一元一次方程的概念教学设计
北师大版七年级数学上册教学设计:5.1认识一元一次方程

7.教学方法多样化,结合讲授、讨论、实验等多种教学手段,提高学生的学习兴趣和积极性。
四、教学内容与过程
(一)导入新课
1.教学活动:教师向学生展示一个与年龄有关的实际问题,如“小华今年10岁,比小亮大3岁,小亮今年几岁?”引导学生用算术法解决问题,然后提出问题:“如果小华年龄的3倍等于小亮年龄的2倍,他们各是多少岁呢?”
1.教学内容:对本节课所学的一元一次方程的概念、一般形式、求解方法等进行总结。
2.活动过程:教师引导学生回顾本节课所学内容,让学生用自己的话总结一元一次方程的特点和求解方法,并对学生在课堂上的表现给予肯定和鼓励。
3.设计意图:通过总结归纳,帮助学生梳理所学知识,形成系统的认识,同时培养学生的概括能力和自信心。
2.设计意图:通过生活中的实际问题,让学生感受到方程的实用性和趣味性,激发学生探究一元一次方程的欲望。
(二)讲授新知
1.教学内容:一元一次方程的概念、一般形式及求解方法。
(1)概念:教师引导学生从实际问题中抽象出一元一次方程,让学生理解方程中未知数、常数和等式的含义。
(2)一般形式:ax+b=0(a,b是常数,且a≠0),教师通过实例解释一元一次方程的一般形式,并强调a≠0的条件。
(2)在实际问题中,如何将问题转化为的一元一次方程?请举例说明。
作业要求:
1.请同学们认真完成作业,确保作业的整洁、规范。
2.对于选做题,鼓励同学们积极挑战,提升自己的解题能力。
3.完成作业后,请认真检查,确保解答正确。
4.对于作业中的疑问,及时与同学或老师交流,共同解决问题。
4.通过方程求解的过程,培养学生观察、分析、归纳和总结问题的能力。
七年级数学《一元一次方程》教学设计

人教版七上第三章一元一次方程3.1从算式到方程“一元一次方程”教学设计一、内容和内容解析“一元一次方程”是新人教版《义务教育教科书数学》七年级上册,第三章“一元一次方程”第一节“从算式到方程”的第一节内容.主要是让学生初步体会从算式到方程是数学的进步;了解一元一次方程的基本概念;重点是学会找出实际问题中的相等关系,设未知数,并把相关的量用含未知数的式子表示出来,列出方程.本节内容既是小学方程的延续,又是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程及函数等的基础.同时一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.二、目标和目标解析根据《义务教育数学课程标准》(2011年版),依据教材内容和本班学生的实际情况,确定本节课的学习目标如下.(1)通过“老师年龄与学生年龄的几次对话和思考”,让学生初步感知到方程在处理某些相对复杂问题时的简便和进步.(2)通过学生自学,初步形成一元一次方程的概念;同时通过辨析练习,加强学生对概念的理解.(3)通过解决故事中的几个生活问题,让学生体会方程是刻画现实世界的一种有效的数学模型;“能够找出实际问题中的相等关系、设未知数、用数学式子列出方程”,体会用方程来建立数学模型的思想.(4)通过贴近生活的看似随意的引入以及解决故事中的生活问题,让学生充分感知数学是为应用而生,感受到数学的应用价值,培养学生获取信息,分析问题,解决问题的能力;以及通过处理孙子算经的经典问题和介绍《九章算术》的数学成就,让学生感受上数学文化的源远流长;感受古人智慧的结晶,在增强民族自豪感的同时,继续保持探索数学奥秘的好奇和热情.针对本节课的学习目标,设计了如下的评价任务评价任务1:学生通过思考几年后老师的年龄是孩子的2倍,感觉列算式解决这个问题相当棘手,部分学生自然联想到用方程来处理.此时,学生感受到继续学习方程的必要性及方程的简便和进步.评价任务2:学生通过自学,锻炼学生的独立思考能力,初步形成一元一次方程的概念;通过辨析练习,让学生体验自学的成就感,同时在纠错中体会到数学概念的严谨性,逐步培养学生的自学能力.评价任务3:在突破重难点的教学中,本节课主要是通过填空的形式以及精心设置的问题,让学生在自主思考,小组讨论、合作探究,小组竞争,成果展示,反思质疑等过程中,逐步总结和完善列方程处理实际问题的步骤,并让学生体会从多角度去思考问题,解决问题的思维方式.极大地激发了学生的学习积极性和热情,充分地体验到了成功的乐趣,增强了克服困难的决心和勇气。
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程

一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
北师大版数学七年级上册《一元一次方程的认识》教学设计1

北师大版数学七年级上册《一元一次方程的认识》教学设计1一. 教材分析《一元一次方程的认识》是北师大版数学七年级上册的教学内容。
本节课的主要内容是一元一次方程的定义、性质和解法。
教材通过实例引入一元一次方程,使学生了解一元一次方程在实际生活中的应用,培养学生解决实际问题的能力。
教材还介绍了方程的解法,帮助学生掌握解一元一次方程的方法。
二. 学情分析学生在七年级上册之前已经学习了代数基础知识,对代数式、未知数等概念有一定的了解。
但他们对一元一次方程的认识尚浅,需要通过实例和练习来进一步理解。
学生应具备的数学素养包括逻辑思维能力、运算能力、问题解决能力等。
三. 教学目标1.了解一元一次方程的定义和性质。
2.掌握解一元一次方程的方法。
3.能够运用一元一次方程解决实际问题。
4.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.一元一次方程的定义和性质。
2.解一元一次方程的方法。
3.一元一次方程在实际问题中的应用。
五. 教学方法1.讲授法:讲解一元一次方程的定义、性质和解法。
2.案例分析法:分析实际问题,引导学生运用一元一次方程解决。
3.练习法:通过课堂练习和课后作业,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作能力和沟通能力。
六. 教学准备1.教学PPT:制作包含实例、练习和拓展题的PPT。
2.教案:编写详细的教学过程和教学方法。
3.练习题:准备适量的课堂练习和课后作业。
4.小组讨论材料:准备相关资料,便于学生分组讨论。
七. 教学过程1.导入(5分钟)利用PPT展示实际问题,引导学生思考如何用数学方法解决。
例如,某商场举行打折活动,原价100元的商品现价80元,求打几折?2.呈现(10分钟)讲解一元一次方程的定义、性质和解法。
通过PPT展示实例,使学生了解一元一次方程在实际生活中的应用。
3.操练(10分钟)课堂练习:让学生独立完成PPT上的练习题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)小组讨论:学生分组讨论PPT上的拓展题。
数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。
教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。
过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。
情感与态度:增强应用数学的意识,激发学习数学的热情。
教学重点:从实际问题中寻找相等关系。
教学难点:从实际问题中寻找相等关系。
学习路线:篇二1、阅读课本。
2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念3、积累活动经验。
二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。
已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
《一元一次方程的概念》教学设计
《一元一次方程的概念》教学设计【设计说明】(一)教学目标的确定本节课的教学目标是从知识与技能、过程与方法、情感与态度三个方面,根据《全日制义务教育数学课程标准》中关于“一元一次方程概念”的教学要求,结合学生的实际情况确定的.学生在小学时已经能较为熟练的运用算术方法解决问题,列出的算式只能用已知数;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数.通过比较,让学生感受到方程作为刻画现实世界有效模型的意义,明确列方程的关键就是根据题意找到“相等关系”,能用方程来描述和刻画事物间的相等关系.通过对实际问题的研究,学生可以初步认识到日常生活中的许多问题可以用数学方法解决,体验到实际问题“数学化”的过程.(二)教学过程的设计1.通过设置“世界杯赛场问题”这一情境来复习方程的概念,以激发学生的好奇心和主动参与学习的欲望.通过比较算术方法和方程方法的区别,初步体验从算术到方程是数学的进步.2.设置的例题与练习给学生提供了丰富多彩的、贴近学生生活实际的问题情境,以鼓励和培养学生应用数学知识解决实际问题的意识,并鼓励学生从不同的角度分析问题,根据不同的设法,列出不同的方程.在学习数学知识的同时,还渗透了对学生的人文教育.3.通过师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,培养学生归纳、概括的能力.作业安排是为了让学生更进一步落实课堂教学目标,选做题是为了满足不同层次学生的需求,为学有余力的学生提供发展空间.4.主要采用了启发式讲授的教学方法,以生活中的实际问题为例来创设情境,引导学生关注国家大事、身边小事、生产实践等.在课堂上努力营造一种学生自主探究和合作交流的氛围,引导学生去分析思考和归纳总结,进而达到对知识的“发现”和接受的目的.有意识地给学生创造一个欣赏数学、探索数学的平台, 渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想.【教学目标】1、通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.【教学重点、难点】使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.【教学方法】启发式讲授法【教学过程】例 2 学校召开运。
全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计
《一元一次方程》教学设计一、内容与内容解析继第四章《代数式》之后,第五章《一元一次方程》内容仍属于《义务教育课程标准(2022年版)》中的“数与代数”领域.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数的发展.从代数关于方程的分类看,一元一次方程是最基本的代数方程,对它的理解和掌握对于后续内容(其他的方程以及不等式、函数等)的学习具有重要的基础,这是因为这些后续内容的学习和一元一次方程的学习有很强的关联性和可类比性.本章内容是对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题更复杂些,更强调模型化思想的渗透,对方程的解法更注重算理.一元一次方程的概念和解法贯穿全章,是本章的教学重点.本节课学习内容主要包括:(1)一元一次方程的概念;(2)一元一次方程的解(根)的概念;(3)判断一个数是否是一元一次方程的解;(4)尝试检验法求一元一次方程的解.由此可见,一元一次方程作为章节起始课,承载着单元知识引领作用.基于教学内容特殊的地位和作用,本节课的教学重点确定为:1. 一元一次方程的概念;2. 尝试、检验法解一元一次方程的思想和方法.二、目标与目标解析1. 进一步认识方程,感悟从算式到方程是数学的进步.2. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.3. 通过观察、分类、归纳,经历一元一次方程概念的形成过程,理解一元一次方程的概念.4. 根据解的概念能判断一个数是否为一元一次方程的解.5.体验用尝试、检验解一元一次方程的思想和方法,并能解决简单的实际问题.三、教学问题诊断分析:从课程标准看,学生已经对方程有初步的认识,会用方程表示简单情景中的数量关系,会解简单的方程,具备了一定的基础,为进一步学习方程奠定了基础.列方程建立在分析问题的数量关系上,关键是找出合适的等量关系,并将其用数学的符号语言正确表达,即建立问题的方程模型,因为有些问题中数量关系比较隐蔽,对七年级学生来说分析有点困难,对每一个问题都要作具体分析,而不是简单的套用某一方法就可以完成,所以列方程要求较高.尝试、检验法作为解方程的一种方法,在教学可能会受到原有解方程知识干扰;在尝试、检验时如何确定未知数的较小取值范围,如何逼近方程的解,对于七年级学生来说是比较难处理的.本班学生基础、能力中等.因此本节课的难点为:1. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.2. 体验用尝试、检验解一元一次方程的思想和方法.四、教学支持条件分析:为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取以下教学支持条件:策略1:在列方程环节中,通过5个问题串,本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?来分散列方程教学难点.策略2:在归纳一元一次方程概念环节中,由学生自己制定标准把得到6个方程进行分类,通过对比二元方程、二次方程,归纳得到一元一次方程概念,凸显了一元一次方程的的特征,也为后续的方程学习指明了方法.策略3:在“尝试、检验解一元一次方程”环节中,通过估计几年后教师年龄是女儿的2倍,来确定未知数的取值范围,让学生经历尝试、检验过程,体验尝试作为问题解决的一种有效策略.五、教学过程与目标检测设计:(一)师生对话引入新课1. 请两位同学做自我介绍,追问生1年龄,追问生2出生年份,求其年龄.2. 先猜测老师年龄,然后根据师生一段对话求出老师年龄.小明:我今年14岁,老师您几岁?老师:我年龄与你年龄的平均数再加11就是我的年龄.【设计意图】1.轻松的自我我介绍,可以缓和紧张的课堂气氛,通过自我介绍引出学生年龄问题,进而转到猜测老师的年龄. 2.在猜测老师年龄时通过太大、太小、接近了,来确定年龄的范围,为后续尝试、检验法做铺垫. 3.在计算老师年龄时一般会出现三种情况:凑的方法(尝试、检验法)、算术的方法、方程的方法.通过比较让学生感悟在数量关系相对复杂的情况下,相比列算式,列方程显得更直接、更自然,体现了方程的价值,从而引出课题“方程”.(二)合作讨论探究新知1. 根据下列问题中的条件,分别列出方程.(1)如图,天平左边放着3个乒乓球,右边放5.4克的砝码和1个乒乓球,天平恰好平衡,求1个乒乓球的质量.设1个乒乓球的质量为x克,那么可以列方程: .通过5个问题串来降低列方程难度.本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?(2)一株小树苗,开始时高为40厘米,栽种后每周长高约5厘米,大约几周后树苗长高到1米?设y周后树苗长高到1m,那么可以列方程: .(3)小杰买了单价分别为2元和1.2元的贺卡若干张,花了10.8元,问这两种贺卡各买了多少张?设单价2元的贺卡m 张,单价1.2元的贺卡n 张那么可以列方程: .用不同的字母来表示未知量,让学生明白未知量可用任何字母表示,但同一题中的字母表示相同的含义.(4)把一个面积为1125平方米的一块操场分割成如图所示的正方形和长方形两个部分,求正方形边长.设正方形边长为x 米,那么可以列方程: .(5)小明用温差法测量某山峰的高度,在同一时刻测得山脚温度为7.8℃,山顶温度为-2.1℃.已知该地区山峰的高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?设这个山峰的高度大约是y 米,那么可以列方程: .【设计意图】1.经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型. 2.一元一次方程是最基本的代数方程,其“特征”只有在方程背景下比较才能凸显出来,故相比教科书增添了二元方程和二次方程.2. 自己制定一个分类依据,把这六个方程分分类.(1)x x +=4.53 (2)100540=+y (3)8.102.12=+n m(4)1125202=+x x (5)1.2006.08.7-=-x (6)x x =++11214 生:按未知数的个数分,一元、二元;按未知数的次数分,一次、二次. 方程(1)、(2)、(5)、(6)同时具有一元、一次两个特征,我们把形如这样的方程叫做一元一次方程,引出今天的课题.再观察这四个方程两边的代数式,得到一元一次方程的第三个特征(两边都是整式).【设计意图】由学生自己制定标准把得到6个方程进行分类,通过观察、合作讨论、归纳得到一元一次方程概念,凸显了一元一次方程的的特征(一元、一次),也为后续的方程学习指明了方法.3. 下列各式中,哪些是方程? 哪些是一元一次方程?(1)05=x (2) x 31+ (3) y y +=42(4)m m -=+123 (5) x x-=43 (6) 321x y -= 【设计意图】通过追问(2)、(3)、(5)、(6)不是一元一次方程的缘由,加深对一元一次方程特征的理解,借此巩固一元一次方程概念.4.写出一个一元一次方程.(三)温故知新 再探新知1. 在小学方程学习中,我们还学习了什么?解方程就是求出能使方程左右两边相等的未知数的值,我们把这个值叫做方程的解.2. 判断下列x 的值是不是方程9234-=-x x 的解.(1)2=x (2) 3-=x【设计意图】方程“验根”是对“方程的解”的概念直接应用,由教学经验可知,学生会把未知数的同时代入到方程两边,得到错误的式子“922324-⨯=-⨯”.第(1)小题讲解中,要让学生充分理解“左边=右边”这一判断标准,并归纳总结判断一个未知数的值是不是方程的解步骤及表述格式.第(2)小题由学生参照格式完成,强化验根的程序.3. 写出一个一元一次方程,使它们的解是x= - 2.【设计意图】让学生从正反两个方面深入理解一元一次方程解的概念.(四)尝试检验 体验方法对于一些较简单的方程,先确定未知数的一个较小的取值范围,再逐一将这些可取的值代入方程进行尝试检验,能使方程两边相等的未知数的值就是方程的解.这种解方程的方法叫尝试检验法.它是解决问题的一种有效的方法.1. 今年乐老师36岁、女儿9岁,几年后乐老师的年龄是女儿的2倍?今年老师的年龄是女儿的4倍,你们估估看几年后老师的年龄是女儿的2倍?10年?20年?跨度太大,15年?从而可以确定应在什么之间?如果设x年后乐老师的年龄是女儿的2倍.可列方程?方程的解因该是那几个整数中的一个?【设计意图】让学生经历尝试、检验过程,如何确定未知数的较小取值范围,如何逼近方程的解.由老师的年龄问题自然的引到丢番图的年龄问题,借此介绍代数、方程的发展历程.2. 求出丢番图的年龄.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过了四年,他也走完了人生的旅途.因为年龄为整数,且必为6、12、7、2的公倍数,最小公倍数为84,根据实际情况,年龄不可能达到168及以上,把84代入方程尝试、检验.【设计意图】这是一道悠久历史的名题,也是数学与文学结合的佳作,诗中并没有明确说出丢番图的寿命数字,但已隐含于诗中,利用方程可以求出其年龄,这当中蕴含着浓浓的数学文化.根据生平历程和年龄得到的方程相对较繁,利用整数解,感悟“尝试、检验”作为问题解决的一种有效策略.(五)回顾总结提升认识1. 一元一次方程是方程大家庭中最简单的一类,你觉得他简单在哪里?2. 比一元一次方程稍稍复杂的方程可能是什么方程?它复杂在哪?如果它的“次”“元”继续增加,又可能产生什么方程?3. 如果“元”“次”同时增加,还可能产生什么新的方程?你能写一个吗?【设计意图】从方程到一元一次方程得到概念,从一元一次方程到方程加以提升.4. 我们发现,从左到右,方程越来越复杂.同学们,我们不妨换个方向,如果从右往左看,感觉又会怎样呢?这是我们以后解方程思考的方向,当然解方程不可能象今天一样都去尝试,究竟如何解方程?这是我们下节课要学习的内容.【设计意图】渗透解方程的基本思想方法,为后续的方程学习起到引领作用.(六)分层联系巩固必做:完成作业本《5.1一元一次方程》.选做:用自己的年龄编一道问题,并列出方程.查阅方程史实,了解方程发展历程.【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.《一元一次方程》的点评方程是数学的核心内容,是刻画世界数量关系的有效数学模型。
一元一次方程教案最新7篇
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
一元一次方程优秀教案【《一元一次方程》教学设计】
一元一次方程优秀教案《一元一次方程》教学设计】《一元一次方程》教学设计教学目标1.通过对多个实际问题的分析,感受方程作为刻画现实世界有效模型的意义.通过观看,归纳方程和一元一次方程的概念;2.能对具体情境中的数学信息作出合理的解释,能用方程来描述和刻画事物间的等量关系;3.体验数学与日常生活紧密相关,认识到很多问题可以用数学方法解决,体验实际问题“数学化〞的过程;4.体会在解决问题的过程中同学间合作沟通的重要性.教学重点认识一元一次方程,经受探究等量关系、列方程的过程.教学难点分析与确定问题中的等量关系,能用方程来描述和刻画事物间的等量关系.教学方法与教学手段互动式、合作探究;计算机、投影仪.教学过程一、情境导入回忆概念1.“猜猜老师的年龄〞给学生提供信息:我是9月出生的,我的年龄的2倍加上6,正好是我出生那个月的总天数的2倍.请你们猜猜我的年龄是多少岁?学生依据老师给出的信息,查找正确答案.老师提问:你是怎样找到答案的?分析:〔1〕算术方法;〔2〕运用方程:设老师的年龄为岁,那么年龄的2倍加上6就是,而这个式子等于9月的总天数的2倍即.依据这个等量关系,我们就可以得到方程.解这个方程求出,就知道老师的年龄了.2.日历中的方程游戏:请学生圈出日历中一个竖列上相邻的三个日期,把它们的和告知老师,老师能马上知道这三天分别是几号.请学生分析:1. 算术方法;2. 运用方程:设中间那个日期为,则第一个日期为( ),第三个日期为( ),可以得到方程〔其中为这三个日期的和〕.解这个方程求出,就知道这三天分别是几号.请学生回忆:像这样含有未知数的等式叫做方程.3.比较算术方法和方程用算术方法解决问题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数;而方程是依据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数.可以通过今后的学习逐步认识到,有了方程后,人们解决很多问题就更方便、简捷了.从算式到方程是数学的进步.4.方程小史在我国,“方程〞一词最早出现于《九章算术》.《九章算术》全书共分九章,第八章就叫“方程〞.12世纪前后,我国数学家用“天元术〞来解题,即先要“立天元为某某〞,相当于“设为某某〞.14世纪初,我国元朝数学家朱世杰创立了“四元术〞,四元指天、地、人、物,相当于四个未知数.17世纪,数学基本上符号化,逐步形成了现代“方程〞的概念.二、联系实际探究新知1.依据以下实际问题列方程:例1 老师新买了一部XX,想在郑州入XX,已知两种移动XX计费方式如下表:全球通神州行月租费每月50元0 本地通话费每分钟0.40元每分钟0.60元请同学们计算,一个月内通话多长时间,两种计费方式的付费相同?解:设累计通话分钟,两种计费方式的付费相同,则方程为.例2 足球的外表是由若干黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3:5,一个足球的外表一共有32个皮块,你能说出黑色皮块和白色皮块各有多少吗?解:设黑色皮块有块,则方程为.例3 光盘的样子可以看作一个圆环.已知某种光盘的面积约是116.85平方厘米,外沿大圆的半径是6.15厘米,问:中间小圆孔的半径是多少厘米〔取3.14〕?解:设小圆孔的半径为厘米,则方程为.2.归纳一元一次方程的概念观看前面所列的方程:;〔为已知数〕;;;.请学生分析前四个方程的共同点.归纳得出:在一个方程中,只含有一个未知数〔元〕,并且未知数的指数是1〔次〕,这样的方程叫做一元一次方程.三、稳固沟通拓展思维练习1 推断以下式子是不是一元一次方程,为什么?〔1〕;〔2〕;〔3〕;〔4〕;〔5〕;〔6〕.设计意图让学生稳固一元一次方程的概念.练习2 依据题意列方程:今有共买物,人出八,盈三;人出七,缺乏四.问人数、物价各几何.〔摘自《九章算术》〕〔大意为:几个人一起去购置物品,假如每人出8钱〔古代货币单位〕,则剩余3钱;假如每人出7钱,则差4钱.问有多少人,物品的价格是多少?〕设计意图在教给学生数学学问的同时,渗透对学生的人文教育.练习3 依据方程,设计一道有实际背景的应用题,并进行沟通.设计意图让学生加深对一元一次方程及其应用的认识.四、归纳小结布置作业以师生共同小结的方式进行.1.回忆学问方程、一元一次方程的概念.2.总结方法列方程的具体步骤:〔1〕仔细读题,理解题意,弄清题目中的数量关系,找出其中的等量关系;〔2〕设出未知数,用含有未知数的代数式表示题目中涉及的数量关系;〔3〕依据等量关系列出方程.列方程的关键步骤:依据题意找到“等量关系〞.3.提炼思想布置作业:阅读教材相应内容,完成课后习题第151页第1、2题.思索题尝试用方程求解下面的问题:郑州某种出租车的收费标准为:起步价7元〔即行驶距离不超过3千米都需付7元〕,行驶超过3千米以后,每增加1千米加收1元〔缺乏1千米时按1千米计算〕.王明和李红乘坐这种出租车去博物馆参观,下车时他们交付了16元车费,那么他们搭乘出租车最多走了多少千米〔不计等候时间〕?设计意图设置贴近学生生活的问题情境,通过对较为冗杂的问题的分析,进一步体验实际问题“数学化〞的过程;要求学生尝试解方程,从而激发学生探究新知的欲望,为以后的教学埋下伏笔.教学设计说明〔一〕教学目标确实定教学目标是从学问与技能、数学思索、解决问题、情感与看法四个方面,依据数学课程标准中关于“一元一次方程〞的教学要求,结合学生的实际状况确定的.学生在小学时已经能较为娴熟的运用算术方法解决问题,列出的算式表示用算术方法解题的计算过程,其中只能用已知数;而方程是依据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数.通过比较,让学生感受到方程作为刻画现实世界有效模型的意义.通过对实际问题的分析,使学生能理解问题情境,主动探究情境中包含的数量关系;对具体情境中的数学信息作出合理的解释;能用方程来描述和刻画事物间的等量关系.明确列方程的关键就是依据题意找到“等量关系〞.因此,我依据教学内容的特点,制定了教学目标1和2.通过对实际问题的讨论,学生可以初步体验到实际问题“数学化〞的过程,可以增添学生学习数学的兴趣和信念,所以我制定了教学目标3.在解决问题的过程中学会与他人合作和沟通是学生的重要能力之一,所以我制定了教学目标4.〔二〕教学过程的设计1.通过设置游戏情境引入方程,以激发学生的好奇心和主动参加学习的欲望.2.介绍方程的有关历史,让学生了解方程进展的过程.3.例题与练习的设置是给学生提供丰富多彩的、贴近学生生活实际的问题情境,培育学生应用数学学问解决实际问题的意识,鼓舞学生从不同的角度分析问题,依据不同的设法,列出不同的方程.在学习数学学问的同时,渗透对学生的人文教育.4.练习3的支配是通过学生自己设计方程的实际背景,进行沟通和评价,加深对方程和方程应用的认识,激发学生的主动性和制造性.5.通过师生共同小结,稳固学生所学学问,培育学生归纳、概括的能力,使学生的主体作用得到充分的发挥.6.作业的支配是为了让学生进一步稳固基础学问;思索题是为了让学生进一步体验实际问题“数学化〞的过程,要求学生尝试用方程求解,激发学生探究新知的欲望,为以后的教学埋下伏笔.共享:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的概念教学设计
课题: 一元一次方程的概念
教材:人教版义务教育课程标准实验教科书数学七年级上册第三章第一节
【教学目标】
1、通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程
的意义和作用.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想. 【教学重点、难点】使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.
【教学方法】启发式讲授法
【教学过程】
问题与情境师生活动设计意图
[阶段1] 情境导入
回顾旧知
今年进行的德国世界杯足球赛,吸引了全球的目光.你喜欢足球吗?下面来看一个与足球场有关的问题.
引例德国世界杯足球赛莱比锡赛场为长方形的足球场,周长为310
米,长和宽之差为25米,这个足球场的长与宽分别是多少米?
教师给出引例,带领学生进入到实际问题的情境中.
1、算术方法:
足球场长与宽的和为310÷2=155(米).
由和差关系,得足球场的长度为(155+25)÷2=90(米),宽度为90-25=65(米).
2、方程方法:
设足球场的长度为米, 那么足球场的宽度能用含的式子表示为米.
根据"长方形的周长=(长+宽)×2",列出方程: .
教师指出,如何解出方程中的未知数,是今后要学习的知识.
然后,请学生回顾方程的概念:含有未知数的等式,叫做方程.
教师引导学生总结引例的研究方法,启发学生比较算术方法和方程方法的区别: 用算术方法解决问题时,只能用已知数,而用方程方法解题时用字母表示的未知数也可以参与运算.
算术方法主要运用逆向思维,列方程主要运用正向思维.
依据新课程的理念,教师要创造性地使用教材.作为引入本课的第一个例子,选用了"世界杯足球赛赛场问题",以激发学生的学习兴趣,而且设置了符合学生认知水平的问题情境,以达到由浅入深、逐步提高的目的.
[阶段2]联系实际
探究新知请同学们用方程来研究问题.例1 青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车在冻土路段的速度为每小时80千米,非冻土路段的速度为每小时110千米,全程行驶时间为12小时,你能算出列车经过的冻土路段有多少千米吗?
例2 学校召开运动会,王平负责给同学们购买饮料.现在要选购两种饮料共40瓶,其中矿泉水1.5元一瓶,茶饮料2元一瓶.王平计划恰好花费65元购买这些饮料,那么两种饮料应该各买多少瓶呢?
例3 将一个底面半径是5厘米、高为36厘米的"瘦长"型圆柱钢材锻压成高为9厘米的"矮胖"型圆柱钢材,底面半径变成了多少厘米?( ) 归纳概念: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.
[阶段3]巩固练习
拓展思维练习1 判断下列式子是不是一元一次方程,为什么?
(1) ;
(2) ; (3) ;
(4) ; (5) ; (6) .
练习 2 列方程研究古诗文问题: 隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两) 练习3 设计一道以"2008北京奥运会"为实际背景的可列出一元一次方程的应用题,并进行交流. [阶段4]归纳小结
布置作业
归纳小结:
布置作业: 教师引导学生从实际问题列出方程.
明确用方程研究问题,所以设列车经过的冻土路段为千米,然后分析发现两个相等关系: 冻土路段路程+非冻土路段路程=全程冻土路段行驶时间+非冻土路段行驶时间=全程行驶时间可以利用第一个相等关系,得到非冻土路段行驶路程为千米,再将第二个相等关系用字母和数字表示出来,得到方程.
由学生尝试分析数量关系,找出相等关系,列出方程: 购买矿泉水数量+购买茶饮料数量=总的选购数量购买矿泉水的费用+购买茶饮料的费用=总的花费预案1 设购买矿泉水的数量为瓶,根据第一个相等关系,得到购买茶饮料的数量为瓶.根据第二个相等关系得到方程 .
预案2 设购买茶饮料的数量为瓶,则购买矿泉水的数量为瓶,
得到方程.
预案3 设购买购买矿泉水瓶,购买茶饮料瓶,可以列出两个方程
和.
教师指出预案3的方程也可以解决问题,这方面的知识将在今后进一步学习.
先请学生回忆小学学过的圆柱体积公式:
圆柱体积=底面积×高再通过动画演示使学生注意到锻压前后圆柱的体积不变,然后由学生根据这一相等关系,设底面半径变成了厘米,列出方程: 在研究了四个实际问题后,教师引导学生观察得到的方程:
(1) ;
(2) ;
(3) ;
(4) , ;
(5) .
找出前三个方程的共同特点:只含有一个未知数,并且未知数的指数都是1,进而归纳出一元一次方程的概念.
(4)中的两个方程都分别含有两个未知数,并且未知数的指数都是1,它们都是二元一次方程.
第5个方程中唯一的未知数的指数是2,它是一元二次方程.
得出概念后,请同桌的学生互相举出一元一次方程的例子,进行辨
析.
练习1设计的6个式子中,有的不是等式,有的未知数不止一个,有的未知数的指数不是 1.
师生理解古诗文: 有几个客人在房间内分银子,每人分七两,最后多四两,每人分九两,最后还少八两,问有几个人?有几两银子?
预案1 学生用表示人数,然后根据两种分法总银两数不变,得到方程.
预案2 用表示总银两数,根据两种分法人数相同,得到方程
.
然后,教师向学生介绍中国古代数学家在方程发展过程中所做贡献: 在我国,"方程"一词最早出现于《九章算术》.《九章算术》全书共分九章,第八章就叫"方程". 12世纪前后,我国数学家用"天元术"来解题,即先要"立天元为某某",相当于"设为某某".
14世纪初,我国元朝数学家朱世杰创立了"四元术",四元指天、地、人、物,相当于四个未知数.
采用小组合作学习方式,以四人小组为单位合作设计一个实际问题,然后在全班进行小组交流. .。