1.2 矩形的性质与判定(第二课时).ppt
合集下载
《矩形的性质与判定(2)》课件

有一个角是直角 的平行四 边形是矩形.
对角线相等的平 行四边形 是矩形.
有三个角是直角 的四边形是矩形.
矩形的判定思路
四 边 形
有三个角是直角 平行四边形
矩形 对角线相等 一个角是直角
矩 形
检测反馈
1.下列说法正确的是 ( B ) (1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的 四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个 角是直角的四边形是矩形;(5)四个角都相等的四边形是矩
∟
C
例 如图,在□ABCD中,对角线AC与BD相交于点O,
△ABO是等边三角形,AB = 4cm,求这个□ABCD
的面积.
证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,. 又∵△ABO是等边三角形, ∴OA=OB=AB=4,∠BAC=60°. ∴OA=OB=OC=OD=4,
∴AC=BD=2OA=2×4=8.
九年级数学上
新课标 [北师]
第一章 特殊平行四边形
学习新知
检测反馈
生活思考
一天,小丽和小娟到一个商店准备给今天要过生
日的小华买生日礼物,选了半天,她们最后决定买相框 送给她,在里面摆放她们三个人的合影,为了相框摆放 的美观性,她们选择了矩形的相框,那么用什么方法可 以确定她们拿的就是矩形的相框呢?
已知:在□ABCD中,AC,DB是它的两条对角线,AC=BD.
矩形的判定方法2
对角线相等的平行四边形是矩形.
几何语言:
∵在 ABCD中 AC=BD ∴ ABCD是矩形
A
0
D
B
C
探究
有一个角是直角
有两个角是直角 有三个角是直角
1.2.2 矩形的判定 公开课课件

解:(1)证明:∵CF 平分∠ACD,且 MN∥BD,∴∠ACF =∠FCD=∠CFO.∴OF=OC.同理可证:OC=OE.∴OE=OF (2)由(1)知:OF=OC,OC=OE,∴∠OCF=∠OFC,∠OCE= ∠OEC.∴∠OCF+∠OCE=∠OFC+∠OEC.而∠OCF+∠OCE +∠OFC+∠OEC=180°,∴∠ECF=∠OCF+∠OCE=90°,
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
9.如图,点M是矩形ABCD的边AD的中点,点P为BC上一点, PE⊥MC于点E,PF⊥MB于点F,当AB,BC满足条件
BC=2AB 时,四边形PEMF为矩形.
第8题图
第9题图
10.已知▱ABCD的对角线交于点O,分别添加下列条件:① ∠ABC=90°;②AC⊥BD;③AC=BD;④OA=OD.使▱ABCD 是矩形的条件的序号是 ①③④ .
OA=12BD,OA=12AC,∴BD=AC,∴▱ABCD 是矩形
13.如图,AB=AC,AD=AE,DE=BC且∠BAD=∠CAE, 求证:四边形BCDE是矩形.
解 : 证 明 : ∵ AC = AB , AD = AE , ∠ BAD = ∠ CAE , ∴ ∠ CAD = ∠ BAD - ∠ CAB = ∠ CAE - ∠ CAB = ∠ BAE.∴△ADC≌△AEB.∴DC = BE , ∠ ABE = ∠ ACD. 又 ∵ DE = BC , ∴ 四 边 形 BCDE 为 平 行 四 边 形 . ∵ AB = AC , ∴ ∠ ABC = ACB , ∴ ∠ ABC + ∠ ABE = ∠ ACB + ∠ ACD , 即 ∠EBC=∠DCB=90°.∴四边形BCED为矩形
北师大版数学九年级上册矩形的性质与判定(第2课时矩形的判定)课件(共26张)

{AP=DP ∵ AB=PC , BP=PC ∴△ABP≌△DCP(SSS), ∴∠D=∠A, ∵∠D+∠A=180°, ∴∠D=∠A=90°, ∵四边形ABCD是平行四边形, ∴平行四边形ABCD是矩形.
7.如图, ABCD的四个内角的平分线相交 于点E、F、G、H. 求证:EG = FH.
证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠BAD+∠ABC=180°. 又∵AH,BH分别平分∠BAD,∠ABC, ∴∠DAE=∠BAE= ∠DAB,∠CBG=∠ABG= ∠ABC, ∴∠BAE+∠ABG= (∠DAB +∠ABC )=90°, ∴∠AHB=90°, 同理可证∠EFG=90°,∠HEF=90°, ∴四边形EFGH为矩形,∴EG=FH.
∴∠ABC+∠DCB=180°.
∴∠ABC=∠DCB
=
1 2
×180°=90°.
∴□ABCD是矩形.(矩形的定义)
2.矩形的四个角都是直角,反过来,一个四边形 至少有几个角是直角时,这个四边形才是矩形呢? 请证明你的结论,并与同伴交流.
归纳结论:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,
已知:如图,在□ABCD中,对角线AC=BD.
求证:平行四边形ABCD是矩形.
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
证明: ∵四边形ABCD是平行四边形. A
D
∴AB=CD,AB∥CD.
又∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
B
C
∴∠ABC=∠DCB.
又∵AB∥CD.
巩固练习
1.如图,四边形ABCD的对角线互相平分,要使它 变为矩形,需要添加的条件是( D )
7.如图, ABCD的四个内角的平分线相交 于点E、F、G、H. 求证:EG = FH.
证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠BAD+∠ABC=180°. 又∵AH,BH分别平分∠BAD,∠ABC, ∴∠DAE=∠BAE= ∠DAB,∠CBG=∠ABG= ∠ABC, ∴∠BAE+∠ABG= (∠DAB +∠ABC )=90°, ∴∠AHB=90°, 同理可证∠EFG=90°,∠HEF=90°, ∴四边形EFGH为矩形,∴EG=FH.
∴∠ABC+∠DCB=180°.
∴∠ABC=∠DCB
=
1 2
×180°=90°.
∴□ABCD是矩形.(矩形的定义)
2.矩形的四个角都是直角,反过来,一个四边形 至少有几个角是直角时,这个四边形才是矩形呢? 请证明你的结论,并与同伴交流.
归纳结论:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,
已知:如图,在□ABCD中,对角线AC=BD.
求证:平行四边形ABCD是矩形.
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
证明: ∵四边形ABCD是平行四边形. A
D
∴AB=CD,AB∥CD.
又∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
B
C
∴∠ABC=∠DCB.
又∵AB∥CD.
巩固练习
1.如图,四边形ABCD的对角线互相平分,要使它 变为矩形,需要添加的条件是( D )
矩形的性质与判定ppt课件

探究一:矩形的判定
思考: 矩形是特殊的平行四边形,请问当平行四边形满足什么 条件时,会变成矩形?
A
D
A
D
B
C
B
C
探究一:矩形的定义
1. 从“定义”的角度探究:
A
D
矩形的判定:
B
C
1. 有一个角是直角的平行四边形是矩形
几何语言: ∵▱ABCD,∠B=90° ∴ 四边形ABCD是矩形
探究一:矩形的判定 猜想:对角线相等的平行四边形是矩形
求证: ▱ABCD是矩形.
A
D
证明: ∵四边形ABCD是平行四边
形∴AB=DC,AB∥DC
∵AB∥D
B
C
∴C ∠ABC+∠DCB=18
0∴°∠ABC=∠DCB=9
0∴°▱ABCD是矩形(矩形的定义)
∴△ABC≌△DCB(SS S∴) ∠ABC=∠D
归纳小结
A
D
矩形的判定:
2. 对角线相等的平行四边形ABCD是矩形
归纳小结
矩形的判定:
A
D
3. 有三个角是直角的四边形是矩形
B
C
几何语言: ∵ ∠A=∠B=∠C=90° ∴ 四边形ABCD是矩形
归纳小结
矩形的判定: 1. 有一个角是直角的平行四边形是矩形 2. 对角线相等的平行四边形是矩形 3. 有三个角是直角的四边形是矩形
猜想: 有三个角是直角的四边形是矩形
定理证明:有三个角是直角的四边形是矩形
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. A
D
求证:四边形ABCD是矩形
证明:
∵ ∠A=∠B=∠C=90°
∴∠A+∠B=180°,∠B+∠C=180°
《矩形的性质与判定》ppt课件

(2)根据测量的结果,猜想结论。当矩形的 大小不断变化时,发现的结论是否仍然成立?
(3)通过测量、观察和讨论,你能得到矩形 的特殊性质吗?
最新版整理ppt
5
结论 矩形的性质定理1:
矩形的四个角都是直角. 矩形的性质定理2:
矩形的对角线相等.
最新版整理ppt
6
第三环节:层层递进,推理论证
已知:如图,四边形ABCD是矩形,∠ABC=90° 对角线AC与DB相交于点O。
第一章 特殊平行四边形
第2节 矩形的性质与判定
桃山中学 王广清
最新版整理ppt
1
第一环节:创设情景,导入新课
问题1:平行四边形具有哪些性质?
问题2:利用一个活动的平行四边形教具演 示,使平行四边形的一个内角变化,请同 学们注意观察:
最新版整理ppt
2
(1)在运动过程中四边形还是平行四边形吗? (2)在运动过程中四边形不变的是什么? (3)在运动过程中四边形改变的是什么? (4)角的大小改变过程中有特殊值吗?这时的
9
问题3:矩形具有而一般平行四边形不具有的
性质是 (
)
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
最新版整理ppt
10
第五环节:建构新知,发展问题
问题1:(1) 矩形的两条对角线可以把矩形 分成几个直角三角形?(2)在直角三角 形ABC中,你能找到它的一条特殊线段吗? (3)你能发现它有什么特殊的性质吗? (4)你能借助于矩形加以证明吗?
最新版整理ppt
15
自我检测。
(1)下列说法错误的是( ). A.矩形的对角线互相平分 B. 矩形的对角线相等。 C. 有一个角是直角的四边形是矩形 D. 有一个角是直角的平行四边形叫做矩形
(3)通过测量、观察和讨论,你能得到矩形 的特殊性质吗?
最新版整理ppt
5
结论 矩形的性质定理1:
矩形的四个角都是直角. 矩形的性质定理2:
矩形的对角线相等.
最新版整理ppt
6
第三环节:层层递进,推理论证
已知:如图,四边形ABCD是矩形,∠ABC=90° 对角线AC与DB相交于点O。
第一章 特殊平行四边形
第2节 矩形的性质与判定
桃山中学 王广清
最新版整理ppt
1
第一环节:创设情景,导入新课
问题1:平行四边形具有哪些性质?
问题2:利用一个活动的平行四边形教具演 示,使平行四边形的一个内角变化,请同 学们注意观察:
最新版整理ppt
2
(1)在运动过程中四边形还是平行四边形吗? (2)在运动过程中四边形不变的是什么? (3)在运动过程中四边形改变的是什么? (4)角的大小改变过程中有特殊值吗?这时的
9
问题3:矩形具有而一般平行四边形不具有的
性质是 (
)
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
最新版整理ppt
10
第五环节:建构新知,发展问题
问题1:(1) 矩形的两条对角线可以把矩形 分成几个直角三角形?(2)在直角三角 形ABC中,你能找到它的一条特殊线段吗? (3)你能发现它有什么特殊的性质吗? (4)你能借助于矩形加以证明吗?
最新版整理ppt
15
自我检测。
(1)下列说法错误的是( ). A.矩形的对角线互相平分 B. 矩形的对角线相等。 C. 有一个角是直角的四边形是矩形 D. 有一个角是直角的平行四边形叫做矩形
1.2矩形的性质与判定课件(共22张PPT)

③AC = BD= 2AO = 2OC=2OB =2OD
问:在Rt△ABC中,斜边AC上的中线是OB,它与斜边的
1
关系是OB= 2 AC.
问:是不是所有的三角形都有这样的性质? 关键是是不
是任何一个三角形都可以放进一个矩形里?
推论:直角三角形斜边上的中线等于斜边的一半.
例题
【例1】已知:如图,AC,BD是矩形ABCD的两条对角线,AC,BD 相交于点O,∠AOD=120°,AB=2.5cm.求矩形对角线的长.
∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
∴∠ABC=∠DCB.
B
C
∵∠ABC+∠DCB=180°. ∴∠ABC=90°. ∴四边形ABCD是矩形.
跟踪训练
下列各句判定矩形的说法是否正确?为什么? (1)对角线相等的四边形是矩形;( X ) (2)对角线互相平分且相等的四边形是矩形;( √ ) (3)有四个角是直角的四边形是矩形;( √ ) (4)对角线相等,且有一个角是直角的四边形是矩形;
D
邻角互补可使问题得证.
证明:
B
C
∵ 四边形ABCD是矩形.
∴∠A=90,四边形ABCD是平行四边形.
∴∠C=∠A=90, ∠B=180-∠A=90, ∠D=180-∠A=90.
∴四边形ABCD是矩形.
定理:矩形的两条对角线相等.
已知:如图,AC,BD是矩形ABCD的两条对角线.
求证: AC=BD.
的有
(填写序号).
解析:根据对角线相等的平行四边 A 1 形是矩形;矩形的定义. 答案:① ④
B
D
2
C
2.如图,在△ABC中,AB=AC=8,AD是底边上的高,E为
北师大课标版初中数学九年级上册1.2矩形的性质与判定(共15张PPT)

角的性质:
∠ABC=∠BCD=∠CDA=∠DAB=90°
对角线的性质:
AO=CO,BO=DO AC=BD
▪9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 ▪10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 2:07:36 AM ▪11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 ▪12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 ▪14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 ▪15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 ▪16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 ▪17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
∠ABC=∠BCD=∠CDA=∠DAB=90°
对角线的性质:
AO=CO,BO=DO AC=BD
▪9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 ▪10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 2:07:36 AM ▪11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 ▪12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 ▪14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 ▪15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 ▪16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 ▪17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
2_矩形的性质与判定_第2课时_课件2(15p)

有三个角是直角的四边形是矩形吗?
已知:如图,在四边形ABCD,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
A
D
证明: ∵∠A=∠B=∠C=90°, B
C
∴∠A+∠B=180°,∠B+∠C=180°.
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形判定方法二
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
布置作业
课本P16 1,2,3.
于点O,△ABO是等边三角形,AB=4.
求□ABCD的面积.
A
D
O
B
C
练一练1
已知:如图,M为平行四边形ABCD边AD的中点,
且MB=MC.
求证:四边形ABCD是矩形.
A
M
D
B
C
练一练2
已知:如图,菱形ABCD中,对角线AC和BD相较
于点O,CM∥BD,DM∥AC.
求证:四边形OCMD是矩形.
A
证明:
B
C
矩形判定方法一
对角线相等的平行四边形是矩形.
A
D
B
ABCD AC = BD
C
四边形ABCD是矩形
情境二
李芳同学用四步画出了一个 四边形,她的画法是“边— —直角、边——直角、边— —直角、边” ,她说这就是 一个矩形,她的判断对吗? 为什么?
猜想:有三个角是直角的四边形是矩形.
你能证明上述结论吗?