焊接缺陷分类及预防措施

合集下载

焊接缺陷分类及预防措施

焊接缺陷分类及预防措施

一、焊接缺陷的分类焊接缺陷可分为外部缺陷和内部缺陷两种1.外部缺陷1)外观形状和尺寸不符合要求;2)表面裂纹;3)表面气孔;4)咬边;5)凹陷;6)满溢;7)焊瘤;8)弧坑;9)电弧擦伤;10)明冷缩孔;11)烧穿;12)过烧。

2.内部缺陷1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。

2)气孔;3)夹渣;4)未焊透;5)未熔合;6)夹钨;7)夹珠。

二、各种焊接缺陷产生原因、危害及防止措施1、外表面形状和尺寸不符合要求表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。

危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。

防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。

2、焊接裂纹表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。

按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。

危害:裂纹是所有的焊接缺陷里危害最严重的一种。

它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。

产生原因及防止措施:(1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。

手工电弧焊常见焊接缺陷产生的原因及预防措施

手工电弧焊常见焊接缺陷产生的原因及预防措施

手工电弧焊常见焊接缺陷产生的原因及预防措施一、缺陷:焊缝非连续性焊缝非连续性是指焊接过程中出现的焊缝断裂、气孔、炸裂等现象。

1.1断裂产生原因:(1)焊缝受到过高的拉伸应力;(2)焊接金属材质的化学成分不符合要求;(3)焊接材料或工艺不合理;(4)焊接操作不当。

预防措施:(1)选择合适的焊接工艺参数;(2)选择合适的焊接材料;(3)避免焊接材料与氧气、水分等有害物质接触;(4)控制焊接过程中的拉伸应力;(5)按照正确的焊接操作规范进行焊接。

1.2气孔产生原因:(1)焊接金属材质表面存在吸湿性;(2)焊接材料中含气过多;(3)焊接过程中存在油污、氧化皮、锈蚀等污染物;(4)焊接电流过大或过小。

预防措施:(1)选择干燥且无氧化物的焊接材料;(2)清除焊接金属表面的污染物;(3)控制焊接电流;(4)确保焊接区域通风良好;(5)维护焊接设备,确保其正常工作。

1.3炸裂产生原因:(1)焊接金属材料中的残余氢含量过高;(2)焊接过程中产生的内部应力过大;(3)焊接材料中含有容易析出气体的成分。

预防措施:(1)焊前进行预加热或热处理;(2)控制焊接过程中的冷却速度;(3)调整焊接材料的化学成分;(4)确保焊接区域通风良好,避免氢的吸收。

二、缺陷:焊接变形焊接变形是指焊接过程中产生的材料形状的改变。

2.1垂直偏移产生原因:(1)焊接时产生的热应力过大;(2)焊接材料中存在内应力;(3)焊接过程中由于挤压力造成的变形。

预防措施:(1)使用适当的焊接电流和焊接速度;(2)采用适当的预热和余热处理;(3)控制焊接过程中的挤压力。

2.2扭曲产生原因:(1)焊接金属材料中的回火应力;(2)焊接材料的不均匀收缩。

预防措施:(1)选择适当的焊接工艺参数;(2)控制焊接过程中的冷却速度;(3)使用配套的焊接辅助材料。

2.3塌陷产生原因:(1)焊接过程中,金属材料在焊接点附近受到过大的热量;(2)焊接金属材料的强度不均匀。

预防措施:(1)适当调整焊接电流和焊接速度;(2)使用适当的焊接材料。

焊接缺陷及防止措施

焊接缺陷及防止措施

焊接缺陷及防止措施焊接是一种常见的连接金属材料的方法,但由于操作不当或材料质量不合格等原因,会出现焊接缺陷。

焊接缺陷会影响焊缝的强度和可靠性,甚至可能导致结构或设备的故障。

因此,了解焊接缺陷的种类及其防止措施,对于保证焊接质量和工件的安全具有重要意义。

常见的焊接缺陷包括:1.气孔:气孔是焊接过程中产生的气体聚集而形成的孔洞。

气孔会导致焊缝强度降低,易于产生裂纹。

防止气孔的措施包括使用合适的焊接电流和电焊材料,保证焊缝周围环境干燥和清洁,焊接前对材料进行充分预热等。

2.熔花:熔花是焊接过程中溢出的熔融金属。

熔花会导致焊缝表面不平整,增加氧化层的形成几率,从而降低焊缝的质量。

防止熔花的方法包括调整焊接电流和电压,控制焊接速度,使用合适的电焊材料等。

3.裂纹:裂纹是焊接过程中由于热应力或冷却过程中的变形而导致的断裂。

裂纹会明显降低焊缝的强度和可靠性。

为防止裂纹的产生,可以在焊接前对材料进行适当的预热和热处理,控制焊接过程中的热输入和温度梯度,以及进行合适的焊后热处理。

4.缩孔:缩孔是焊接过程中由于熔池冷却快速造成的孔洞。

缩孔会导致焊缝的密封性和强度下降。

为防止缩孔的产生,可以使用合适的焊接工艺参数,如焊接电流、电压和焊接速度,控制焊接过程中材料的预热温度和冷却速度,以及在焊接过程中进行适当的保护气体或熔敷金属。

5.错边:错边是焊接过程中由于材料对位不准确而产生的焊缝偏移。

错边会导致连接部位的强度和精度下降。

为避免错边,应进行合适的材料对位和夹持,控制焊接过程中的热输入和焊接速度,以及采用合适的焊接工艺。

针对以上不同类型的焊接缺陷,需采取相应的防止措施,如合理选择适用的材料、控制合适的焊接参数、确保焊缝周围环境条件良好等,以保证焊接质量。

此外,还应注意人员技术培训和操作规程的制定,提高焊接人员的技术能力和安全意识,从而减少人为因素对焊接缺陷产生的影响。

总之,焊接缺陷在焊接过程中是难免的,但通过合适的防止措施,可以降低焊接缺陷的发生概率,并提高焊接质量和工件的安全性。

常见的焊接缺陷及其处理方法

常见的焊接缺陷及其处理方法

焊接缺陷的影响
强度下降
焊接缺陷会导致焊接接头强度下降,影响设备的 安全性能和使用寿命。
泄漏
对于要求气密或液密的设备,焊接缺陷可能导致 泄漏,影响设备的正常运行。
应力集中
焊接缺陷的存在可能引起应力集中,增加设备在 运行过程中发生疲劳断裂的风险。
02 常见的焊接缺陷
焊缝尺寸不符合要求
总结词
焊缝尺寸不符合要求是指焊接完成后,焊缝的宽度、高度或长度等参数不满足 设计要求。
提高焊接操作技能
总结词
提高焊接操作技能是预防焊接缺陷的重要措施之一。
详细描述
焊接操作人员的技能水平直接影响焊接质量。因此,应定期对操作人员进行技能培训和考核,提高其焊接操作技 能。此外,操作人员应严格遵守焊接工艺规程,按照规定的参数进行焊接,避免因操作不当导致的焊接缺陷。
加强焊接过程的监控与检验
05
04
详细描述
使用清洗剂清理焊缝表面,去除杂质 和氧化物,以提高表面光滑度。
06
详细描述
根据焊缝表面不光滑的情况,调整焊接电流、 电压、焊接速度等参数,以获得更光滑的焊缝 表面。
焊缝内部存在气孔的处理方法
总结词
选用合适的焊接材料
详细描述
选用低氢型焊条、烘干焊条等合适的 焊接材料,减少气孔的产生。
03 焊接缺陷的处理方法
焊缝尺寸不符合要求的处理方法
在此添加您的文本17字
总结词:调整焊接参数
在此添加您的文本16字
详细描述:对焊缝进行修整,包括打磨、补焊等,以使焊 缝尺寸符合要求。
在此添加您的文本16字
详细描述:根据焊缝尺寸不符合要求的情况,调整焊接电 流、电压、焊接速度等参数,以获得符合要求的焊缝尺寸 。

焊接常见缺陷产生的原因及其预防措施

焊接常见缺陷产生的原因及其预防措施

焊接常见缺陷产生的原因及其预防措施1 2 3 45 6 7 8 焊接缺陷咬边火渣、火鸨气孔或者群孔裂纹未焊透未融合根部氧化i焊瘤、内凹产生因素1、焊接电流大;2、焊接过程中,在母材位置停留时间短,铁水不足。

预防措施1、在电流范围内适当减小焊接电流;2、调整焊接手法,给足铁水。

1、正确选用焊接材料;2、减少单层焊道熔1、层问活理』、干净;2、焊接敷厚度,使熔渣充分浮到熔池外表;3、增时焊条不摆动或者摆动幅度小;3、焊接材料选用不当;4、焊件太大;5、电弧电压太局。

1、母材坡口有铁锈、水、油污;2、焊条受潮;3、焊丝有锈蚀;4、焊接电流过大或者过小;5、电弧电压太高;6、焊接速度过快;7、焊件太大;8、焊接环境风大。

1、焊接材料选用不当;2、焊件太大,冷却速度快;3、焊接热输入量过大;4、拘束应力过大。

1、对口间隙小;2、焊接电流小;3、焊件大,冷却速度快。

1、焊接电流小;2、焊件大,冷却速度快。

、焊件根部保护效果不好。

1、对口间隙过大;2、焊接电流大;3、焊接速度慢,焊件温度过高。

大焊接电流,有规律性的运条、搅拌熔池、使熔渣与熔池金届充分别离;4、子细活理层间焊渣;5、降低电弧电压;6、氧弧焊时焊工手法要稳,防止鸨极短路。

1、焊接前活除焊件、焊丝上的污锈或者油质;2、焊条按规定烘烤,烘烤后放包温箱内备用,焊工使用时采用保温筒;3、正确选用焊接材料;4、控制焊接工艺条件,适当预热,采用短弧焊接;5、采用防风雨棚。

1、合理选择焊材、改善焊缝组织、提高焊缝金届的塑性;2、适当焊前预热,降低焊件的冷却速度;3、改善工艺因素,采用小的焊接标准,降低组织过热产生的晶粒粗大;4、调整焊接顺序,降低焊接应力。

1、对口间隙调整到规定的尺寸;2、在电流范围内选择较大的焊接电流;3、适当预热,调整焊条、焊炬的角度。

1、在电而围内选择较大的焊接电流;2、适当预热,降低焊件的冷却速度。

1、米取根部氧气保护措施,到达保护效果。

焊接的六大缺陷及其产生原因、危害、预防措施

焊接的六大缺陷及其产生原因、危害、预防措施

一、外观缺陷外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。

常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。

单面焊的根部未焊透等。

A、咬边是指沿着焊趾,在母材部份形成的凹陷或者沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。

产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。

焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。

直流焊时电弧的磁偏吹也是产生咬边的一个原因。

某些焊接位置(立、横、仰)会加剧咬边。

咬边减小了母材的有效截面积,降低构造的承载能力,同时还会造成应力集中,发展为裂纹源。

咬边的预防:矫正操作姿式,选用合理的规范,采用良好的运条方式都会有利于消除咬边。

焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。

B、焊瘤焊缝中的液态金属流到加热缺陷未熔化的母材上或者从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。

焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿式不当等都容易带来焊瘤。

在横、立、仰位置更易形成焊瘤。

焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。

同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。

管子内部的焊瘤减小了它的内径,可能造成流动物阻塞。

防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。

C、凹坑凹坑指焊缝表面或者反面局部的低于母材的部份。

凹坑多是由于收弧时焊条(焊丝)未作短期停留造成的(此时的凹坑称为弧坑) ,仰立、横焊时,常在焊缝反面根部产生内凹。

凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。

防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短期停留或者环形摆动,填满弧坑。

D、未焊满未焊满是指焊缝表面上连续的或者断续的沟槽。

填充金属缺陷是产生未焊满的根本原因。

常见焊接缺陷产生原因及防止措施

常见焊接缺陷产生原因及防止措施

常见焊接缺陷产生原因及防止措施在钢结构、汽车、航空航天等各个领域,焊接技术是不可或缺的加工工艺。

然而,在焊接过程中,常常会出现一些焊接缺陷,这些缺陷可能会影响焊接结构的强度、耐久性和使用寿命,甚至可能导致严重的事故发生。

本文将分析常见的焊接缺陷的产生原因,并提出相应的防止措施。

一、焊缝未焊透在焊接过程中,如果不能将焊材和母材完全熔化,就会出现焊缝未焊透现象。

这种情况常常出现在焊接工艺参数不当的情况下。

例如,焊接电流过小,电弧能量不足,不能将焊材和母材完全熔化;或者焊接速度过快,无法保证完全熔化。

解决这个问题的关键是根据不同的焊接材料和工艺要求,调整好焊接参数,确保焊缝被完全熔化,达到焊接质量要求。

二、气孔在焊接过程中,气孔是一种常见的焊接缺陷。

气孔的产生原因有多种,主要包括焊材表面有油、水、氧化皮等杂质;焊接参数不当,使气体不能完全逸出等。

防止气孔产生的措施有两个方面。

一方面,在焊接前要先清洁焊接表面,确保焊接面干净无杂质;另一方面,在调整焊接参数时,要留出足够时间给气体逸出,这样才能防止气孔的产生。

三、焊缝裂纹焊缝裂纹是一种比较危险的焊接缺陷。

它常常由以下原因引起:焊接材料的拉伸强度不均,焊接接头部位过于脆弱,或者是焊接温度过高、冷却过快等。

为了防止焊缝裂纹的产生,可以采取以下措施。

一是控制焊接参数,避免过高的焊接温度和过快的冷却速度。

二是在焊接过程中,注意焊接的连续性,确保焊接成形完整。

三是在焊接过程中,采用预热的方法,改善焊接材料的拉伸强度,避免裂纹的出现。

四、过度熔深焊接过度熔深是由于焊接材料熔化过度,穿过母材嵌入焊接面内,使得焊缝结构松散,焊接强度降低。

过度熔深的原因有多种,如焊接电流过大,焊接速度过慢等。

预防过度熔深可以通过调整焊接参数、控制熔化深度和焊接速度等措施实现。

总之,焊接缺陷的产生原因可能有很多,需要针对具体情况采取相应的防止措施。

这需要焊接工艺人员有丰富的焊接经验和专业知识,对焊接材料和工艺有深入的了解,才能确保焊接质量达到要求。

焊接质量缺陷原因分析及预防、治理措施

焊接质量缺陷原因分析及预防、治理措施
⑶钝边厚度一般在1㎜左右,如果钝边过厚,采用机械打磨的方式修整,对于单V型坡口,可不留钝边。
⑷根据自己的操作技能,选择合适的线能量、焊接速度和操作手法。
厚度符合标准要求;
⑵加强打底练习,熟练掌握操作手法以及对应的焊接线能量及焊接速度等。
18.管道焊口根部焊瘤、凸出、凹陷
⑷注意周围焊接施工环境,搭设防风设施,管子焊接无穿堂风;
⑸氩弧焊时,氩气纯度不低于%,氩气流量合适;
⑹尽量采用短弧焊接,减少气体进入熔池的机会;
⑺焊工操作手法合理,焊条、焊枪角度合适;
⑻焊接线能量合适,焊接速度不能过快;
⑼按照工艺要求进行焊件预热。
⑴严格按照预防措施执行;
⑵加强焊工练习,提高操作水平和责任心;
⑴严格按照规程和作业指导书的要求准备各种焊接条件;
⑵提高焊接操作技能,熟练掌握使用的焊接方法;
⑶采取合理的焊接顺序等措施,减少焊接应力等。
⑴针对每种产生裂纹的具体原因采取相应的对策;
⑵对已经产生裂纹的焊接接头,采取挖补措施处理。
11.焊缝表面不清理或清理不干净,电弧擦伤焊件
焊缝焊接完毕,焊接接头表面药皮、飞溅物不清理或清理不干净,留有药皮或飞溅物;焊接施工过程中不注意,电弧擦伤管壁等焊件造成弧疤。
⑶发现问题及时采取必要措施。
14.气孔
在焊缝中出现的单个、条状或群体气孔,是焊缝内部最常见的缺陷。
根本原因是焊接过程中,焊接本身产生的气体或外部气体进入熔池,在熔池凝固前没有来得及溢出熔池而残留在焊缝中。
⑴焊条要求进行烘培,装在保温筒内,随用随取;
⑵焊丝清理干净,无油污等杂质;
⑶焊件周围10~15㎜范围内清理干净,直至发出金属光泽;
⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、焊接缺陷的分类焊接缺陷可分为外部缺陷和内部缺陷两种1.外部缺陷1)外观形状和尺寸不符合要求;2)表面裂纹;3)表面气孔;4)咬边;5)凹陷;6)满溢;7)焊瘤;8)弧坑;9)电弧擦伤;10)明冷缩孔;11)烧穿;12)过烧。

2.内部缺陷1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。

2)气孔;3)夹渣;4)未焊透;5)未熔合;6)夹钨;7)夹珠。

二、各种焊接缺陷产生原因、危害及防止措施1、外表面形状和尺寸不符合要求表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。

危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。

防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。

2、焊接裂纹表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。

按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。

危害:裂纹是所有的焊接缺陷里危害最严重的一种。

它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。

产生原因及防止措施:(1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。

这是由于焊接接头的金相组织和应力状态及氢的含量决定的。

(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。

产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。

产生原因:a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。

钢的淬硬倾向越大,越易产生冷裂纹。

b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。

高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。

c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。

焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

d.焊接工艺的影响:线能量过大会引起近缝区晶粒粗大,降低接头的抗裂性能;线能量过小,还会使热影响区淬硬,也不利于氢的逸出而增大冷裂倾向。

焊前预热和焊后热处理的温度不合适,多层焊的焊层熔深不合适等。

防止措施:a.选择合适的焊接材料:如优质的低氢焊接材料和低氢的焊接方法。

对重要的焊接结构,应采用超低氢、高韧性的焊接材料,焊条、焊剂使用前应按规定烘干。

b.焊前仔细清除坡口周围基体金属表面和焊丝上的水、油、锈等污物,减少氢的来源,以降低焊缝中扩散氢的含量。

c.采用低匹配的焊缝或“软层焊接”的方法,对防止冷裂纹也是有效的。

d.避免强力组装、防止错边、角变形等引起的附加应力,对称布置焊缝,避免焊缝密集,尽量采用对称的坡口形式并力求填充金属减少量,防止焊缝缺陷的产生。

e.焊前预热和焊后缓冷,这不仅可以改善焊接接头的金相组织,降低热影响区的硬度和脆性,而且可以加速焊缝中的氢向外扩散,此外还可以起到减小焊接残余应力的作用。

f.选择合适的焊接规范。

焊接速度太快,则冷却速度相应的也快,易形成淬硬组织,若焊接速度太慢,又会导致热影响区变宽,造成晶粒粗大。

选择合理的装配工艺和焊接顺序以及多层焊的焊层熔深。

(2)层状撕裂:大型厚壁结构在焊接过程中会沿钢板的厚度方向产生较大的Z 向拉伸应力,如果钢中的较多的夹层,就会沿钢板轧制方向出现一种台阶状的裂纹,称为层状撕裂。

产生原因:金属材料的中含有较多的非金属夹杂物,Z向拘束应力大,热影响区的脆化等。

防止措施:选用具有抗层状撕裂能力的钢材,在接头设计和焊接施工中采取措施降低Z向应力和应力集中。

(3)热裂纹:焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。

沿奥氏体晶界开裂,裂纹多贯穿于焊缝表面,断口被氧化,呈氧化色。

常有结晶裂纹、液化裂纹、多边化裂纹等。

产生原因:a.焊缝的化学元素的影响,主要是硫、磷的影响,易在钢中形成低熔点共晶体,是一种脆硬组织,在应力的作用下引起结晶裂纹。

其中的硫、磷等杂质可能来自材料本身,也有可能来自焊接材料中,也有可能来自焊接接头的表面。

b.凝固结晶组织形态也是形成热裂纹的一种重要因素。

晶粒越粗大,柱状晶的方向越明显,则产生结晶裂纹的倾向就越大。

也就是焊接线能量越大越易形成热裂纹。

c.力学因素对热裂纹的影响:焊件的刚性很大,工艺因素不当,装配工艺不当以及焊接缺陷等都会导致应力集中而加大焊缝的热应力,在结晶时形成热裂纹。

防止措施:a.控制焊缝金属的化学成分,严格控制硫、磷的含量,适当提高含锰量,以改善焊缝组织,减少偏析,控制低熔点共晶体的产生。

b.控制焊缝截面形状,宽深比要稍大些,以避免焊缝中心的偏析。

c.对于刚性大的焊件,应选择合适的焊接规范,合理的焊接次序和方向,以减少焊接应力。

d.除奥氏体钢等材料外,对于刚性大的焊件,采取焊前预热和焊后缓冷的办法,是防止产生热裂纹的有效措施。

e.采用碱性焊条,甚至提高焊条或焊剂的碱度,以降低焊缝中的杂质含量,改善偏析程度。

(4)再热裂纹:对于某些含有沉淀强化元素(如Cr、Mo、V、Nb等)的高强度钢和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化的高温合金及某些奥氏体不锈钢等)焊接后并无裂纹发生,但在热处理过程中析出沉淀硬化相导致热影响区粗晶区或焊缝区产生的裂纹。

有些焊接结构即使焊后消除应力热处理过程中不产生裂纹,而在500~600℃的温度下长期运行中也会产生裂纹。

这些裂纹统称为再热裂纹。

产生原因:在热处理温度下,由于应力的松驰产生附加变形,同时在热影响区的粗晶区析出沉淀硬化相(钼、铬、钒等的碳化物)造成回火强化,当塑性不足以适应附加变形时,就会产生再热裂纹。

防止措施:a.控制基体金属的化学成分(如钼、钒、铬的含量),使再热裂纹的敏感性减小。

b.工艺方面改善粗晶区的组织,减少马氏体组织,保证接头具有一定的韧性。

c.焊接接头:减少应力集中并降低残余应力,在保证强度条件下,尽量选用屈服强度低的焊接材料。

3、气孔焊接时,因熔池中的气泡在凝固时未能逸出,而在焊缝金属内部(或表面)所形成的空穴,称为气孔。

危害:气孔会减小焊缝的有效截面积,降低焊缝的机械性能,损坏了焊缝的致密性,特别是直径不大,深度很深的圆柱形长气孔(俗称针孔)危害极大,严重者直接造成泄漏。

产生原因:a.焊条或焊剂受潮,或者未按要求烘干。

焊条药皮开裂、脱落、变质。

b.基本金属和焊条钢芯的含碳量过高。

焊条药皮的脱氧能力差。

c.焊件表面及坡口有水、油、锈等污物存在,这些污物在电弧高温作用下,分解出来的一氧化碳、氢和水蒸气等,进入熔池后往往形成一氧化碳气孔和氢气孔。

d.焊接电流偏低或焊接速度过快,熔池存在的时间短,以致于气体来不及从熔池金属中逸出。

e.电弧长度过长,使熔池失去了气体的保护,空气很容易侵入熔池,焊接电流过大,焊条发红,药皮脱落,而失去了保护作用,电弧偏吹,运条手法不稳等。

f.埋弧焊时,使用过高的电弧电压,网络电压波动过大。

防止措施:a.焊前一定要将焊条或焊剂按规定的温度和时间进行烘干,并做到随用随取,或取出后放在焊条保温桶中随用随取;b.应选取药皮不得开裂、脱落、变质、偏心,含碳量低,脱氧能力强的焊条。

焊丝表面应清洁,无油无锈。

c.认真清理坡口及两侧,去除氧化物,油脂,水分等。

d.当用碱性焊条施焊时,应保持较低的电弧长度,外界风大时应采取防风措施。

e.选择合适的焊接规范,缩短灭弧停歇时间。

灭弧后,当熔池尚未全部凝固时,就及时再引弧给送熔滴,击穿焊接。

f.运条角度要适当,操作应熟练,不要将熔渣拖离熔池。

4、夹渣焊接后残留在焊缝内部的非金属夹杂物,称为夹渣。

立焊和仰焊比平焊容易产生夹渣。

危害:减少焊缝的有效截面积,降低了焊缝的机械性能。

产生原因:a.焊接过程中,由于焊工工作欠认真,仔细,焊件过缘、焊层之间、焊道之间的熔渣未除干净就继续施焊,特别是碱性焊条,若熔渣未除干净,更易产生夹渣。

b.由于焊条药皮受潮,药皮开裂或变质,药皮成块脱落进入熔池,又未能充分熔化或反应不完全,使熔渣不能浮出熔池表面,造成夹渣。

c.焊接时,焊接电流太小,熔化金属和熔渣所得到的热量不足,流动性差,再加上这时熔化金属凝固速度快,使得熔渣来不及浮出。

d.焊接时,焊条角度和运条方法不恰当,熔渣和铁水分辨不清,把熔渣和熔化金属混杂在一起。

焊缝熔宽忽宽忽窄,熔宽与熔深之比过小,咬边过深及焊层形状不良等都夹渣。

e.坡口设计、加工不当也导致焊缝夹渣。

f.基体金属和焊接材料的化学成分不当。

如当熔池中含氧、氮、硫较多时,其产物(氧化物、氮化物、硫化物等)在熔化金属凝固时,因速度较快来不及浮出,就会残留在焊缝中形成夹渣。

防止措施:a.认真清除锈皮和焊层间的熔渣,将凸凹不平处铲平,然后才能进行下一遍焊接。

b.选用具有良好工艺性能的焊条,选择合适的焊接电流,能改善熔渣上浮的条件,有利于防止夹渣的产生。

遇到焊条药皮成块脱落时,必须停止焊接,查明原因并更换焊条。

c.选择适当的运条角度,操作应熟练,使熔渣和液态金属良好地分离。

5、未焊透焊接时接头根部未完全熔透的现象。

对接焊缝也指焊缝未达到设计要求的现象。

危害:明显地减小了焊缝的有效截面积,降低了焊接接头的机械性能,由于未焊透处存在缺口及“末端尖劈”,会造成严重的应力集中现象,故在承载后,极易在此处引起裂纹。

产生原因:a.坡口角度小,钝边过大,装配间隙小或错边,所选用的焊条直径过大,使熔敷金属送不到根部。

b.焊接电流太小,焊接速度太快,由于电弧穿透力降低使得熔池变浅而造成。

c.由于操作不当,使熔敷金属未能送到预定位置,或由于电弧的磁偏吹使热能散失,该地方电弧作用不到,或者单面焊双面成形的击穿焊由于电弧燃烧时间短或坡口根部未能形成一定尺寸的熔孔而造成未焊透。

相关文档
最新文档