一、等离子体基本原理

合集下载

一、等离子体基本原理

一、等离子体基本原理

第一章 等离子体基本原理
1.1 等离子体概念:由大量的带电的正粒子、负粒子(其中包括正 离子、负离子、电子、自由基和各种活性基团等)组成的集合体, 其中正电荷和负电荷电量相等,故称等离子体。 注意:

非束缚性:异类带电粒子之间相互“自由”,等离子体的 基本粒子元是正负荷电的粒子(电子、离子),而不是其 结合体。 粒子与电磁场的不可分割性:等离子体中粒子的运动与电 磁场(外场及粒子产生的自洽场)紧密耦合,不可分割。 集体效应起主导作用:等离子体中相互作用的电磁力是长 程的。
完全电离等离子体 按电离度分类 部分电离等离子体 部分电离等离子体
1
0.01 1 106 0.01
致密等离子体 n>1015~18cm-3 按粒子密度分类 稀薄等离子体n<1012~14cm-3
按热力学平衡分类 局部热力学平衡等离子体(热等离子体) 例如:电弧等离子体,高频等离子体 极光、日光灯 非热力学平衡等离子体(冷等离子体)
1.3.4 等离子体的时空特征限量 等离子体的电中性有其特定的空间和时间尺度。 空间尺度下限—德拜长度 时间尺度下限– 电子走完一个振幅(等于德拜长度) 所需的时间τp
p ( D
kTe / me )1/ 2
1.3.5 等离子体判据

空间尺度要求 :等离子体线度远大于德拜长度
kT l D , D e 20 ne e
在德拜球中粒子数足够多具有统计意义等离子体物理发展简史19世纪30年代起放电管中电离气体现象认识建立等离子体物理基本理论框架20世纪50年代起受控热核聚变空间技术等离子体物理成为独立的分支学科20世纪80年代起气体放电和电弧技术发展应用低温等离子体物理发展151等离子体物理研究领域低温应用等离子体高温聚变等离子体空间和天体等离子体冷等离子体应用等离子体的化学过程刻蚀化学气相沉积成膜等离子体材料处理表面改性表面冶金光源冷光源节能毫米级厚金刚石片制备研究特征类金刚石表面制造等离子体军事及高技术应用军事应用等离子体天线等离子体隐身等离子体减阻等离子体鞘套等离子体诱饵高技术大功率微波器件x射线激光强流束技术等离子体推进热等离子体应用高温加热冶金焊接切割材料合成加工陶瓷烧结喷涂三废处理光源强光源无线电波在电离层的反射截止层

等离子的工作原理

等离子的工作原理

等离子的工作原理
等离子的工作原理是指在高温高能量作用下,气体中的分子或原子被电离形成带正电荷的阳离子和带负电荷的电子,并形成带正电荷和带负电荷的空间。

当电场作用下,正负电荷会受到电力的作用而被分开,并形成带电离子和电子云。

这种带电离子和电子云的集合体就是等离子体。

等离子体具有丰富的电磁特性和高度活性,可以产生强烈的电荷反应和电磁辐射。

等离子体可以通过各种方式来产生,包括通过电弧放电、激光等方法。

在等离子体中,带电离子和电子云的碰撞、复合以及与外界电场的相互作用是导致等离子体行为的关键因素。

等离子体的工作原理主要涉及三个基本过程:
1. 电离过程:高能电子或电磁辐射的作用下,气体中的原子或分子丧失电中性,形成带正电荷的离子和带负电荷的电子。

2. 冷等离子体形成过程:在电离过程后,电离气体中的带电离子和电子会迅速与周围的非电离气体分子碰撞,转移能量,引起非电离分子的电离,形成冷等离子体。

3. 等离子体的维持过程:为了使等离子体能够持续存在,需要提供能量来弥补能量耗散。

通常采用外部电源施加电场或电磁场,或者通过放电方式不断输入能量来维持等离子体的稳定。

等离子体的工作原理被广泛应用于激光、等离子体显示技术、核聚变、等离子体刻蚀和等离子体等领域,在这些应用中,等离子体的高温和高能量性质使其具有独特的物理特性和发展潜力。

等离子 原理

等离子 原理

等离子原理
等离子是一种高能态的物质,它在自然界中存在于极高温度的条件下。

等离子体是由电离的气体分子或原子组成的,其中的带电粒子包括正离子、负离子和自由电子。

等离子体的形成是通过加热气体或施加电场来提供足够的能量,以克服原子或分子的束缚力,使其失去电子并形成带电状态。

当气体分子电离后,带电粒子与自由电子之间发生碰撞,导致能量传递和转移。

这些带电粒子具有高速移动的特点,可以在外加电场的作用下形成电流。

等离子体具有独特的物理性质,如导电性、磁性和发光性。

导电性是指等离子体中的带电粒子可以在电场的驱动下流动,形成电流。

磁性是由于带电粒子的运动产生的磁场,使得等离子体对磁场产生响应。

发光性则是由于带电粒子在高能态下产生辐射,使等离子体呈现出明亮的光辉。

等离子体在实际应用中有着广泛的应用。

例如,在等离子切割中,利用等离子体高温和高能量的特性,可以快速切割各种材料。

等离子喷涂则可以通过将金属加热到等离子体状态,将金属粉末喷涂到物体表面,形成坚固的涂层。

等离子显示器则利用等离子体的发光性质,显示出鲜艳的彩色图像。

总之,等离子是一种具有独特物理性质的高能态物质,其原理是通过提供足够能量,使气体分子电离并形成带电粒子。

等离子体的形成和性质使其在多个领域有着广泛的应用。

等离子体工作原理

等离子体工作原理

等离子体工作原理等离子体是一种高度激发态的气体,其中的原子或分子失去或获得了电子,形成了带电的粒子。

等离子体可以在高温、高能量环境下产生,并具有许多独特的性质和应用。

本文将介绍等离子体的工作原理以及相关应用。

1. 等离子体的形成过程等离子体的形成需要提供足够的能量,一般通过加热或加电场的方式实现。

当物质受到高温加热或电场激励时,其原子或分子中的电子可以被激发或者被剥离,形成带正电荷的离子和自由电子。

这些带电粒子组成了等离子体。

2. 等离子体的性质等离子体具有导电性、发光性和相互作用性等独特的性质,使其在科学研究和工业应用中得到广泛应用。

2.1 导电性等离子体中的带电粒子可以自由移动,具有良好的导电性。

这种导电特性使得等离子体广泛应用于等离子体体积增长(PVD)和等离子体刻蚀(PECVD)等表面处理技术,以及高能物理实验和核聚变等领域。

2.2 发光性在充电的粒子跃迁能级时,等离子体可以产生特定的发光现象。

这种发光性质使得等离子体在气体放电灯、等离子体显示器和激光器等光电器件中得以应用。

2.3 相互作用性等离子体中的带电粒子具有相互碰撞和相互作用的能力,通过控制等离子体参数,如温度、密度和电场强度等,可以实现对带电粒子的束缚、加热和操控。

这种相互作用性使得等离子体在等离子体刻蚀、等离子体喷涂和等离子体医学应用等领域具有重要的作用。

3. 等离子体的应用等离子体具有广泛的应用领域,涵盖了科学研究、工业生产和医学等多个领域。

3.1 等离子体在材料加工中的应用等离子体在材料加工中被广泛应用于表面处理、薄膜制备和纳米材料合成等方面。

等离子体刻蚀和等离子体体积增长技术能够实现对材料表面的精细处理,广泛应用于集成电路制造、显示器制造和太阳能电池制造等领域。

3.2 等离子体在光电器件中的应用等离子体在光电器件中的应用主要包括气体放电灯、等离子体显示器和激光器等。

气体放电灯利用气体中的等离子体产生的发光现象,被广泛应用于照明和光源领域。

等离子是什么原理

等离子是什么原理

等离子是什么原理
等离子体是物质的第四状态,相比于固态、液态和气态,等离子态具有带电的粒子或离子。

等离子体的产生与物质的电离过程密切相关。

当一种物质受到足够高的能量激发时,其分子或原子会失去或获得电子,形成具有正电荷或负电荷的离子,从而形成等离子体。

产生等离子体的方法有多种,其中最常见的是电离。

电离可以通过提供足够的能量(例如加热或电弧放电)使物质的原子或分子中的一个或多个电子脱离,从而形成带正电荷的离子和带负电荷的自由电子。

这种带正电荷的离子和自由电子共同组成了等离子体。

等离子体中的粒子带电荷,因此受到电场力的作用。

这使得等离子体具有导电性,能够传导电流。

等离子体还具有与电磁场相互作用的性质,因此在等离子体中可以观察到等离子体的振荡和波动现象,比如等离子体球放电产生的辉光。

应用方面,等离子体在很多领域都有重要作用。

例如,在电视和荧光灯中,等离子体的电离和复合过程产生了辉光;等离子体技术被广泛应用于半导体制造中的物理蒸镀和离子刻蚀等过程;另外,等离子体还在核聚变反应中起着重要的作用。

总之,等离子体是一种具有特殊物性和电磁性质的物质状态,是通过电离过程生成的带电离子和自由电子的集合体。

等离子体的基本原理

等离子体的基本原理

等离子体的基本原理
等离子体的基本原理是指当物质被加热至高温状态时,其原子或分子的结构发生变化,形成了带电的粒子(即离子)和自由电子。

在等离子体中,正电荷和负电荷的数量基本相等,因此整体上呈中性。

等离子体的形成过程通常涉及能量的供给,例如高温、电弧放电、强电场等。

在高温下,物质的原子或分子会因为能量的迅速增加而变得十分活跃,甚至能够失去或获得电子。

这样,原本中性的物质就变成了具有带电离子和自由电子的等离子体。

等离子体的特性主要受到三个因素影响:温度、密度和电场。

温度越高,等离子体中离子和自由电子的动能也越大,导致它们更容易进行碰撞和相互作用。

密度指的是在单位体积内的离子和电子的数量,密度越高,则等离子体中的粒子之间的相互作用也越频繁。

电场则对等离子体中的带电粒子施加力,并影响它们的运动。

等离子体的形成和特性使得它具有许多独特的物理特性。

例如,等离子体具有良好的电导性,可以传导电流,并在磁场中感应电流。

此外,等离子体还能够产生辐射,包括可见光、紫外线和X射线等。

应用上,等离子体的研究和利用涉及到许多领域,如材料加工、核能研究、等离子体显示器、等离子体发动机等。

通过控制等离子体的温度、密度和电场等参数,可以实现对其物理性质的精确调控,为实现许多创新应用和科学研究提供了基础。

一、等离子体基本原理

一、等离子体基本原理
精品课件
1.3.3 沙哈方程
中性气体到完全电离等离子体状态的转变可由沙哈方程来 描述:
nnen gi (2m he3 kT)322gg0i exp(ekE Ti )
式中:h-普朗克常量; T-三种粒子的共同热动力学温度; gi-原子的电离电位; g0-离子基态的统计权重; gi/g0-中性原子基态的统计权重,碱性金属等离子体的
++
Em—复合后该电子所处的能级
En hν=ΔE
Em
- εe

+ Em
精品课件
轫致辐射
e
h e e
-
e
E -
hv
回旋辐射
eB/me
×××××××× B -
××××××hv ××
hv
××××××××
精品课件
1.3 等离子体特征量及等离子体判据
1.3.1 粒子密度和电离度
ne表示电子密度 ni表示离子密度 ng表示中性粒子密度 当ne= ni时,用n表示二者中任意一个带电粒子的密度, 简称为等离子体密度。 电离度α定义为
ne0 ni0 n0
当 ekT e1, ekT i <<1
,有
2n00e1keT een001ke Ti n0e02
1 kTe
k1Ti 1D 2
精品课件
等离子体的特征长度:德拜长度
一维模型(电极为无限大平板),解为:
x0ex D
德拜长度:
(x) 0
1/2
D ne00 e2 k1 T ek1 T i
精品课件
激光
精品课件
第一章 等离子体基本原理
1.1 等离子体概念:由大量的带电的正粒子、负粒子(其中包括正 离子、负离子、电子、自由基和各种活性基团等)组成的集合体, 其中正电荷和负电荷电量相等,故称等离子体。

等离子体技术的基本原理和应用

等离子体技术的基本原理和应用

等离子体技术的基本原理和应用等离子体技术是一种高科技的技术,具有广泛的应用场景。

等离子体技术,简单地说,就是将物质中的电子从原子核中剥离,形成一个电离态的气体,即等离子体。

等离子体呈现出电子、离子、自由基等多种状态,具有很强的化学、物理性能,在许多领域有广泛的应用。

等离子体技术的基本原理
首先,等离子体技术的产生需要一定的能量。

比如,可以通过高温、高压、强电场、强磁场等方式提供能量,使原子中的电子逐步离开原子核形成一个高度电离的气体状态,即等离子体。

等离子体技术主要是利用等离子体的化学、物理特性进行一系列的加工和改性,因为电离状态下的气体各种物理、化学等特性与普通气体不同。

等离子体技术的应用
等离子体技术已经应用于工业、医学和环保等多个领域,是当今世界的热门技术之一。

大家常见的离子发动机就是利用等离子体产生推力,驱动飞行器的发动机。

等离子体在航天、核聚变等领域有着广泛的应用。

比如,在环保领域,等离子体已经被运用于大规模废水、工业废气的净化处理,通过突破传统污水、污气处理方式,达到了非常好的净化效果。

等离子体在医学领域也有着重要的应用,现在许多先进的医疗设备和手术器械,比如射频等都用到了等离子体技术,这使得医学的诊断和治疗更为有效和方便。

此外,等离子体的应用还可以扩展到电子产业、纺织、家电、食品等各个领域,预计在未来还会有更广泛的应用。

结论
等离子体技术的开发和应用受到许多学科的支持,其中包含了物理学、化学、电子学等许多领域的知识与技术。

随着科学技术
的不断发展,等离子体技术在各个领域有着广阔的应用前景,将会为人们的生活、工作、环保和医疗等领域带来越来越多的福利和便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ne0ni0n0
当 ekT e1, ekT i <<1,有
2n00e1keT een001ke Ti n0e02
核聚变反应
D + T = n + 4He D + T = p + 3He
-
聚Байду номын сангаас等离子体
实现聚变的三种途径
-
聚变等托离卡子马体克装置( JET )
-
美国激光聚变装置
-
美国国家点火(NIF)激光聚变装置
-
激光聚变电站
-
神光I- I、星光II激光聚变装置
1.1.2 等离子体是物质第四态
固体 冰
液体 水
气体
水汽
等离子体
电离气体
00C
1000C
100000C
温度
-
放电是使气体转变成等离子体的一种常见形式
普通气体
等离子体
放电 需要有足够的电离度的电离气体才具有等离子体 性质。
“电性”比“中性”更重要 ( 电离度 >10-4 ) -
1.2 等离子体特征
1.2.1 等离子体的整体特征 等离子体是一种导电流体。 对于洛仑兹等离子体,把等离子体看作微观粒子
上式的静电位乘以电荷得到:
U
eV
r2e2n
30
此能量仅来自与有限的动力学温度T有关的动能
U 1KT 1eT 22
可得到与电中性的相对偏离: n 3T 0
- n 2er 2n0
1.2.3 等离子体鞘层
特征响应时间:τp= λ D/vT


屏蔽层厚度:德拜长度 λD
在等离子体中引入电场,经过一定的时间,等离子体中 的电子、离子将移动,屏蔽电场——德拜屏蔽
的集合,可以把等离子体的整体导电率σ写为
e2ne 1 mevce
-
对于电子只与每个电荷数均为z的带电粒子碰撞的 情况,等离子体整体电导率σs为
s
51.602()12(kTe)32
e2z me ln
ln 为库仑对数, lnln12z(2e03knTe1e2)32
-
1.2.2 等离子体的准电中性
-
霓虹灯
-
太阳等离子体喷流
-
电晕放电实例
-
部分气体辉光放电的颜色
Gas
Cathode Layer
He Ne(neo
n) Ar Kr Xe H2 N2 O2 Air
red yellow pink
red-brown pink red pink
Negative Glow
pink orange dark-blue green orangegreen thin-blue
一个密度几乎相等,每立方米n0个粒子的电子和单 电荷正离子构成的含能等离子体,在半径为r的球形区域 内,此体积内的静电能由其所包围的剩余电荷量决定, 此球表面的静电位为:
Q V
4 0r -
Q=eδn,为球内静电荷,其中e为电子电荷,此时球表
面的静电位为
V
4r3
3
en
r2en
(V)
40r
30
被推进净负电荷小球区域的一个电子所得到的能量可由
-
空间天体等离子体 什么保护了地球:等离子体
-
空间天体等离子体
北极光
-
空间天体等离子体
逃离太阳的等离子体
-
空间天星体系等:离巨子体大的聚变反应堆
-
等离子体参数空间
温度 (度)
星云
太阳风 星际空间
日冕
霓虹灯 荧光
磁约束 聚变
氢弹
惯性聚变
太阳核心 闪电
气体 液体 固体
北极光
火焰
人类居住环境
-密度(cm-3)


在等离子体内部,正、负电荷数几乎相等——准中性 ne ni
-
就等离子体本身而言,它具有变成为电中性的强烈 倾向,故离子和电子的电荷密度几乎相等,此种情况称 为准中性,是带相反电荷粒子间的强电作用的结果。
等离子体中电荷分离仅可能由外加电场或等离子体 本身的内能(热能)来维持,可由等离子体动力学温度 维持的对电中性的最大偏离估算出来。
-
德拜屏蔽鞘层 设想在等离子体中插入一电极,试图在等离子体中建立电场
电子将向电极处移动,离子则被排斥,电极所引入的电场仅局限 在较小尺度的 “鞘层” 中
静电势满足 Poisson 方程:
2
e
0
ne
ni
热平衡时电子、离子密度满足 Boltzmann 分布:
ne x vne0eex vkTe ni x vni0eex vkTi
-
1.1.1 等离子体存在处: 宇宙中90%物质处于等离子体态。由地球表面
向外,等离子体是几乎所有可见物质的存在形式, 它与众所周知的物质三态也就是气态、液态、固 态并列称为物质的第四态,即等离子体态。如大气 外侧的电离层、日地空间的太阳风、太阳日冕、 太阳内部、星际空间、闪电、极光、星云及星团, 毫无例外的都是等离子体。
等离子体应用技 术
-
参考教材: 1. 等离子体技术与应用 许根慧等 化学工业出版社 2.等离子体技术及应用 赵青 刘述章 童宏辉 国防工业出版社
-
目录
等离子体基本原理 等离子体的化学行为 等离子体发生技术 介质阻挡放电等离子体技术与应用 电晕和辉光放电等离子体技术与应用 微波放电等离子体技术与应用 等离子体在薄膜制备中的应用 等离子体在高分子化学中的应用 等离子体显示技术 等离子体在隐身技术中的应用 等离子体应用技术进展
blue yellowwhite
blue
Positive Column
Red-pink red-brown dark-red blue-purple
whitegreen pink red-yellow red-yellow red-yellow
-
介质阻挡放电(DBD- )
滑动电弧放电等离子体
-
激光
地球上,人造的等离子体也越来越多地出现在我们的周围。 日常生活中:日光灯、电弧、等离子体显示屏、臭氧发 生器 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷 涂、烧结、冶炼、加热、有害物处理 高技术应用:托卡马克、惯性约束聚变、氢弹、高功率 微波器件、离子源、强流束、飞行器鞘套与尾迹
-
聚变等离子体
-
第一章 等离子体基本原理
1.1 等离子体概念:由大量的带电的正粒子、负粒子(其中包括正离 子、负离子、电子、自由基和各种活性基团等)组成的集合体, 其中正电荷和负电荷电量相等,故称等离子体。
注意: 非束缚性:异类带电粒子之间相互“自由”,等离子体的 基本粒子元是正负荷电的粒子(电子、离子),而不是其 结合体。 粒子与电磁场的不可分割性:等离子体中粒子的运动与电 磁场(外场及粒子产生的自洽场)紧密耦合,不可分割。 集体效应起主导作用:等离子体中相互作用的电磁力是长 程的。
相关文档
最新文档