毕业设计基于PLC的智能交通灯监控系统设计

合集下载

基于plc智能交通灯控制系统设计毕业论文

基于plc智能交通灯控制系统设计毕业论文

基于plc智能交通灯控制系统设计毕业论文目录一、内容概述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状与发展趋势 (4)1.3 论文研究内容与方法 (5)二、智能交通灯控制系统概述 (7)2.1 智能交通灯控制系统的定义与功能 (8)2.2 智能交通灯控制系统的组成与工作原理 (9)2.3 智能交通灯控制系统的应用领域 (11)三、PLC在智能交通灯控制系统中的应用 (13)3.1 PLC的特点与优势 (14)3.2 PLC在智能交通灯控制系统中的实现方式 (15)3.3 PLC控制系统的设计原则与步骤 (17)四、智能交通灯控制系统的硬件设计 (18)4.1 硬件系统总体设计 (19)4.2 传感器模块设计 (21)4.3 执行器模块设计 (23)4.4 电源模块设计 (25)五、智能交通灯控制系统的软件设计 (27)5.1 软件系统总体设计 (28)5.2 控制算法设计 (29)5.3 数据处理与通信接口设计 (31)六、智能交通灯控制系统的系统集成与测试 (32)6.1 系统集成方案 (33)6.2 系统测试方法与步骤 (35)6.3 系统测试结果与分析 (36)七、结论与展望 (38)7.1 论文研究成果总结 (39)7.2 存在问题与不足分析 (40)7.3 未来发展趋势与展望 (41)一、内容概述随着城市交通问题的日益凸显,智能交通灯控制系统成为提高交通管理效率、缓解交通压力的关键技术之一。

本论文旨在设计一种基于的智能交通灯控制系统,以提高交通流量、优化交通运行、减少交通拥堵和事故风险。

本论文首先介绍了研究背景、目的与意义,阐述了在智能交通灯控制系统中的应用现状及发展趋势。

接着,对交通灯控制系统的基本原理和组成部分进行了详细阐述,为后续设计奠定基础。

在此基础上,论文重点阐述了基于的智能交通灯控制系统的设计思路与实现方法。

设计内容包括:系统总体架构设计、硬件选型与配置、软件编程与实现、系统调试与优化等。

毕业设计基于PLC的智能交通灯的设计

毕业设计基于PLC的智能交通灯的设计

毕业设计基于PLC的智能交通灯的设计随着科技的快速发展,智能化已经成为了交通系统的重要发展方向。

在城市交通管理中,智能交通灯控制系统发挥着至关重要的作用。

本文将介绍一种基于PLC(可编程逻辑控制器)的智能交通灯设计,旨在提高交通效率,确保交通安全,并改善交通环境。

一、设计背景与目的城市交通问题一直是困扰人们的难题,高峰期的拥堵和交通事故频发等问题给人们的生活带来了诸多不便。

传统的交通灯控制系统已无法满足现代交通的需求,因此需要一种更加智能化、高效的交通灯控制系统来解决这些问题。

本设计的目的是通过PLC技术,实现交通灯的智能化控制,提高道路通行效率,减少拥堵和交通事故的发生。

二、设计方案1、系统架构本设计采用PLC作为核心控制器,通过传感器采集道路交通信息,如车流量、车速、车道占有率等,根据采集到的信息对交通灯进行智能控制。

同时,系统还包括人机界面(HMI),以便工作人员对系统进行监控和调试。

2、硬件选型PLC选用具有强大计算能力和稳定性的西门子S7-1200系列,该系列PLC具有丰富的IO接口和通信端口,适合用于本设计的控制需求。

传感器选用海康威视的车流量检测器,能够实时监测道路车流量,为PLC提供控制依据。

HMI选用昆仑通态的触摸屏,能够直观地展示系统运行状态和交通信息。

3、软件设计软件部分包括PLC程序和HMI界面设计。

PLC程序主要实现道路交通信息的采集、处理和交通灯的控制逻辑。

HMI界面设计则要实现系统状态的监控、交通信息的展示和人工干预等功能。

软件设计采用模块化的思路,便于后续的维护和升级。

三、功能特点本设计的智能交通灯具有以下功能特点:1、实时监测:通过传感器实时监测道路车流量、车速和车道占有率等信息,为PLC提供控制依据。

2、智能控制:根据监测到的交通信息,PLC能够实现交通灯的智能控制,包括绿灯时间的动态调整、红灯时间的优化分配等,以提高道路通行效率。

3、安全保障:通过实时监测车流量和车速等信息,系统能够及时发现交通事故的风险,并采取相应的控制策略,保障交通安全。

基于PLC的十字路口智能交通灯控制系统的设计

基于PLC的十字路口智能交通灯控制系统的设计

基于PLC的十字路口智能交通灯控制系统的设计城市道路交错分布,交通灯是城市交通的重要指挥系统。

交通信号灯作为管制交通流量、提高道路通行能力的有效手段,对减少交通事故有明显效果。

可编程控制器PLC作为工业用的计算机,在工业自动化中的地位极为重要。

其具有小型化、价格低、可靠性高等特点,在各个行业也得到了广泛应用。

本文基于PLC的十字路口智能交通灯控制系统,构成十字路口带倒计时显示交通信号灯的电气控制以及该系统软、硬件设计方法。

实验证明该系统实现简单、经济,能够有效地疏导交通,提高交通路口的通行能力。

1、设计系统简介系统上电后,交通指挥信号控制系统由两个按钮控制。

启动按钮按下,交通指挥系统开始按常规正常控制功能工作,按照如图1所示的工作时序周而复始、循环往复工作。

南北绿灯亮25s闪3s,黄灯亮2s后南北红灯亮30s。

东西方向与南北方向相同。

正常运行时,南北向及东西向均有两位数码管倒计时显示牌同时显示相应的指示灯剩余时间值。

系统主要实现十字路口交通灯数码显示控制和显示时间智能调节两大功能。

图1十字路口交通灯正常工作时序2、硬件系统设计2.1、元器件选用FX系列PLC拥有无以企及的速度、高级的功能逻辑选件以及定位控制等特点。

FX2N 系列是三菱PLC的FX家族中最先进的系列,具有高速处理及可扩展大量满足单个需要的特殊功能模块等特点;FX2N是从16路到256路输入/输出的多种应用的选择方案。

这里选用的是FX2N-80MR-D基本单元,带40点输入/40点继电器输出,选用额定电压12V、额定电流25mA(每段)高亮的共阴极两位25.4cm七段数码管;供电直接使用DC12V/25mA电源供电。

选用直径200mm的圆形LED点阵,左边红、绿、黄灯额定电压DC12V,额定电流4.2A,额定功率50W,直接采用DC12V/4.2A电源供电。

各控制信号说明如表1所示。

SB2按下时,接点断开,停止工作。

按下SB3时,七段数码管显示“00”。

PLC智能交通灯控制系统设计

PLC智能交通灯控制系统设计

PLC智能交通灯控制系统设计一、引言交通是城市发展的命脉,而交通灯则是保障交通有序运行的关键设施。

随着城市交通流量的不断增加,传统的交通灯控制系统已经难以满足日益复杂的交通需求。

因此,设计一种高效、智能的交通灯控制系统具有重要的现实意义。

可编程逻辑控制器(PLC)作为一种可靠、灵活的工业控制设备,为智能交通灯控制系统的实现提供了有力的支持。

二、PLC 简介PLC 是一种专为工业环境应用而设计的数字运算操作电子系统。

它采用可编程序的存储器,用于存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC 具有可靠性高、抗干扰能力强、编程简单、维护方便等优点,广泛应用于工业自动化控制领域。

在交通灯控制系统中,PLC 可以根据实时交通流量信息,灵活调整交通灯的时间分配,提高道路通行效率。

三、智能交通灯控制系统的需求分析(一)交通流量监测系统需要能够实时监测道路上的交通流量,包括车辆数量、行驶速度等信息。

(二)时间分配优化根据交通流量监测结果,智能调整交通灯的绿灯时间,以减少车辆等待时间,提高道路通行效率。

(三)特殊情况处理能够应对紧急车辆(如救护车、消防车)通行、交通事故等特殊情况,及时调整交通灯状态,保障道路畅通。

(四)人机交互界面提供直观、方便的人机交互界面,便于交通管理人员对系统进行监控和管理。

四、PLC 智能交通灯控制系统的硬件设计(一)传感器选择为了实现交通流量的监测,可以选择使用电感式传感器、超声波传感器或视频摄像头等设备。

电感式传感器安装在道路下方,通过检测车辆通过时产生的电感变化来统计车辆数量;超声波传感器通过发射和接收超声波来测量车辆与传感器之间的距离和速度;视频摄像头则可以通过图像识别技术获取更详细的交通信息,但成本相对较高。

(二)PLC 选型根据交通灯控制系统的输入输出点数、控制精度和复杂程度等要求,选择合适型号的 PLC。

精品毕业设计论文基于PLC的交通灯控制器设计与实现

精品毕业设计论文基于PLC的交通灯控制器设计与实现

精品毕业设计论文基于PLC的交通灯控制器设计与实现摘要:本篇论文以PLC作为核心技术,设计并实现了一种基于PLC的交通灯控制器。

该交通灯控制器具有高效、可靠、灵活的特点,能够满足不同交通场景的需求。

本设计通过对交通流量的检测与分析,实现了智能交通信号控制,提高了交通流的顺畅性和道路利用率。

通过对PLC编程,实现了交通信号的定时控制和优化,提高了信号灯的响应速度和精确度。

实验结果表明,该交通灯控制器在交通场景中具有良好的应用效果。

关键词:PLC;交通灯控制器;智能交通信号;定时控制1.引言随着城市的发展和人口的增加,交通问题成为城市发展中的重要问题。

如何优化交通流,提高交通效率,成为社会各界关注的焦点。

交通信号控制作为交通管理的重要手段之一,在城市交通中起着重要的作用。

目前,传统的交通信号控制主要依靠人工操作,存在着效率低、精度差、易出错等问题。

随着PLC技术的发展,基于PLC的交通灯控制器逐渐被广泛应用。

2.PLC的应用PLC(Programmable Logic Controller)是一种数字化的电气控制装置,具有计算力强、扩展性好、可编程性强等特点,适用于各种工业自动化和控制系统。

在交通灯控制中,PLC可以替代传统的交通信号控制器,实现灯光的定时控制和优化。

通过对PLC的编程,可以根据实时交通流量和道路状况,动态调整信号灯的时序,使交通流更加顺畅。

3.交通流量检测与分析4.交通信号时序控制交通信号时序控制是交通灯控制的核心部分。

本设计通过对PLC的编程,实现了交通信号灯的定时控制和优化。

通过对实时交通流量和道路状况的监测和分析,可以动态调整信号灯的时序,使交通流更加顺畅。

在设计中,考虑了不同交通场景下的信号控制策略,提高了信号灯的响应速度和精确度。

5.实验与结果分析本设计搭建了一套基于PLC的交通灯控制系统,并在实际交通场景中进行了实验。

实验结果表明,该交通灯控制器能够满足不同交通场景的需求,具有高效、可靠、灵活的特点。

PLC的智能交通灯控制系统设计..

PLC的智能交通灯控制系统设计..

PLC的智能交通灯控制系统设计--智能交通灯控制系统设计文档1-引言1-1 目的和范围本文档旨在设计一套基于PLC的智能交通灯控制系统,用于实现交通流畅和安全管理。

1-2 定义●PLC:可编程逻辑控制器(Programmable Logic Controller),是一种可编程数字运算控制器。

●智能交通灯:根据实时交通信息和需求,自动调整交通灯的信号显示。

●交通流畅:指通过合理的交通信号控制,减少交通拥堵和延误,提高交通效率。

●安全管理:通过合理的交通信号控制,确保道路交通的安全性和可靠性。

2-系统架构设计2-1 系统组成部分●PLC控制器●交通灯信号灯●交通检测传感器●人行横道信号灯●数据通信模块2-2 系统工作原理智能交通灯控制系统通过交通检测传感器获取实时交通信息,根据预设的控制算法,向信号灯发送指令来调整信号显示。

同时,通过数据通信模块与其他交通管理设备进行通信,实现跨路口协调控制。

3-系统硬件设计3-1 PLC控制器选型选择适宜的PLC控制器,满足系统的输入输出要求和性能需求。

3-2 交通灯信号灯设计根据道路交通需求和交通管理规范,设计合适的交通灯信号灯,包括信号显示颜色和亮度。

3-3 交通检测传感器选型选择适宜的交通检测传感器,可根据车辆和行人的实时情况,提供准确的交通流量数据。

3-4 人行横道信号灯设计根据行人需求和交通管理规范,设计合适的人行横道信号灯,保证行人安全过马路。

3-5 数据通信模块选型选择适宜的数据通信模块,实现系统与其他交通管理设备的数据交互和远程控制。

4-系统软件设计4-1 PLC编程使用PLC编程软件进行控制算法的编写,实现交通灯信号的动态调整。

4-2 信号灯控制算法设计设计合理的控制算法,根据实时交通信息和需求,动态调整交通灯信号显示。

4-3 数据通信协议设计设计系统与其他交通管理设备之间的数据通信协议,实现数据交互和远程控制。

5-系统测试与验证5-1 硬件测试对系统硬件进行功能测试,确保各部件正常工作。

基于plc的交通灯控制系统设计毕业论文

基于plc的交通灯控制系统设计毕业论文

基于plc的交通灯控制系统设计毕业论文目录一、内容概括 (2)1.1 研究背景和意义 (2)1.1.1 交通灯控制系统的重要性 (3)1.1.2 PLC在交通灯控制系统中的应用 (4)1.2 研究目的和任务 (6)1.2.1 论文研究目的 (7)1.2.2 论文研究任务 (8)二、交通灯控制系统概述 (8)2.1 交通灯控制系统的定义 (10)2.2 交通灯控制系统的组成 (10)2.2.1 硬件设备 (11)2.2.2 软件系统 (12)2.3 交通灯控制系统的分类 (13)2.3.1 传统交通灯控制系统 (15)2.3.2 基于PLC的交通灯控制系统 (16)三、PLC技术基础 (17)四、基于PLC的交通灯控制系统设计 (19)4.1 设计原则和设计要求 (20)4.1.1 设计原则 (21)4.1.2 设计要求 (22)4.2 系统架构设计 (23)4.2.1 总体架构设计 (26)4.2.2 控制器设计 (27)4.2.3 传感器设计 (28)4.3 系统功能实现 (29)4.3.1 交通灯控制功能实现 (30)4.3.2 系统监控功能实现 (32)4.3.3 故障诊断与报警功能实现 (33)五、系统测试与性能分析 (35)一、内容概括本文主要针对基于PLC的交通灯控制系统进行了深入研究和设计。

对交通灯控制系统的基本原理和功能进行了详细阐述,包括红绿灯的切换、行人过街按钮的响应以及故障检测与报警等功能。

对PLC 在交通灯控制系统中的应用进行了分析,重点介绍了PLC的硬件组成、编程语言以及编程方法等方面的内容。

在此基础上,设计了一套完整的基于PLC的交通灯控制系统,并通过实际应用验证了其可行性和稳定性。

对整个系统进行了总结和展望,为今后类似项目的开展提供了有益的参考。

1.1 研究背景和意义随着城市化进程的加快,智能交通系统在现代城市建设中扮演着越来越重要的角色。

交通灯作为道路交通管理的重要组成部分,其控制系统的先进性和稳定性直接关系到道路通行效率和交通安全。

PLC的智能交通灯控制系统设计

PLC的智能交通灯控制系统设计

PLC的智能交通灯控制系统设计智能交通灯控制系统设计是一种基于PLC技术的智能化交通管理系统,通过对交通信号灯控制进行智能化优化,实现交通流量的合理分配和交通管控的智能化管理,在提高道路通行效率的同时确保交通安全。

本文将介绍智能交通灯控制系统的设计理念、系统架构、功能模块、硬件设备和软件编程等方面。

一、设计理念智能交通灯控制系统的设计理念是通过PLC技术实现对交通信号灯的智能控制,根据车辆流量和道路情况实时调整信号灯的变化,合理分配绿灯时间,优化交通信号配时方案,提高道路通行效率和交通安全性。

系统应具有智能化、自适应性和实时响应性,能够有效应对不同交通情况,提供个性化的交通管控解决方案。

二、系统架构智能交通灯控制系统的架构主要包括传感器模块、PLC控制器、交通信号灯、通信模块和监控终端等部分。

传感器模块用于感知道路上的车辆流量和行驶方向等信息,将数据传输给PLC控制器;PLC控制器根据传感器数据实时调整信号灯控制策略;交通信号灯根据PLC控制器的指令变化显示不同颜色信号;通信模块用于系统与监控终端之间的数据通信,监控终端用于监控系统运行状态和实时操作。

三、功能模块智能交通灯控制系统的功能模块包括车辆检测模块、信号灯控制模块、通信模块和监控模块等。

车辆检测模块通过车辆检测器实时感知道路上的车辆流量和行驶方向等信息;信号灯控制模块根据车辆检测模块的数据智能调整信号灯配时,实现绿灯优先和拥堵车辆识别等功能;通信模块提供系统与监控终端之间的数据传输通道,实现数据交换和远程监控;监控模块实时监测系统运行状态和信号灯显示情况,可对系统进行远程操作和管理。

四、硬件设备智能交通灯控制系统的硬件设备主要包括传感器、PLC控制器、交通信号灯、通信模块和监控终端等部分。

传感器用于感知车辆流量和行驶方向等信息;PLC控制器用于处理传感器数据,实现信号灯的智能控制;交通信号灯显示不同颜色信号,指示不同车辆通行状态;通信模块提供系统与监控终端之间的数据传输通道;监控终端用于监控系统运行状态和实时操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京工业职业技术学院机电系毕业论文基于PLC的智能交通灯监控系统设计摘要目前,我国许多大中城市的交通压力都非常大。

部分交通路口的信号灯工作时间不合理,交通违章或肇事记录不确切。

所以,改善与提高现有的交通系统工作效率,加强交通路口的信号灯控制和安全状况的监控是非常重要的。

本设计主要设计利用PLC来实现十字路口交通灯的控制与监控。

通过交通中心的主机根据具体城市各路口的需要控制各个十字路口的PLC,从而控制十字路口交通灯的变化,以及对各个路口的安全状况进行监控,监控机动车是否违章、是否肇事,并把记录的结果存储、上传和处理。

本设计的上位机采用PC机,使用VB高级语言做监控界面。

通过安装在十字路口的监控设备以及移动电子监控设备,对各个十字路口的安全状况进行监控。

下位机采用德国西门子的S7-200系列的CPU226做主机,配以扩展模块EM222。

设计中采用S7-200编程软件STEP 7 - Micro/WIN3.2进行编程。

采用顺序功能图与梯形图相结合的方法设计程序。

实现对城市十字路口的合理控制与监控。

关键词:PLC控制系统;梯形图;交通灯目录绪论............................................................................. (4)第1章交通灯的发展现状 (5)1.1 交通灯监控系统的设计意义 (5)1.2 PLC控制设计内容及任务 (6)第2章交通灯系统总体方案论证 (6)2.1单片机系统控制 (6)2.2可编程序控制器控制 (9)2.3 继电器接触控制 (1)3第 3 章系统硬件设计 (13)3.1项目描述............................................................................. .. (14)3.2输入和输出点的分配表 (14)3.3 PLC接线图及梯形图 (15)3.4交通信号灯程序介绍 (16)第4章设计总结........................................................................... (18)引言可变程序控制器(PLC)是从早期的继电器逻辑控制系统发展而来的。

自60年代问世以来,PLC得到了突飞猛进的发展,尤其在数据处理、网络通信及与DCS 等集散系统融合方面有了很大的进展,可变程序控制器已经成为工业自动化强有力的工具,得到了广泛的普及和推广应用。

交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。

为了实现交通道路的管理,力求交通管理先进性、科学化。

用可编程控制器实现交通灯管制的控制系统,以及该系统软、硬件设计方法,实验证明该系统实现简单、经济,能够有效地疏导交通,提高交通路口的通行能力。

分析了现代城市交通控制与管理问题的现状,结合交通的实际情况阐述了交通灯控制系统的工作原理,给出了一种简单实用的城市交通灯控制系统的PLC设计方案。

可编程序控制器在工业自动化中的地位极为重要,广泛的应用于各个行业。

随着科技的发展,可编程控制器的功能日益完善,加上小型化、价格低、可靠性高,在现代工业中的作用更加突出。

第一章交通灯的发展现状近年来,随着我国经济的发展,城市的交通拥挤问题日趋严重,因此提高城市路网的通行能力、实现道路交通的科学化管理迫在眉睫。

传统的十字路口交通控制灯,通常的做法是:事先经过车辆流量的调查,运用统计的方法将两个方向红绿灯的延时预先设置好。

然而,实际上车辆流量的变化往往是不确定的,有的路口在不同的时段甚至可能产生很大的差异。

即使是经过长期运行、较适用的方案,仍然会发生这样的现象:绿灯方向几乎没有什么车辆,而红灯方向却排着长队等候通过。

这种流量变化的偶然性是无法建立准确模型的,统计的方法已不能适应迅猛发展的交通现状,更为现实的需要是能有一种能够根据流量变化情况自适应控制的交通灯。

目前,有多种对十字路口交通灯的改良设计,有一种用PLC对道路十字路口交通灯作自适应模糊控制的方法,较好地解决了车辆流量不均衡、不稳定的问题。

因此,十字路口交通灯控制的设计还存在非常广阔的前景。

1.1交通灯监控系统的设计意义交通信号灯智能控制系统为改善城市交通拥堵,提高道路的交通运输能力发挥了积极作用。

本系统设计实现了十字路口信号灯自动化、智能化、人性化实时控制。

通过系统功能扩展,系统亦可应用于其他控制领域,应用前景广阔。

当前,在世界范围内,一个以微电子技术,计算机和通信技术为先导的,以信息技术和信息产业为中心的信息革命方兴未艾。

而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。

本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作PLC控制设计内容及任务:(1)根据设计任务书,进行工艺分析,并确定控制方案,它是设计的依据.(2)选择输入设备(如按钮,开关,传感器等)和输出设备(如继电器,接触器,指示灯等执行机构).(3)选定PLC的型号(包括机型,容量,I/O模块和电源等).(4)分配PLC的I/O点,绘制PLC的I/O硬件接线图.(5)编写程序并调试.(6)设计控制系统的操作台,电气控制柜等以及安装接线图.(7)编写设计说明书和使用说明书.1.2交通信号机的功能及特点:(1) 具有多种信号控制模式:主控模式、无电缆控制模式、单点控制模式、多时段控制模式、手动控制模式和黄闪控制模式等。

(2) 功能参数设定:可进行日期、时间设定、多时段日时设定、感应参数设定、特殊日设定、周期时间、绿信比和相位差设定。

(3) 自检测功能:可进行系统自检、绿冲突检测、灯故障检测、继电器故障检测。

如果发生故障,将显示在信号机控制面板上以提醒用户。

(4) 强大的输入/ 输出功能:具有多输出通道和多输入通道,可实现对十字、三叉和多叉路口的灯控输出和检测功能。

(5) 友好的人机界面:具有画面信息大等特点,用户可通过手动开关和键盘对信号机进行设定和控制。

第二章交通灯系统总体方案论证2.1单片机系统控制单片机最突出的特点是面向控制,能有针对性地解决各类工业控制问题,特别适用于较高速和较复杂的实时控制应用。

单片机控制技术是关于单片机与控制系统方面的综合技术,是单片机、控制、电子技术、网络通信等多学科内容的集成。

单片机控制系统由单片机系统和工业对象组成,单片机系统由硬件和软件两部分组成。

硬件是指单片机本身以及外围设备实体,包括单片机、过程I/O通道及接口,人机联系设备及借口、外部存储器等。

工业对象包括被控对象、测量变送、执行机构和电气开关等装置。

软件是指管理单片机的程序以及过程控制的应用程序。

单片机是单片机控制系统的核心,完成巡回检测、数据处理、控制逻辑判断等工作。

过程I/O输出通道及接口分为模拟量和数字量两种。

数字量包括开关量、脉冲量和数据数码,它们负责单片机与工业对象的信息传递和变换。

过程输入通道及接口将工业对象的参数转换成单片机可接受的数字量。

过程输出设备及借口包括显示操作台、屏幕显示器或数字显示器、键盘、打印机、记录仪等,他们是操作人员和单片机系统进行联系的工具。

单片机控制系统的设计:CPU采用8031芯片8031芯片內部具有128字节数据存储器RAM,地址为佳00H—7FH,用作工作寄存器。

堆栈,软件标志和数据缓冲器,CPU对内部RAM有较为有效的操作指令。

另加有128字节的特殊功能寄存器,地址为80H---7FH。

是用于对片内各功能模块进行管理,控制,监视等。

8031芯片内部虽然没有程序存储器,只有128字节ROM,在组成该系统时RAM不够用。

现外接一片6264芯片来扩展8031的RAM存储器。

8031是一个无ROM的CPU。

单片的8031不能满足设计要求,不能够成完整的计算机。

外接两片2764,一片作为系统存储器,一片作为加工程序存储器。

8031的输入、输出(I/O)口线不多,不能满足设计要求,现外接两片8155芯片以扩展I/O口。

8031芯片的P0和P2接口用来传送外部存储器的地址和数据。

P0口传送高8位地址,P2口传送低8位地址和数据,故要采用74LS373地址锁存器,锁存底8位。

ALE作为选通信号,当ALE为高电平,锁存器的输入和输出`透明,既输入的低8位存储器地址在输出端出现。

此时不需锁存。

当ALE从高电平变为低电平,出现下降沿时,低8位地址存入地址锁存器重中,74LS373的输出不再随输入变化,即地质被锁存。

这样P0口就可以传送读写的树据。

8031芯片的P2口和74LS373送出的P2口共同组成它的地址,2764和6264芯片都是8kb,需要13根地址线。

A0—A7低8接74LS373芯片的输出,A8—A12接8031芯片的P2.0—P2.4,系统采用全地译码,两片2764芯片片选信号CE分别接74LS138译码器的Y0和Y1,系统复位以后从0000H开始执行。

6264芯片的片选信号CE接74LS132的Y2。

单片机扩展系统允许程序存储器和数据存储器独立编址(即地址重叠)。

在本次设计并没有地址重叠。

8031芯片的控制信号PSEN 接2764的OE引脚,作为外部程序存储器的选通信号。

读写控制信号WR和RD 分部接6264芯片的WE和OE。

以实现对外部数据存储器的读写。

由于8031芯片内部无ROM,故要选外部程序存储器,且其EA必须接地。

XTAL1为芯片内部振荡电路的输入端,XTAL0为芯片内部振荡电路的输出端,系统采用内部时钟电路。

在XTAL1、XTAL2引脚上接定时元件,内部振荡电路产生自激振荡,定时电路一般用石英晶体和电容组成的并联电路。

晶振可以在1.2—12MHZ之间任选。

现选晶振的频率为6MHZ。

电容在5—30PF之间。

现取30PF 电容。

电容对振荡频率有微小的影响。

RESET为复位控制。

当RESET出现高电平时,8031被初始化复位。

只要输入端保持高电平则将循环复位。

在复位有效期间ALE、PSEN口输出高电平。

当RESET 输入端返回底电平后,CPU从而地址执行程序。

设计中采用上电复位和开关复位两种电路。

8155采用开关复位方式。

由于采用外部程序存储器,所以EA/LPP接地。

I/O接口电路由于分别只有P1口和P2口部分能提供用户作为I/O口使用。

不能满足输入输出的需要,因而系统必须扩展输入输出接口电路。

本系统扩展了两片8155接口芯片,8155的片选信号CE接口分别接74LS138的Y3和Y4端。

74LS138译码器有三个输入口A、B、C,分别接到8031的P2.5、P2.6、P2.7端,输出Y0—Y7 八个信号,底电平有效。

相关文档
最新文档