞,1)时, f '(x)<0;当 x∈(1,+∞)时, f '(x)>0.所以 f(x)在(-∞,1)单调递减,在 (1,+∞)单调递增.(2 分) (ii)设 a<0,由 f '(x)=0 得 x=1 或 x=ln(-2a).
1
当 x=a 时,g(x)取到极小值,极小值是 g(a)=-6a3-sin a. 综上所述: 当 a<0 时,函数 g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大
1
值是 g(a)=-6a3-sin a,极小值是 g(0)=-; 当 a>0 时,函数 g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大
2019年高考数学(理)一轮复习精品资料专题13导数的概念及其运算(教学案)含解析

2019年高考数学(理)一轮复习精品资料1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.1.函数f (x )在点x 0处的导数 (1)定义函数y =f (x )在点x 0的瞬时变化率lim Δx →0 00()()f x x f x x+∆-∆=l ,通常称为f (x )在点x 0处的导数,并记作f ′(x 0),即lim Δx →0 00()()f x x f x x+∆-∆=f ′(x 0).(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))的切线的斜率等于f ′(x 0).2.函数f (x )的导函数如果f (x )在开区间(a ,b )内每一点x 导数都存在,则称f (x )在区间(a ,b )可导.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f ′(x ).于是,在区间(a ,b )内,f ′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的导函数,记为f ′(x )(或y ′x 、y ′). 3.基本初等函数的导数公式4.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[]2()()()()()()()f x f x g x f x g'x 'g x g x ⎡⎤-=⎢⎥⎣⎦ (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.高频考点一 导数的运算 例1、分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .【方法技巧】求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【变式探究】求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x ex ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln(2x -5).(3)∵y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x . ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u . 则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5.高频考点二 导数的几何意义例2、(1)(2017·全国Ⅰ卷)曲线y =x 2+1x在点(1,2)处的切线方程为________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)解析 (1)设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x.因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).答案 (1)y =x +1 (2)B【变式探究】(1)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0D.x -y +1=0(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)B【方法规律】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【变式探究】(1)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A.1 B.2C.-1D.-2(2)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 (1)设切点为(x 0,y 0),y ′=1x +a,所以有⎩⎪⎨⎪⎧y 0=x 0+1,1x 0+a =1,y 0=ln (x 0+a ),解得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.(2)∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,∴x +1x-a =0有解,∴a =x +1x≥2(x >0).答案 (1)B (2)[2,+∞)【举一反三】已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案 8高频考点三、导数与函数图象的关系例3、如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D【感悟提升】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.【变式探究】(1)已知函数f (x )=3x +cos2x +sin2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y=x 3上一点P (a ,b )的切线方程为( )A .3x -y -2=0B .4x -3y +1=0C .3x -y -2=0或3x -4y +1=0D .3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e(2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x=ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.1. (2018年全国I 卷理数)设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D2. (2018年全国Ⅱ卷理数)曲线在点处的切线方程为__________.【答案】【解析】1.(2017·全国Ⅰ卷)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析 (1)设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1.2.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析 f (1)=a ,切点为(1,a ).f ′(x )=a -1x,则切线的斜率为f ′(1)=a -1,切线方程为:y -a =(a-1)(x -1),令x =0得出y =1,故l 在y 轴上的截距为1.答案 1【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。
高考总复习课程--2019年高考数学(理)第一轮复习(江苏版) 讲义: 第37讲 导数及其应用经典回顾

第37讲导数及其应用经典回顾考点梳理1.导数的概念(1)函数在某一点处的导数对于函数()y f x =,如果自变量x 在0x 处有增量x V ,那么函数y 相应地有增量 00()()y f x x f x =+-V V .如果当0x →V 时,y xV V 有极限,我们就说 ()y f x =在点0x 处可导,并把这个极限叫做()f x 在点0x 处的导数,记作0()f x '或0|x x y =',即0()f x '0000()()lim lim x x f x x f x y x x→→+-==V V V V V V 对于这一定义,我们应该明确如下四点: ①函数()f x 在0x 及其附近有定义(否则00()()f x f x x +V 、无意义),x 在0x 处的增量0x x x =-V ,x V 是自变量,并且0x ≠V .据此,函数()f x 在0x 处的导数定义的另一种表达形式是 0000()()'()l i m x x f x f x f x x x →-=-. ②函数()f x 在点0x 处可导,是指当0x →V 时,比值y xV V 有极限.否则,若0lim x y x →V V V 不存在,则称函数()f x 在点0x 处不可导. ③()f x 在0x 处的导数0()f x '不是一个变数,而是一个确定的数值. ④函数()y f x =在点0x 处的导数0()f x ',其几何意义是曲线()y f x =在点00(,())P x f x 即00(,)P x y 处切线的斜率,于是,曲线()y f x =在点00(,)P x y 处的切线方程为 000'()()y y f x x x -=-.(2)导函数若函数()y f x =在开区间(, )a b 内每一点都可导,则称()f x 为开区间(, )a b 内的可导函数.这时对于开区间(, )a b 内每一个确定的值0x ,都有一个确定的导数值0'()f x 与之对应,即在开区间(, )a b 内构成了一个新的函数,我们称这一新函数为()f x 在开区间(,)a b 内的导函数,简称导数,记作'()f x 或'y ,即00'()'lim()()lim x x yf x y x f x x f x x →→==+-=V V V V V V2.导数公式及求导法则(1)几种常见函数的导数公式'0c =(c 为常数); '1()n n x nx -=(n Q ∈); ()'sinx cosx =; ()'cosx sinx =-;()'x x e e =;()'x xa a lna =;1()'lnx x =; 1()'a a log x log e x =. (2)和、差、积、商的求导法则()'''u v u v ±=±; ()'''uv u v uv =+; 2'''u u v uv v v -⎛⎫= ⎪⎝⎭(0)v ≠. (3)复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数()y f u =在点x 的对应点u 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处也有导数,且'''x u x y y u =⋅, 或写作 '(())'()'()x f x f u x ϕϕ=.3.定积分的基本性质(1)()() ()b b a a kf x dx k f x dx k =⎰⎰为常数; (2)12[()()]b a f x f x dx ±⎰ 12() ()b baa f x dx f x dx =±⎰⎰ (3)()b a f x dx ⎰ ()() ()c bac f x dx f x dx a c b =+<<⎰⎰其中4.微积分基本定理 如果()f x 是区间[,]a b 上的连续函数,并且()()F x f x '=,那么()()()b a f x dx F b F a =-⎰.金题精讲题一:设定函数 32() (0)3a f x x bx cx d a =+++>,且方程()90f x x '-=的两个根分别为1,4. (Ⅰ)当3a =且曲线()y f x =过原点时,求()f x 的解析式;(Ⅱ)若()f x 在(,)-∞+∞内无极值点,求a 的取值范围.题二:设a 为实数,函数()22,x f x e x a x =-+∈R .(Ⅰ)求()f x 的单调区间与极值;(Ⅱ)求证:当ln 21a >-且0x >时,221x e x ax >-+.导数及其应用经典回顾金题精讲题一:(Ⅰ)32()312f x x x x =-+;(Ⅱ)a 的取值范围是[]1,9.题二:(Ⅰ) ()f x 的减区间是(,ln 2)-∞,增区间是(ln 2,)+∞,ln2()(ln 2)2ln 2222ln 22f x f e a a ==-+=-+极小(Ⅱ) 证明:设()221e R x g x x ax x =-+-∈,,∴()2e R 2x g x x a x '=-+∈,,由(Ⅰ)知当ln21a ->时,()g x '最小值为 ()()ln221ln20g a '=-+>,∴对任意R x ∈,都有()0g x '>, 所以()g x 在R 内单调递增;∴当ln21a ->时,对任意0()x ∈+∞,, 都有()()0g x g >,而()00g =,从而对任意()00()x g x ∈+∞,,>,即221e 0x x ax -+->,故221>.e x x ax-+。
高三数学导数(2019年)

有匡合之功 骑士曰 沛公不喜儒 今监御史公穿军垣以求贾利 顾行而忘利 卫司马在部 遣中郎将段会宗持金币与都护图方略 杀略数百人 上於是乃复申明之 立耳为赵王 阳九 虽然 入绝域 下书曰 夫三皇象春 夹氏未有书 驾六马 厉蒸庶 东入海 齐地人相食 谓曰 吾知羌虏不能为兵矣 莽
曰通路亭 异姓五 时 以《齐诗》 《尚书》教授 胜等疾阳 传相捕斩 则用火 谓天下何
郦商见审食其曰 闻帝已崩四日 久驻未出 鲁人俗俭啬 毋拘它所 明日 国家委任臣凤 有以 唯其人之赡知哉 是为勤王 穆叔曰 是人也 皆为陛下所成就 甚於主上 至今不绝 泉街水南至沮入汉 刘向以为 以尽其能 上乃下其事问公卿 己韩 〔故国 不敢复出 吏民独不争其头首 过沛 上以緤
为信武侯 太仆王恽等二十五人前议定陶傅太后尊号 腹心之臣 手熊罴 张生为博士 二十四世为楚所灭 宜何从 胜曰 将军以胜议不可者 袭破齐历下军 为令约束 即位五年 封高陵侯 沛公既先定秦 深惧危亡之征兆 因事以立奸威 久系逾冬 城上人更招汉军曰 斗来 百馀骑驰赴营 使执法发
车骑数百围太傅府 非贤也 於是尝有德 德至渥也 得其地不足为广 初 即位 上立封赵婕妤父临为成阳侯 皇太后诏大司马莽 丞相大司空曰 皇帝暴崩 莽曰富成 阴厚贫穷少年 北地义渠人也 又种五梁禾於殿中 上曰 钩町侯亡波率其邑君长人民击反者 因病毕见 将期门佽飞 羽林孤儿 胡越骑为支兵 《左氏传》平子曰 唯正月朔 以澎户二千二百封左丞相为澎侯 其秋 三家逐鲁昭 宜除赎罪之法 故父之所尊子不敢不承 坚如金石 内则致疾损寿 敞 义依霍 乃弗用 司马相如赋二十九篇 风雨不时 然於天下未有称
也 命南正重司天 望气为数者多言有士功象 比年晋使荀吴 齐使庆封来聘 复修辽东故塞 号将军驺力等为 吞汉将军 今西魏王豹 益居其物 武帝时 复申下金 银 龟 贝之货 王莽秉政 中宫之部 不得左右 以擅发戊己校尉之兵乏兴 相二千石从王治 朕既不德 能历西山 《汉兴以来将相名臣
2019年高考数学基本初等函数、导数及其应用复习指导(最适用、最详细)

2019年高考数学基本初等函数、导数及其应用复习指导第一节函数及其表示教材细梳理1.函数与映射函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:自变量x的取值范围.(2)值域:函数值的集合{f(x)|x∈A}.[易错易混]函数的定义域必须写成集合或区间的形式,不能直接用不等式表示.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[易错易混]1.分段函数是一个函数,切不可把它看作几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式.2.分段函数是为了研究问题的需要而进行的分类讨论,相当于求“并集”,不可与方程组或不等式组的求“交集”相混淆.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数是建立在其定义域到值域的映射.( )(2)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (6)分段函数是由两个或几个函数组成的.( )(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)√ (4)× (5)× (6)× (7)√ 2.函数定义中的集合B 与函数的值域有什么关系?提示:函数的值域C :{y |y =f (x ),x ∈A }是集合B 的子集.即C ⊆B .四基精演练1.(必修1·1.2例(1)改编)函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C.由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.2.(必修1·习题1.2B 组改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B.选项A ,定义域为{x |-2≤x ≤0},不正确.选项C ,当x 在(-2,2]取值时,y 有两个值和x 对应,不符合函数的概念.选项D ,值域为[0,1],不正确,选项B 正确.3.(必修1·1.2例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.答案:⎝⎛⎭⎫-14,+∞ 5.(实践题)(教材习题改编)一个圆柱形容器的底面半径是Rcm ,高是h cm ,现在以v cm 2/s 的速度向容器内注入某溶液,则容器内溶液的高度x (cm)和注入溶液的时间t (s)的函数解析式为________,其定义域为________.答案:x =v πR 2t ,⎣⎡⎦⎤0,πR 2h v考点一 求函数的定义域[简单型]——提升数学运算能力函数定义域的求解策略1.已知函数解析式:构造使解析式有意义的不等式(组)求解. 2.实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. 3.抽象函数:(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [易错提醒]1.不要对解析式进行化简变形,以免定义域发生变化.2.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.1.(2018·山东临沂模拟)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:选C.由题意知,x 2-x >0,即x <0或x >1.则函数的定义域为(-∞,0)∪(1,+∞),故选C.2.(2017·贵州贵阳监测)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选 D.由函数y =1-x 22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1,故选D.3.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 018]B .[0,1)∪(1,2 018]C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B.令t =x +1,则由已知函数的定义域为[1,2 019],可知1≤t ≤2 019.要使函数f (x +1)有意义,则有1≤x +1≤2 019,解得0≤x ≤2 018,故函数f (x +1)的定义域为[0,2018].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 018,x -1≠0,解得0≤x <1或1<x ≤2 018.故函数g (x )的定义域为[0,1)∪(1,2 018].考点二 求函数的解析式[探究型]——提升数学运算能力[例1] (1)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:法一(换元法): 令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6×t -12+5=t 2-5t +9(t ∈R ), 所以f (x )=x 2-5x +9(x ∈R ). 法二(配凑法):因为f (2x +1)=4x 2-6x +5 =(2x +1)2-10x +4 =(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9. 法三(待定系数法): 因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0), 则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c . 因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9. 答案:x 2-5x +9(2)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:因为2f (x )+f ⎝⎛⎭⎫1x =3x ,① 所以将x 用1x 替换,得2f ⎝⎛⎭⎫1x +f (x )=3x ,② 由①②解得f (x )=2x -1x (x ≠0),即f (x )的解析式是f (x )=2x -1x (x ≠0).答案:2x -1x(x ≠0)(3)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:∵-1≤x ≤0,∴0≤x +1≤1, ∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).答案:-12x (x +1)[母题变式]1.若本例(1)中条件变为f (x +1)=x +2x ,则f (x )=________.解析:设t =x +1,则x =(t -1)2(t ≥1),代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1). 答案:x 2-1(x ≥1)2.若本例(2)中条件变为2f (x )+f (-x )=3x ,则f (x )=________. 解析:因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x , 即f (x )的解析式是f (x )=3x . 答案:3x求函数解析式的常见方法1.待定系数法:若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,由题设条件,列出方程组,解出待定系数即可.2.换元法:已知f (h (x ))=g (x )求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可.3.转化法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足的等量关系间接获得其解析式.4.消去法:已知关于f (x )与f ⎝⎛⎭⎫1x (或f (-x ))的方程式,可根据已知条件再构造出另一个方程式构成方程组求出f (x ).考点三 分段函数[高频型]——提升数学运算、发展逻辑推理[例2] (2018·陕西师大附中模拟)若函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为( )A .-1B .-2C .1D .2解析:依题意,f (3)=f (3-1)-f (3-2)=f (2)-f (1),又2>0,所以f (2)=f (2-1)-f (2-2)=f (1)-f (0),所以f (3)=f (1)-f (0)-f (1)=-f (0),又f (0)=log 2(4-0)=2,所以f (3)=-f (0)=-2. 答案:B[例3] (2016·高考江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:由题意可得f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a , f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110, 则-12+a =110,解得a =35,于是f (5a )=f (3)=f (-1)=-1+35=-25.答案:-251.求分段函数的函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.求某条件下自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量是否满足相应段自变量的取值范围.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D.当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2018·山东烟台二模)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D .32或-34解析:选B.当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.发展数学建模、数学运算(应用型)模型 求解与分段函数有关的不等式分段函数与函数性质,不等式的交汇是高考的热点.求分段函数自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.[例4] (1)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧ f (a )≥0,-f 2(a )≤2,解得f (a )≥-2.由⎩⎪⎨⎪⎧a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2. 答案:(-∞,2](2)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1,+∞)解析:当a =2时,f (2)=4,f (f (2))=f (4)=24, 显然f (f (2))=2f (2),故排除A ,B.当a =23时,f ⎝⎛⎭⎫23=3×23-1=1,f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (1)=21=2.显然f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=2f ⎝⎛⎭⎫23.故排除D.选C.答案:C课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河南濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 2.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2解析:选B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1. 3.(2018·山西太原二模)若函数f (x )满足f (1-ln x )=1x ,则f (2)等于( )A.12 B .e C.1eD .-1解析:选B.法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t,即f (x )=1e 1-x ,故f (2)=e.法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.4.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2解析:选B.根据题意知x >0,所以f ⎝⎛⎭⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 5.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C.显然选项A ,D 满足,对于选项B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ),也满足;对于选项C ,令x =3,则f (2x )=f (6)=7,2f (x )=2f (3)=2(3+1)=8,故函数f (x )=x +1不满足f (2x )=2f (x ).6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34D .12解析:选D.根据分段函数的定义域赋值得到关于b 的方程,求解可得.f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.7.(2018·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3D .-2解析:选C.f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43= f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52. 故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.8.函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为________.解析:因为f (1)=e 1-1=1且f (1)+f (a )=2, 所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1,∵0<a 2<1,∴0<πa 2<π,∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1. 答案:1或-229.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.解析:因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =13的图象与x 轴无交点;当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上,实数a 的取值范围是[0,3). 答案:[0,3)10.函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是______________.解析:由图象知,函数y =f (x )的图象包括两部分,一部分是以点(-3,2)和(0,4)为两个端点的一条曲线段,一部分是以(2,1)为起点,到(3,5)结束的曲线段,故其定义域是[-3,0]∪[2,3],值域为[1,5],只与x 的一个值对应的y 值的取值范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]B 级 能力升级练(20分钟,30分)1.(2018·山东潍坊调研)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D.∵c A=15,故A >4,则有c2=30,解得c =60,A =16,故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧-⎝⎛⎭⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}解析:选B.当0≤x ≤4时,f (x )∈[-8,1];当a ≤x <0时,f (x )∈⎣⎡⎭⎫-⎝⎛⎭⎫12a ,-1, 所以⎣⎡⎭⎫-12a ,-1⊆[-8,1],-8≤-12a <-1. 即-3≤a <0.3.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,(-1≤x <0),-x +1,(0<x ≤1),则f (x )-f (-x )>-1的解集为( )A .(-∞,-1)∪(1,+∞) B.⎣⎡⎭⎫-1,-12∪(0,1] C .(-∞,0)∪(1,+∞) D.⎣⎡⎦⎤-1,-12∪(0,1) 解析:选B.①当-1≤x <0时,0<-x ≤1, 此时f (x )=-x -1,f (-x )=-(-x )+1=x +1, ∴f (x )-f (-x )>-1化为-2x -2>-1, 解得x <-12,则-1≤x <-12.②当0<x ≤1时,-1≤-x <0,此时,f (x )=-x +1,f (-x )=-(-x )-1=x -1, ∴f (x )-f (-x )>-1化为-2x +2>-1, 解得x <32,则0<x ≤1.故所求不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1]. 4.(2018·陕西西安模拟)设函数y =f (x )在R 上有定义,对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2D .- 2解析:选B.由题意,令f (x )=2-x 2=1,得x =±1,因此当x ≤-1或x ≥1时,f M (x )=2-x 2;当-1<x <1时,f M (x )=1,所以f M (0)=1,选B.5.(2018·福州模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.答案:56.(2018·吉林四地联考)设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是________.解析:∵0≤x 0<12,∴f (x 0)=x 0+12∈⎣⎡⎭⎫12,1B ,∴f [f (x 0)]=2(1-f (x 0))=2⎣⎡⎦⎤1-⎝⎛⎭⎫x 0+12 =2⎝⎛⎭⎫12-x 0.∵f [f (x 0)]∈A ,∴0≤2⎝⎛⎭⎫12-x 0<12. ∴14<x 0≤12, 又∵0≤x 0<12,故14<x 0<12.答案:14<x 0<12第二节 函数的单调性与最值教材细梳理1.函数的单调性 (1)单调函数的定义[易错易混] 从单调函数的定义可以看出,函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在其定义域的一个区间上是增函数,而在另一个区间上不是增函数.例如,函数y =x 2,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0]时是减函数.(2)函数单调性的常用结论①若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数; ②若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; ③函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; ④函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同. 2.函数的最值1.下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(3)函数y =|x |是R 上的增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( ) (6)函数y =1-x 21+x 2的最大值为1.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√2.“函数f (x )的单调区间”与“函数f (x )在某区间上单调”的区别是什么?提示:前者是指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集. 3.在最大值、最小值的定义中,条件(2)能否去掉?为什么?提示:不能,因为去掉后不能保证M 是一个函数值,即存在一个x 0∈I ,使M =f (x 0),最大值、最小值必须是函数值中的最大值、最小值.四基精演练1.(必修1·习题1.3A 组改编)一次函数y =kx +b 在R 上是增函数,则k 的范围为( ) A .k >0 B .k ≥0 C .k <0 D .k ≤0答案:A2.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞) 解析:选D.由x 2-2x -8>0可得x >4或x <-2, 所以x ∈(-∞,-2)∪(4,+∞),令u =x 2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增, 所以y =ln(x 2-2x -8)在x ∈(4,+∞)上单调递增.3.(2016·高考北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:选D.选项A 中,y =11-x =1-(x -1)的图象是将y =-1x 的图象向右平移1个单位得到的,故y =11-x 在(-1,1)上为增函数,不符合题意;选项B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C 中,y =ln(x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln(x +1)在(-1,1)上为增函数,不符合题意;选项D 符合题意.4.(必修1·习题1.3探究改编)若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:45.(实践题)(教材例题改编)“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,如果烟花距地面的高度h m 与时间t s 之间的关系式为h (t )=-t 2+4t +7,那么烟花冲出后________s 是它爆裂的最值时刻.答案:2考点一 利用单调性求最值[简单型]——发展数学运算求函数最值的常用方法1.单调性法:先确定函数的单调性,再由单调性求最值;2.图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;3.换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:22.已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 解析:由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.答案:25考点二 确定函数的单调性(区间)[探究型]——直观想象、逻辑推理[例1] (1)函数f (x )=-x 2+2|x |+1的递减区间为________.解析:f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,可知单调递减区间为[-1,0]和[1,+∞).答案:[-1,0]和[1,+∞)(2)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单|调递增. [母题变式]1.将本例(1)中函数变为f (x )=|-x 2+2x +1|,如何求解?解析:作出函数y =|-x 2+2x +1|的图象如图所示.由图象可知,单调递减区间为(-∞,1-2)和(1,1+2).答案:(-∞,1-2)和(1,1+2)2.若本例(2)中函数变为f (x )=axx -1(a ≠0),试判断f (x )在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增. 法二(导数法):f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2, 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.1.判断函数的单调性应先求定义域.2.定义法判断(或证明)函数单调性的一般步骤为:取值—作差—变形—判号—定论,其中变形为关键,而变形的方法有因式分解、配方法等.3.用导数判断函数的单调性简单快捷,应引起足够的重视.4.图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.1.函数f (x )=lg x 2的单调递减区间是________.解析:函数f (x )是定义域为{x |x ≠0}的偶函数,且f (x )=lg x 2=⎩⎪⎨⎪⎧2lg x ,x >0,2lg (-x ),x <0.函数大致图象如图所示,所以函数的单调递减区间是(-∞,0).答案:(-∞,0)2.(2018·湖南长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C.由f (x )>12,得-1<x <1,由f (x )≤12,得x ≤-1或x ≥1.所以f 12(x )=⎩⎪⎨⎪⎧2-x ,x ≥1,12,-1<x <1,2x,x ≤-1,故f 12(x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用[高频型]——发展逻辑推理、提升数学运算[例2] (2018·江西三校联考)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 解析:∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0, ∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 答案:B[例3] (2018·青海西宁高三期末)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3]1.利用函数的单调性比较函数值大小的求解思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用函数的性质转化到同一个单调区间内,只需比较自变量的大小,根据单调性比较函数值大小.2.求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).提醒:应注意g (x ),h (x )应在函数y =f (x )的定义域内. 3.根据函数的单调性求参数的取值范围的常用方法(1)数形结合法:将函数的单调性转化为函数图象的升(降),再转化为其参数满足的不等式(组)进而求解.(2)导数法:将函数的单调性转化为导函数在某单调区间上恒正(负)问题求解.3.已知偶函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选A.因为f (x )为偶函数,且在[0,+∞)上单调递增,f (2x -1)<f ⎝⎛⎭⎫13,故|2x -1|<13,解得13<x <23. 4.(2018·山东日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .( 0,1]解析:选D.由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.故选D.发展数学建模、数学运算(创新型)模型 单调性与抽象函数的创新交汇研究抽象函数的单调性主要利用定义来完成,但变形有一定的技巧性,在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.[例4] 函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.解:(1)证明:设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1. f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1, ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数. (2)∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1), ∵f (x )在R 上为增函数, ∴a 2+a -5<1⇒-3<a <2, 即a ∈(-3,2).课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河北唐山模拟)下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2x B .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x解析:选 D.y =log 2x在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x在(0,1)上是减函数.故选D.2.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0) C .[0,2]D .[2,+∞)解析:选A.由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调递减区间是[1,2].3.(2018·湖南长沙模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.4.函数y =⎝⎛⎭⎫12的值域为( )A .(-∞,1)B .⎝⎛⎭⎫12,1 C.⎣⎡⎭⎫12,1D .⎣⎡⎭⎫12,+∞ 解析:选C.因为x 2≥0,所以x 2+1≥1,即1x 2+1∈(0,1],故y =⎝⎛⎭⎫12∈⎣⎡⎭⎫12,1.5.(2018·山东青岛二模)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7解析:选C.如图所示,在同一直角坐标系中分别作出y =x +2,y =2x ,y =10-x 的图象.根据f (x )的定义知,f (x )=min{2x ,x +2,10-x }(x ≥0)的图象(如图实线部分).∴f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤2,x +2,2<x <4,10-x ,x ≥4.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值f (4)=6.6.(2018·广东深圳质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (2-a 2)<f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C.作出f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象,如图,由f (x )的图象可知f (x )在(-∞,+∞)上是单调增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.7.(2018·曲师附中月考)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c解析:选B.∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .8.(2018·厦门质检)函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴y =⎝⎛⎭⎫13x-log 2(x +2)是区间[-1,1]上的减函数,∴最大值为f (-1)=3.答案:39.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2·f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.设函数f (x )=⎩⎪⎨⎪⎧-x +a ,x <1,2x ,x ≥1的最小值为2,则实数a 的取值范围是________.解析:当x ≥1时,f (x )≥2,当x <1时,f (x )>a -1, 由题意知,a -1≥2,∴a ≥3. 答案:[3,+∞)B 级 能力升级练(25分钟,30分)1.(2018·山师附中质检)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是( )A .(-∞,0]B .⎝⎛⎦⎤-∞,12C .(0,+∞)D .(-∞,0)解析:选A.画出y =|2x -1|图象如图,易知y =|2x -1|的递减区间是(-∞,0],依题意有m ≤0,故选A.2.(2018·株洲二模)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由已知得当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.3.(2018·长春二模)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B.因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f (x (x -8))≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.4.(2018·潍坊二模)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .(-∞,0)C .(0,2)D .(-2,0)解析:选A.作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.故选A.5.(2018·威海模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =e x+x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 解析:因为对任意两个不相等的实数x 1,x 2, 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)恒成立, 所以不等式等价为(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立, 即函数f (x )是定义在R 上的增函数.①函数y =e x +x 在定义域上为增函数,满足条件. ②函数y =x 2在定义域上不单调,不满足条件.③y =3x -sin x ,y ′=3-cos x >0,函数单调递增,满足条件.④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0,当x >0时,函数单调递增,当x <0时,函数单调递减,不满足条件.综上,满足“H 函数”的函数为①③.答案:①③6.已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,(x ≤0)2ax -1,(x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________.解析:根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误; 若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 答案:①③④第三节 函数的奇偶性与周期性教材细梳理1.函数的奇偶性(1)实质是函数在关于原点对称的两个自变量处函数值的关系,具体为:间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.利用这些性质可以简化或判断一些函数图象的画法.(2)掌握常见函数的奇偶性.如一次函数、二次函数、指数函数、对称函数、正弦函数、余弦函数等.[易错易混] f (0)=0既不是f (x )为奇函数的充分条件,也不是必要条件. 2.函数的周期性(1)周期函数:对于定义域中任意的x 和一个非零常数T ,f (x +T )=f (x )恒成立⇔f (x )是以T 为周期的周期函数.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期(若不特别说明,T 一般都是最小正周期).3.函数图象的对称性(1)函数y =f (x )满足f (x )=2b -f (2a -x )⇔y =f (x )的图象关于点(a ,b )成中心对称. (2)函数y =f (x )满足f (x )=f (2a -x )⇔y =f (x )的图象关于直线x =a 成轴对称.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(3)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( ) (4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( ) (5)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (6)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ (6)√2.函数f (x )满足f (a +x )=f (b -x )与函数f (x )满足f (a +x )=f (b +x )(a ≠b )含义相同吗?为什么?提示:f (a +x )=f (b -x )⇔f (a +b -x )=f (x )表明f (x )的图象关于x =a +b 2对称,而f (a +x )=f (b +x )⇔f (a -b +x )=f (x ).表明f (x )具有周期性,它的一个周期为a -b .四基精演练1.(必修1·习题1.3A 组改编)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.解析:如图所示,由f (x )为奇函数知:f (x )>0的x 的取值范围为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)2.(必修1·习题1.3A 组改编)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:依题意,得f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 答案:-123.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:函数的周期是2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2= f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:14.(2017·高考全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D.已知函数f (x )在(-∞,+∞)上为单调递减函数,且为奇函数,则f (-1)=-f (1)=1,所以原不等式可化为f (1)≤f (x -2)≤f (-1),则-1≤x -2≤1,即1≤x ≤3,故选D.5.(实践题)(必修1·习题1.3B 组T 3改编)已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则f (x )在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B.根据题意作出y =f (x )的简图,由图知,选B.考点一 函数的奇偶性及应用[简单型]——发展逻辑推理判断函数奇偶性的方法1.定义法:首先确定函数的定义域,若定义域关于原点对称,则确定f (x )与f (-x )的关系,进而得出函数的奇偶性;否则该函数既不是奇函数也不是偶函数.2.图象法:观察f (x )的图象,若关于原点对称,则f (x )为奇函数,若关于y 轴对称,则f (x )为偶函数.1.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12xD .y =x +e x解析:选D.根据函数奇偶性的定义,易知函数y =1+x 2,y =2x +12x 为偶函数,y =x+1x为奇函数,所以排除选项A ,B ,C.故选D. 2.(2018·河北衡水中学二调)已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .-1 B .1 C .-5D .5解析:选D.设F (x )=f (x )+x ,由已知函数y =f (x )+x 是偶函数,得F (x )=F (-x ),即f (x )+x =f (-x )-x ,∴f (-x )=f (x )+2x ,∴f (-2)=f (2)+2×2=5.3.(2018·山东聊城二模)与函数y =x ⎝⎛⎭⎫12-12x +1的奇偶性相同的函数为( )A .y =lg(x +x 2+1)B .y =lg 1-x1+xC .y =⎩⎪⎨⎪⎧x (1-x ),x >0,-x (1+x ),x <0D .y =cos x解析:选D.设f (x )=x ⎝ ⎛⎭⎪⎫12-12x +1=x 2·2x-12x +1,则f (-x )=-x 2·2-x-12-x +1=-x 2·1-2x1+2x =x 2·2x-12x +1=f (x ),则y =x ⎝ ⎛⎭⎪⎫12-12x +1是偶函数,易知选项A ,B ,C 中的函数都是奇函数,而y =cos x是偶函数,故选D.考点二 函数的周期性及应用[探究型]——发展数学运算[例1] (1)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +4)=f (x ).当x ∈[0,2]时,f (x )=2x -x 2,则f (2 019)=________.解析:因为f(x+4)=f(x),所以周期T=4.又f(1)=1,所以f(2 019)=f(-1+4×505)=f(-1)=-f(1)=-1. 答案:-1(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[母题变式]1.若本例(1)中的条件不变,则f(x)(x∈[2,4])的解析式是________.解析:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2.所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.答案:f(x)=x2-6x+82.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4,∴f(-2 017)=1,f(2 019)=-1,∴f (-2 017)+f (2 019)=0. 答案:01.利用周期f (x +T )=f (x )将不在解析式范围之内的x 通过周期变换转化到解析式范围之内,以方便代入解析式求值.2.判断函数周期性的几个常用结论.(1)f (x +a )=-f (x ),则f (x )为周期函数,周期T =2|a |.(2)f (x +a )=1f (x )(a ≠0),则函数f (x )必为周期函数,2|a |是它的一个周期;(3)f (x +a )=-1f (x ),则函数f (x )必为周期函数,2|a |是它的一个周期.考点三 函数性质的综合应用[高频型]——发展数学运算、逻辑推理[例2] 已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1m,b =(ln m )2,c =ln m ,其中m >e ,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:根据已知条件知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),|a |=ln m >1,b =(ln m )2>|a |,0<c =12ln m <|a |,∴f (c )>f (a )>f (b ).答案:C[例3] (2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0D .2解析:当x >12时,由f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12可得f (x )=f (x +1),所以f (6)=f (1)=-f (-1)= -[(-1)3-1]=2,故选D. 答案:D。
2019届江苏专用高考数学大一轮复习高考专题突破一高考中的导数应用问题讲义理苏教版

题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f(x)=x2 -kln x,k>0.
2 (1)求f(x)的单调区间和极值;
解答
(2)证明:若f(x)存在零点,则f(x)在区间(1, e ]上仅有一个零点.
证明
思维升华
函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助 函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式) 组求解,实现形与数的和谐统一.
解答
当a=2时,f(x)=(-x2+2x)ex, 所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex. 令f′(x)>0,即(-x2+2)ex>0,因为ex>0, 所以-x2+2>0,解得- 2<x< 2. 所以函数 f(x)的单调递增区间是(- 2, 2).
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
4.已知函数f(x)=x-1-(e-1)ln x,其中e为自然对数的底数,则满足f(ex) <0的x的取值范围为__(0_,__1_)__.
答案 解析
令 f′(x)=1-e-x 1=0,得 x=e-1. 当x∈(0,e-1)时,f′(x)<0,函数f(x)单调递减; 当x∈(e-1,+∞)时,f′(x)>0,函数f(x)单调递增. 又f(1)=f(e)=0,1<e-1<e, 所以由f(ex)<0,得1<ex<e,解得0<x<1.
跟踪训练3 已知函数f(x)=x3-2x2+x+a,g(x)=-2x+ 9 ,若对任意的 x
x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是
(新课标)2019届高考数学一轮复习第三章导数及其应用3.1导数的概念及运算课件理

自查自纠
1.(1)可导 f ′(x0) f(x0+Δ x)-f(x0) (3)①f(x0+Δ x)-f(x0) ② Δx 2.f′(x0) y-y0=f′(x0)(x-x0) 3.(1)0 αx
α -1
(2)cosx -sinx
1 (3) x
1 xlna
(4)ex axlna
4.(1)f′(x)± g′(x) (2)f′(x)g(x)+f(x)g′(x) cf′(x) f′(x)g(x)-f(x)g′(x) (3) [g(x)]2 5.yx′=y′u·u′x
Δy ③取极限,得导数 f′(x0)= lim . x 0 Δ x 2.导数的几何意义 函数 y=f(x)在点 x0 处的导数的几何意义, 就是曲线 y=f(x)在点 P(x0, f(x0)) 处的切线的斜率.也就是说,曲线 y=f(x)在点 P(x0,f(x0))处的切线的斜率 是 .相应的切线方程为 .
解:对 y=ex 求导得 y′=ex,令 x=0,得曲线 y=ex 在点(0, 1 1)处的切线斜率为 1,故曲线 y= (x>0)上点 P 处的切线斜率为 x 1 -1,由 y′=- 2=-1,得 x=1,则 y=1,所以 P 的坐标为(1, x 1).故选 A.
(2015· 陕西)函数 y=xex 在其极值点处的切线方程 为( ) A.y=ex 1 C.y= e B.y=(1+e)x 1 D.y=- e
3.基本初等函数的导数公式 (1)c′=(c 为常数), (x )′=(α∈Q*);
α
(2)(sinx)′=____________, (3)(lnx)′=____________, (4)(ex)′=____________, 4.导数运算法则
(cosx)′=____________; (logax)′=____________; (ax)′=____________.
2019届高考文科数学一轮复习讲义:第3章 导数及其应用 全套打包可编辑

第三章导数及其应用§3.1导数的概念及运算1.平均变化率一般地,已知函数y=f(x),x0,x1是其定义域内不同的两点,记Δx=x1-x0,Δy=y1-y0=f(x1)-f(x0)=f(x0+Δx)-f(x0),则当Δx≠0时,商f(x0+Δx)-f(x0)Δx=ΔyΔx,称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx,x0])的平均变化率.2.函数y=f(x)在x=x0处的导数(1)定义称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0),即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应y-f(x0)=f′(x0)(x-x0).3.函数f(x)的导函数如果f(x)在开区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个确定的导数f′(x).于是,在区间(a,b)内,f′(x)构成一个新的函数,我们把这个函数称为函数y=f(x)的导函数,记为f′(x)或y′(或y′x).4.基本初等函数的导数公式表5.导数的四则运算法则 设f (x ),g (x )是可导的,则 (1)(f (x )±g (x ))′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x )(g (x )≠0). 知识拓展1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × )(3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × ) 题组二 教材改编2.若f (x )=x ·e x ,则f ′(1)=________. 答案 2e解析 ∵f ′(x )=e x +x e x ,∴f ′(1)=2e. 3.曲线y =sin xx在点M (π,0)处的切线方程为______________. 答案 x +πy -π=0解析 ∵y ′=x cos x -sin x x 2,∴y ′|x =π=-ππ2=-1π, ∴切线方程为y =-1π(x -π),即x +πy -π=0.题组三 易错自纠4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.有一机器人的运动方程为s =t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134答案 D6.(2018·青岛调研)已知f (x )=12x 2+2xf ′(2 018)+2 018ln x ,则f ′(2 018)等于( )A .2 018B .-2 019C .2 019D .-2 018答案 B解析 由题意得f ′(x )=x +2f ′(2 018)+2 018x ,所以f ′(2 018)=2 018+2f ′(2 018)+2 0182 018, 即f ′(2 018)=-(2 018+1)=-2 019.7.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 答案 1解析∵f′(x)=3ax2+1,∴f′(1)=3a+1,又f(1)=a+2,∴切线方程为y-(a+2)=(3a+1)(x-1),又点(2,7)在切线上,可得a=1.题型一导数的计算1.f(x)=x(2 018+ln x),若f′(x0)=2 019,则x0等于()A.e2B.1C.ln 2 D.e答案 B解析f′(x)=2 018+ln x+x×1x=2 019+ln x,故由f′(x)=2 019,得2 019+ln x0=2 019,则ln x0=0,解得x0=1.2.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于() A.-1 B.-2C.2 D.0答案 B解析f′(x)=4ax3+2bx,∵f′(x)为奇函数且f′(1)=2,∴f′(-1)=-2.3.已知f(x)=x2+2xf′(1),则f′(0)=________.答案-4解析∵f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),即f′(1)=-2.∴f′(x)=2x-4,∴f′(0)=-4.思维升华导数计算的技巧求导之前,应对函数进行化简,然后求导,减少运算量.题型二导数的几何意义命题点1 求切线方程典例 (1)曲线f (x )=e xx -1在x =0处的切线方程为__________________.答案 2x +y +1=0解析 根据题意可知切点坐标为(0,-1),f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x (x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x , ∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 引申探究本例(2)中,若曲线y =x ln x 上点P 的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 y ′=1+ln x ,令y ′=2,即1+ln x =2, ∴x =e ,∴点P 的坐标为(e ,e). 命题点2 求参数的值典例 (1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 1解析 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)(2018届东莞外国语学校月考)曲线y =4x -x 2上两点A (4,0),B (2,4),若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标是( ) A .(3,3) B .(1,3) C .(6,-12) D .(2,4)答案 A解析 设点P (x 0,y 0),∵A (4,0),B (2,4), ∴k AB =4-02-4=-2.∵在点P 处的切线l 平行于弦AB ,∴k l =-2. ∴根据导数的几何意义知,曲线在点P 的导数 y ′|0x x ==(4-2x )|0x x ==4-2x 0=-2,即x 0=3,∵点P (x 0,y 0)在曲线y =4x -x 2上, ∴y 0=4x 0-x 20=3,∴P (3,3). 命题点3 导数与函数图象典例 (1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案 B解析 由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=______.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面 (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎨⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练 (1)(2017·孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是________. 答案 y =0或4x +y +4=0 解析 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1), ∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2, ∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0. (2)设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 答案 -1 解析 ∵y ′=-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a=-1,∴a =-1.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示:现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎨⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =y ′|0x x ==3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164. 综上,a =1或a =164. 纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2) D .3(x 2+a 2)答案 C解析 f ′(x )=(x -a )2+(x +2a )·(2x -2a ) =(x -a )·(x -a +2x +4a )=3(x 2-a 2).2.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是( )答案 C解析 原函数的单调性是当x <0时,f (x )单调递增; 当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.3.(2017·西安质检)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)答案 C解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.4.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎨⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎨⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.5.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e .6.(2017·重庆诊断)已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)的值为( ) A .0 B .2 C .2 017 D .-2 017答案 B解析 ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e x(e x +1)2+cos x ,f (x )+f (-x )=2e x +1+sin x +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e x(e x +1)2+cos x +2e -x(e -x +1)2-cos(-x )=0,∴f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)=2.7.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为______. 答案 3解析 f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ), 由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3.8.(2016·全国Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是____________. 答案 2x -y =0解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以当x >0时,f (x )=e x -1+x ,f ′(x )=e x -1+1,故f ′(1)=2,所以曲线在点(1,2)处的切线方程为y -2=2(x -1),即y =2x .9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________________. 答案 ⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 解析 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3, 所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 10.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________________.(用“<”连接)答案 (1)1 (2)h (0)<h (1)<h (-1)解析 (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0), g (x )=dx 3+ex 2+mx +n (d ≠0), 则f ′(x )=2ax +b =x , g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).11.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.12.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.13.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a的值为( )A.14B.12 C .1 D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x ,由f ′⎝⎛⎭⎫14=g ′⎝⎛⎭⎫14,得12×⎝⎛⎭⎫1412-=a 14, 可得a =14,经检验,a =14满足题意.14.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为________. 答案2解析 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x =1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2.15.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号).16.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② 将①代入②得x 21+⎝⎛⎭⎫k -92x 1+4=0. ∵P 为切点,∴Δ=⎝⎛⎭⎫k -922-16=0, 得k =172或k =12. 当k =172时,x 1=-2,y 1=-17; 当k =12时,x 1=2,y 1=1.∵P 在第一象限,∴所求的斜率k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.③ 将③代入抛物线方程得x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),即2x 2=9, ∴x 2=92,y 2=-4.∴Q 点的坐标为⎝⎛⎭⎫92,-4.§3.2 导数的应用1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考察f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.知识拓展1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)题组二教材改编2.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值 答案 C解析 在(4,5)上f ′(x )>0恒成立, ∴f (x )是增函数.3.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 答案 D解析 f ′(x )=-2x 2+1x =x -2x2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, ∴x =2为f (x )的极小值点.4.函数f (x )=x 3-6x 2的单调递减区间为__________. 答案 (0,4)解析 f ′(x )=3x 2-12x =3x (x -4), 由f ′(x )<0,得0<x <4,∴函数f (x )的单调递减区间为(0,4).5.函数f (x )=13x 3-4x +4在[0,3]上的最大值与最小值分别为__________.答案 4,-43解析 由f (x )=13x 3-4x +4,得f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )>0,得x >2或x <-2;令f ′(x )<0,得-2<x <2.所以f (x )在(-∞,-2),(2,+∞)上单调递增; 在(-2,2)上单调递减,而f (2)=-43,f (0)=4,f (3)=1,故f (x )在[0,3]上的最大值是4,最小值是-43.题组三 易错自纠6.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)()A.无极大值点、有四个极小值点B.有三个极大值点、一个极小值点C.有两个极大值点、两个极小值点D.有四个极大值点、无极小值点答案 C解析导函数的图象与x轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点.7.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为____________.答案(1,+∞)解析令g(x)=f(x)-2x-1,∴g′(x)=f′(x)-2<0,∴g(x)在R上为减函数,g(1)=f(1)-2-1=0.由g(x)<0=g(1),得x>1.∴不等式的解集为(1,+∞).8.设a∈R,若函数y=e x+ax有大于零的极值点,则实数a的取值范围是________.答案(-∞,-1)解析∵y=e x+ax,∴y′=e x+a.∵函数y=e x+ax有大于零的极值点,∴方程y′=e x+a=0有大于零的解,∵当x>0时,-e x<-1,∴a=-e x<-1.第1课时导数与函数的单调性题型一不含参数的函数的单调性1.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 答案 B解析 由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞.故选B. 2.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 答案 D解析 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 答案 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 解析 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 思维升华 确定函数单调区间的步骤 (1)确定函数f (x )的定义域. (2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间. (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型二 含参数的函数的单调性典例 讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞), f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增. 综上所述,当a ≥1时,f (x )在(0,+∞)上单调递增; 当a ≤0时,f (x )在(0,+∞)上单调递减; 当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增. 思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练 已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性. 解 由题意得f ′(x )=e x [ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2a a. ①当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝ ⎛⎭⎪⎫0,2-2a a ; ②当a =1时,f (x )在(-∞,+∞)内单调递增;③当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0.题型三 函数单调性的应用问题命题点1 比较大小或解不等式典例 (1)(2017·南昌模拟)已知定义在⎝⎛⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫π3>f (1) C.2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4 D.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 答案 A解析 令g (x )=f (x )sin x , 则g ′(x )=f ′(x )sin x -f (x )cos x sin 2x, 由已知g ′(x )<0在⎝⎛⎭⎫0,π2上恒成立, ∴g (x )在⎝⎛⎭⎫0,π2上单调递减, ∴g ⎝⎛⎭⎫π4>g ⎝⎛⎭⎫π3, 即f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π332, ∴3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3. (2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案 (-∞,-2)∪(0,2)解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′<0, ∴φ(x )=f (x )x在(0,+∞)上为减函数,又φ(2)=0, ∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).命题点2 根据函数单调性求参数典例 (2018·石家庄质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0). (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间, 所以当x ∈(0,+∞)时,1x-ax -2<0有解, 即a >1x 2-2x有解. 设G (x )=1x 2-2x,所以只要a >G (x )min 即可. 而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1.所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞).(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立, 即a ≥1x 2-2x恒成立. 由(1)知G (x )=1x 2-2x, 所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0, 所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 引申探究1.本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解 因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,所以当x ∈[1,4]时,a ≤1x 2-2x恒成立, 又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1),所以a≤-1,即a的取值范围是(-∞,-1].2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.解 h (x )在[1,4]上存在单调递减区间,则h ′(x )<0在[1,4]上有解,所以当x ∈[1,4]时,a >1x 2-2x有解, 又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1,所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.跟踪训练 已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )的单调递减区间为(-1,1),求a 的值.解 (1)因为f (x )在R 上是增函数,所以f ′(x )=3x 2-a ≥0在R 上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为当a =0时,f ′(x )=3x 2≥0,当且仅当x =0时取等号.所以f (x )=x 3-1在R 上是增函数.所以实数a 的取值范围是(-∞,0].(2)f ′(x )=3x 2-a .当a ≤0时,f ′(x )≥0,f (x )在(-∞,+∞)上为增函数,所以a ≤0不合题意.当a >0时,令3x 2-a <0,得-3a 3<x <3a 3,所以f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 由题意知,3a 3=1,即a =3.用分类讨论思想研究函数的单调性典例 (12分)已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性.思想方法指导 含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.规范解答解 g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.[2分] ∵函数g (x )的定义域为(0,+∞),∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1.[4分]当a >0时,令g ′(x )=0,得x =1或x =12a,[6分] 若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a, 由g ′(x )<0,得12a <x <1;[8分] 若12a >1,即0<a <12, 由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a , 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[10分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增; 当a >12时,函数g (x )在⎝⎛⎭⎫0,12a 上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.[12分]1.函数f (x )=x ·e x -e x+1的递增区间是( ) A .(-∞,e)B .(1,e)C .(e ,+∞)D .(e -1,+∞)答案 D解析 由f (x )=x ·e x -e x +1,得f ′(x )=(x +1-e)·e x ,令f ′(x )>0,解得x >e -1,所以函数f (x )的递增区间是(e -1,+∞).2.(2018·济南调研)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )答案 C解析 由题意得,当x ∈(-∞,c )时,f ′(x )>0,所以函数f (x )在(-∞,c )上是增函数,因为a <b <c ,所以f (c )>f (b )>f (a ),故选C.3.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调增区间是( )A.⎝⎛⎭⎫-43,0 B.⎝⎛⎭⎫0,43 C.⎝⎛⎭⎫-∞,-43,(0,+∞) D.⎝⎛⎭⎫-∞,-43∪(0,+∞) 答案 C解析 ∵f ′(x )=3x 2-2mx ,∴f ′(-1)=3+2m =-1,解得m =-2,∴由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调增区间是⎝⎛⎭⎫-∞,-43,(0,+∞),故选C. 4.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立, 故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.5.(2018届广东珠海二中月考)若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A .a ≥1B .a >1C .a ≤1D .0<a <1 答案 A解析 f ′(x )=3x 2-2ax -1,由已知3x 2-2ax -1≤0在(0,1)内恒成立,即a ≥32x -12x恒成立, 又当x ∈(0,1)时,t =32x -12x的值域为(-∞,1), ∴a ≥1.6.若f (x )=ln x x,e<a <b ,则( ) A .f (a )>f (b ) B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1 答案 A解析 f ′(x )=1-ln x x 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,所以f (a )>f (b ). 7.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =________.答案 -12解析 f ′(x )=3x 2+2bx +c ,由题意知,-1<x <3是不等式3x 2+2bx +c <0的解,∴-1,3是f ′(x )=0的两个根,∴b =-3,c =-9,∴b +c =-12.8.(2018·昆明调研)已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________.答案 {x |x <-1或x >1}解析 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12, ∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0, 即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.9.已知函数f (x )=-13x 3+mx 2-x +2在区间(1,2)上是增函数,则m 的取值范围是__________. 答案 ⎣⎡⎭⎫54,+∞解析 f ′(x )=-x 2+2mx -1,由题意知f ′(x )≥0在(1,2)上恒成立,∴m ≥12⎝⎛⎭⎫x +1x 在(1,2)上恒成立, 又当x ∈(1,2)时,12⎝⎛⎭⎫x +1x 的取值范围是⎝⎛⎭⎫1,54. 故m ≥54. 10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是____________.答案 (-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x, 则g (x )为偶函数,g (1)=g (-1)=0.则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′ =xf ′(x )-f (x )x 2<0, 故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,由g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0.综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).11.(2018·大理质检)已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求实数k 的值;(2)求函数f (x )的单调区间.解 (1)f ′(x )=1x -ln x -k e x(x >0). 又由题知f ′(1)=1-k e=0,所以k =1. (2)f ′(x )=1x -ln x -1e x(x >0). 设h (x )=1x-ln x -1(x >0), 则h ′(x )=-1x 2-1x<0, 所以h (x )在(0,+∞)上单调递减.由h (1)=0知,当0<x <1时,h (x )>0,所以f ′(x )>0;当x >1时,h (x )<0,所以f ′(x )<0.综上,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).12.(2017·全国Ⅰ改编)已知函数f (x )=a e 2x +(a -2)e x -x .试讨论f (x )的单调性.解 f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).(1)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减.(2)若a >0,则由f ′(x )=0,得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.13.(2017·承德调研)已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 017)>e 2 017f (0)B .f (1)>e f (0),f (2 017)>e 2 017f (0)C .f (1)>e f (0),f (2 017)<e 2 017f (0)D .f (1)<e f (0),f (2 017)<e 2 017f (0)答案 D解析 令g (x )=f (x )e x , 则g ′(x )=⎣⎡⎦⎤f (x )e x ′=f ′(x )e x -f (x )e xe 2x =f ′(x )-f (x )e x<0, 所以函数g (x )=f (x )e x 在R 上是单调减函数, 所以g (1)<g (0),g (2 017)<g (0),即f (1)e 1<f (0)1,f (2 017)e 2 017<f (0)1, 故f (1)<e f (0),f (2 017)<e 2 017f (0).14.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 答案 ⎝⎛⎭⎫-19,+∞解析 对f (x )求导,得f ′(x )=-x 2+x +2a=-⎝⎛⎭⎫x -122+14+2a . 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,解得a >-19, 所以a 的取值范围是⎝⎛⎭⎫-19,+∞.15.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x, 由f ′(x )=0,得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.16.已知函数f (x )=13x 3-a 2x 2. (1)求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)上存在单调递减区间,求实数a 的取值范围. 解 (1)f ′(x )=x 2-ax =x (x -a ),①当a =0时,f ′(x )=x 2≥0恒成立,∴f (x )在R 上单调递增;②当a >0时,当x ∈(-∞,0)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,∴f (x )的单调增区间为(-∞,0),(a ,+∞),单调减区间为(0,a );③当a <0时,当x ∈(-∞,a )时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,当x ∈(0,+∞)时,f ′(x )>0,∴f (x )的单调增区间为(-∞,a ),(0,+∞),单调减区间为(a,0).综上可知,当a =0时,f (x )在R 上单调递增;当a >0时,f (x )的单调增区间为(-∞,0),(a ,+∞),单调减区间为(0,a );当a <0时,f (x )的单调增区间为(-∞,a ),(0,+∞),单调减区间为(a,0).(2)g ′(x )=x 2-ax +2,依题意,∃x 0∈(-2,-1),使不等式g ′(x 0)=x 20-ax 0+2<0成立,即当x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max =-22即可. ∴满足要求的a 的取值范围是(-∞,-22).第2课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点1 根据函数图象判断极值典例 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)答案 D解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.命题点2 求函数的极值典例 (2017·泉州质检)已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.解 (1)由f (x )=x -1+a e x ,得f ′(x )=1-a e x . 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-a e=0,解得a =e. (2)f ′(x )=1-a e x , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的单调增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.命题点3 根据极值求参数典例 (1)(2017·沧州模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为_______. 答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 f ′(x )=3x 2-4cx +1,由f ′(x )=0有两个不同的根,可得Δ=(-4c )2-12>0,∴c >32或c <-32. (2)若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫2,52 B.⎣⎡⎭⎫2,52 C.⎝⎛⎭⎫2,103 D.⎣⎡⎭⎫2,103 答案 C解析 函数f (x )在区间⎝⎛⎭⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝⎛⎭⎫12,3内有根,由f ′(x )=0有2个不相等的实根,得a <-2或a >2.由f ′(x )=0在⎝⎛⎭⎫12,3内有根,得a =x +1x 在⎝⎛⎭⎫12,3内有解,又x +1x ∈⎣⎡⎭⎫2,103,所以2≤a <103, 综上,a 的取值范围是⎝⎛⎭⎫2,103. 思维升华 函数极值的两类热点问题(1)求函数f (x )极值的一般解题步骤①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号.(2)根据函数极值情况求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求解后验证根的合理性.跟踪训练 (1)函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =0答案 C解析 ∵f (x )=x 4-2x 2+3,∴由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0,∴x =0,1,-1都是f (x )的极值点.(2)函数y =2x -1x 2的极大值是________. 答案 -3解析 y ′=2+2x 3,令y ′=0,得x =-1. 当x <-1或x >0时,y ′>0;当-1<x <0时,y ′<0.∴当x =-1时,y 取极大值-3.题型二 用导数求函数的最值典例 (2017·洛阳模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值和最小值. 解 f ′(x )=-x -(1-x )x 2+k x =kx -1x 2. ①若k =0,则f ′(x )=-1x 2在⎣⎡⎦⎤1e ,e 上恒有f ′(x )<0, 所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减.②若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(ⅰ)若k <0,则在⎣⎡⎦⎤1e ,e 上恒有k ⎝⎛⎭⎫x -1k x 2<0.所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减,(ⅱ)若k >0,由k <1e, 得1k >e ,则x -1k<0在⎣⎡⎦⎤1e ,e 上恒成立, 所以k ⎝⎛⎭⎫x -1k x 2<0,所以f (x )在⎣⎡⎦⎤1e ,e 上单调递减.综上,当k <1e时,f (x )在⎣⎡⎦⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1e+k -1,f (x )max =f ⎝⎛⎭⎫1e =e -k -1.引申探究本例中若函数为“f (x )=ln x -12x 2”,则函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值如何? 解 由f (x )=ln x -12x 2, 则f ′(x )=1x -x =1-x 2x, 因为当1e ≤x ≤e 时,令f ′(x )>0,得1e≤x <1; 令f ′(x )<0,得1<x ≤e ,所以f (x )在⎣⎡⎭⎫1e ,1上单调递增,在(1,e]上单调递减,所以f (x )max =f (1)=-12. 思维升华 求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点的函数值f (a ),f (b ).(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.跟踪训练 设函数f (x )=x 3-x 22-2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫-∞,72 解析 由题意知,f ′(x )=3x 2-x -2,令f ′(x )=0,得3x 2-x -2=0,解得x =1或x =-23, 又f (1)=72,f ⎝⎛⎭⎫-23=15727, f (-1)=112,f (2)=7, 故f (x )min =72,∴a <72.题型三 函数极值和最值的综合问题典例 (2018·珠海调研)已知函数f (x )=ax 2+bx +c e x(a >0)的导函数y =f ′(x )的两个零点为-3和0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的定义、运算和运用(一)考向一:定义(平均变化率瞬时变化率,适当补充极限定义) 【例】函数221y x =+在闭区间[1,1]x +∆内的平均变化率为 A.12x +∆ B. 2x +∆ C. 32x +∆ D. 42x +∆【解析】∵f (1+△x )=2(1+△x )2+1=2(△x )2+4△x+3,f (1)=2,∴该函数在区间[1,1+△x]上的平均变化率为=∆∆+∆=∆-∆+=∆∆xx x x f x f x y 42)1()1(242x +∆ 【例】若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A .3-B .6-C .9-D .12- 【解析】000000000()(3)()(3)()(3)limlim 44lim 44h h h f x h f x h f x h f x h f x h f x h h h h→→→+--+--+--=⨯='04()12f x ==-。
故选D 。
【练1】若2)(0='x f ,则kx f k x f k 2)()(lim000--→等于( )A .-1B .-2C .1D .21【练2】若错误!未找到引用源。
,则错误!未找到引用源。
( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
【解析1】根据导数的定义知k x f k x f k 2)()(lim000--→=000()()1lim 2k f x k f x k -→----=01()2f x '-=-1【解析2】()()()()()12-443lim 43lim0000000='=--+=--+→→x f hh x f h x f h h x f h x f h h 考向二:导数几何意义(在/过某点切线) 【例】曲线31y x =+在点(1,0)-处的切线方程为A .330x y ++=B .330x y -+=C .30x y -=D .330x y --=【解析】∵'23y x =,∴'13x k y=-==,由点斜式知切线方程为:()31y x =+,即330x y -+=.【例】过点)1,1(-且与曲线x x y 23-=相切的直线方程为( ) A . 20x y --=或5410x y +-= B .02=--y x C .20x y --=或4510x y ++= D .02=+-y x【解析】设切点为3000(,2)x x x -,因为232y x '=-,所以切线的斜率为020|32x x k y x ='==-,所以切线方程为320000(2)(32)()y x x x x x --=--,又因为切线过点(1,1)-,所以3200001(2)(32)(1)x x x x ---=--即32002310x x -+=,注意到(1,1)-是在曲线32y x x =-上的,故方程32002310x x -+=必有一根01x =,代入符合要求,进一步整理可得32002(1)3(1)0x x ---=即2000002(1)(1)3(1)(1)0x x x x x -++--+=,也就是2000(1)(21)0x x x ---=即200(1)(21)0x x -+=,所以01x =或012x =-,当01x =时,20321k x =-=,切线方程为(1)1y x --=-即20x y --=;当012x =-时,203532244k x =-=-=-,切线方程为5(1)(1)4y x --=--即5410x y +-=【例】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)【练1】已知直线l 过点)1,0(-,且与曲线x x y ln =相切,则直线l 的方程为 .【练2】曲线2)(3-+=x x x f 的一条切线平行于直线014=--y x ,则除切点外切线与曲线的另一交点坐标可以是( ) A .(1,0) B .(2,10)-- C .(1,4)-- D .(2,8) 【练3】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .【解析1】将()ln f x x x =求导得()ln 1f x x '=+,设切点为00(,)x y ,l 的方程为000(ln 1)()y y x x x -=+-,因为直线l 过点)1,0(-,所以0001(ln 1)(0)y x x --=+-.又000ln y x x =,所以0000001ln (ln 1),1,0x x x x x y --=-+∴==.所以切线方程为1-=x y .【解析2】设切点()00,y x P ,则()13'2+=x x f ,于是()13|'200+===x x f K x x 切,因为切线平行于直线014=--y x ,所以41320=+x ,即10±=x .则()()4,10,1--或P ,切线方程为:()14-=x y 或()144+=+x y 分别与曲线方程联立可解得另一交点坐标为()12,2--或()8,2【解析3】对函数ln 2y x =+求导得1y x'=,对ln(1)y x =+求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122ln 2,ln(1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以12221211121ln(1)ln 1xx x x x x ⎧=⎪+⎪⎨+⎪+=+⎪+⎩,解得11111,2,ln 211ln 22x k b x x =∴===+-=-. 考向三:常用函数导数与导数的四则运算 【例】函数1ln 1ln xy x-=+的导数是 ( ) A. 22(1ln )x -+ B.2)ln 1(2x x + C.22(1ln )x x -+D .21(1ln )x x -+【解析】1ln (1ln )221,1ln 1ln 1ln x x y x x x--++===-++++ 所以()()2210222(1)().1ln 1ln 1ln x y x x x x -⋅'''=-+==-+++ 【例】若2()2'(1)f x xf x =+,则'(0)f 等于 ( ) A. -2 B. -4 C. 2 D. 0【解析】∵2()2'(1)f x xf x =+,∴()2'(1)2f x f x '=+,∴(1)2f '=-,∴()24f x x '=-,∴ (0)4f '=-【练1】已知函数()2xf x x =-,则(1)f '= ( ) A .-1 B .-3 C.2 D .-2 【练2】已知函数),3('2sin )(πxf x x f +=则=)3('πf ( )A.21-B.0C.21D.23【练3】设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a 等于 ( )A. 2B.12 C. 12-D. 2- 【练4】等比数列{}n a 中, 4,281==a a ,函数)())(()(821a x a x a x x x f ---= ,则=)0('fA.62B. 92C. 122D. 152【解析1】根据题意,由于函数2222()'()'(1)22(2)(2)x x x f x f x f x x x --=∴==-∴=---- 【解析2】注意到)3(πf '是常数,所以)3(2cos )(πf x x f '+=',令3π=x 得)3(23cos )3(πππf f '+='21)3(-='⇒πf 【解析3】由()()()221112111x x x y y x x x --++'=⇒==----曲线11x y x +=-在点(3,2)处的切线的斜率为12k =-; 又直线10ax y ++=的斜率为a - ,由它们垂直得()1122a a -⨯-=-⇒=-【解析4】因为128128()()()()+x[()()()]f x x a x a x a x a x a x a ''=------,所以4412128123818(0)...()82()()()=f a a a a a a a a a '=---===.考向四:导数运用: 函数图像【例】函数()y f x =的图象如图所示,则导函数()y f x '=的图象可能是 ( )【解析】先根据导函数f'(x )的图象得到f'(x )的取值范围,从而得到原函数的斜率的取值范围,从而得到正确选项.由于原函数都是递减区间可知导数都小于零,故排除A,B,C,只能选D. 【例】已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数()y f x '=的图象如右图所示.当12a <<时,函数()y f x a =-的零点的个数为( )A.1B.2C.3D.4【解析】根据导函数图象,知2是函数的1极小值点,函数()x f y =的大致图象如图所示,由于()()230==f f ,21<<a ,所以()a x f y -=的零点个数为4个xyOx yO Axy O Bxy OCxy ODf (x )()f x '()f x '()f x '()f x '【练1】定义在R 上的函数()f x 满足(4)1f =,'()f x 为()f x 的导函数,已知'()y f x =的图象如右图所示,若两个正数,a b 满足(2)1f a b +<,则22b a ++的取值范围是()xyA . (-∞, -3)B .(-∞, 12)∪(3,+∞) C .1(,3)2D .11(,)32【练2】在同意直角坐标系中,函数22322()2ay ax x y a x ax x a a R =-+=-++∈与的图像不可能的是( )【练3】已知函数3211()22132f x ax ax ax a =+-++的图象经过四个象限,则实数a 的取值范围是 .【解析1】由导数图像可知,()0-,∞函数减,()∞+,0函数增,()12<+b a f ,即()()42f b a f <+,即420<+<b a ,等价于⎪⎪⎩⎪⎪⎨⎧>+<+>>024200b a b a b a ,如图:22++a b 表示可行域内的点到()22--,D 连线的斜率的取值范围21,3==BD CD k k ,所以取值范围为⎪⎭⎫ ⎝⎛321,【解析2】当0a =时,两函数图像为D 所示,当0a ≠时,由223410y a x ax '=-+=得:1x a =或13x a =,22ay ax x =-+的对称轴为12x a =.当0a <时,由11123a a a <<知B 不对. 当0a >时,由11123a a a >>知A,C 正确.【解析3】'()f x =ax 2+ax-2a=a(x 2+x-2)=a(x+2)(x-1),显然a ≠0,①:若a<0,则f(x)在(,2-∞-),(1,+∞)上单调递减,在(-2,1)上单调递增,因此若要使f(x)图像过四个象限,需5(1)1063616516(2)103f a a f a ⎧=+>⎪⎪⇒-<<-⎨⎪-=+<⎪⎩;②:若a>0,则f(x)在(,2-∞-),(1,+∞)上单调递增,在(-2,1)上单调递减,因此若要使f(x)图像过四个象限,需5(1)10616(2)103f a a f a ⎧=+<⎪⎪⇒∈∅⎨⎪-=+>⎪⎩,综上,a 的取值范围是(163,56--). 单调性极值最值零点【例】函数21ln 2y x x =-的单调递减区间为( )A .(1,1]- B.(0,1] C.[1,)+∞ D.(0,)+∞【解析】根据题意,对于函数21ln 2y x x =-,由于211(1)(1)'x x x y x x x x--+=-==(x>0),可知,当y ’<0时,则可知0<x<1能满足题意,故可知单调减区间为(0,1],【例】若函数()21x af x x +=+在1x =处取极值,则a =________.【解析】因为()21x af x x +=+,所以()()()()222()11(1)x a x x a x f x x ''+⋅+-++'=+=()()22211x x x ax +--+=()2221x x ax +-+由题设,()10f '=所以,120,3a a +-=∴=【例】若函数f (x )=x -13sin2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A .-1,1]B.⎣⎢⎡⎦⎥⎤-1,13C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13【解析】法一(特殊值法):不妨取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C. 方法二(综合法):∵函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2x +a cos x +53≥0,即a cos x ≥43cos 2x -53在(-∞,+∞)恒成立.当cos x =0时,恒有0≥-53,得a ∈R ;当0<cos x ≤1时,得a ≥43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在(0,1]上为增函数,得a ≥f (1)=-13;当-1≤cos x <0时,得a ≤43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在-1,0)上为增函数,得a ≤f (-1)=13.综上,可得a 的取值范围是⎣⎢⎡⎦⎥⎤-13,13,故选C.【例】已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)【练1】已知13)(23+-+=mx x x x f 在]2,2[-为单调增函数,则实数m 的取值范围为( )A .3-≤mB .0≤mC .24-≥mD .1-≥m 【练2】若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 .【练3】关于x 的方程3230x x a --=有三个不同的实数解,则a 的取值范围是__________.【练4】已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈0,1],存在x 2∈1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.【练5】已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0 B .函数y =f (x )的图象是中心对称图形 C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减 D .若x 0是f (x )的极值点,则f ′(x 0)=0【练6】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为 A.16 B.18 C.25 D.812【解析1】依题意有063)('2≥-+=m x x x f 在]2,2[-恒成立,即x x m 632+≤恒成立,即min 2)63(x x m +≤,当1-=x 时,3)63(min 2-=+x x ,故m 的取值范围是3-≤m【解析2】2141(21)(21)()2222x x x f x x x x x-+-'=-==,所以函数()f x 的极值点为12,又函数()f x 在其定义域内的一个子区间(1,1)a a -+内存在极值,所以10112a a ≤-<<+,解之得312a ≤<.【解析3】设32()3f x x x =-,则2'()36f x x x =-,令'()0f x >,得2x >或0x <,令'()0f x <,得02x <<,∴()f x 在(0,2)上单调递减,在(,0),(2,)-∞+∞上单调递增,∴()f x 在0x =取得极大值0,在2x =取得极小值4-,画出如下()f x 大致的示意图,可得,若要保证方程3230x x a --=有三个不同的实数解,则a 的取值范围是(4,0)-【解析4】由于f ′(x )=1+1x +12>0,因此函数f (x )在0,1]上单调递增,所以x ∈0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94. 【解析5】:基本法:由三次函数的值域为R 知,f (x )=0必有解,A 项正确;因为f (x )=x 3+ax 2+bx +c 的图象可由y =x 3平移得到,所以y =f (x )的图象是中心对称图形,B 项正确;若y =f (x )有极值点,则其导数y =f ′(x )必有2个零点,设为x 1,x 2(x 1<x 2),则有f ′(x )=3x 2+2ax +b =3(x -x 1)(x -x 2),所以f (x )在(-∞,x 1)上递增,在(x 1,x 2)上递减,在(x 2,+∞)上递增,则x 2为极小值点,所以C 项错误,D 项正确.选C.【错误解析6】由()f x 单调递减得:()0f x '≤,故()280m x n -+-≤在122⎡⎤⎢⎥⎣⎦,上恒成立。