第8章-功率放大电路..

合集下载

第8章 功率放大电路

第8章 功率放大电路
7 功率放大电路
7.1 概述 *7.2 小功率放大器 7.3 互补对称功率放大电路 7.4 集成功率放大器 7.5 功率放大器实际应用电路
7.1
概述
功率放大就是在有较大的电压输出的同时,又 要有较大的电流输出。 前面学过的放大电路多用于多级放大电路的输 入级或中间级,主要用于放大微弱的电压或电 流信号。
7.3.2 单电源互补对称功率放大器 (OTL--无输出变压器电路) 当在电路中采用单电源供电 时,可采用图7-3-3所示的 电路。
图7-3-3 单电源互补对称功率放大器
图7-3-3中,功效管工作在乙类状态。静态时因电路对称, E点电位为 1 VCC ,负载中没有电流。
2
① vi正半周,T1导通,T2截止,io=iC1,负载RL上得到正半 周点
1、任务和特点:


(1)大信号工作状态
为输出足够大的功率,功放管的动态工作范围很大,功放管中的电 压、电流信号都是大信号,一般以不超过功放管的极限参数为限度。


(2)非线性失真问题
输出功率越大,电压和电流的幅度就越大,信号的非线性失真就越 严重,如何减小非线性失真是功放电路的一个重要问题。


4
78 .5%
7.3.1 双电源互补对称 电路(OCL电路) (4)管耗PT

2 1 1 2 Vom 1 Vom PT 1 PT 2 PV PO · ·CC V 2 2 RL 2 RL 2 1 VomVCC Vom R 4 L
dVom
2 VomVCC Vom 4

代入式(7-3-7)得,T1、T2消耗功率的极限值为:

模电课件8.3乙类双电源互补对称功率放大电路

模电课件8.3乙类双电源互补对称功率放大电路

20- 4
8.1 功 率 放 例大 电题 路分的 析一 般 问 题
例.如图,设BJT的β=100,VBE=0.7V,VCES=0.5V,ICEO=0, 电容C对交流视为短路。输入信号vi为正弦波。(1) 计算电路 可能达到的最大不失真输出功率Pom;(2)此时Rb应调节到什 么数值?(3)此时电路的效率η=?试与工作在乙类的互补
20- 6
8.1 功 率 放 例大 电题 路分的 析一 般 问 题
例.如图,已知VCC=12V,RL=16Ω,vi为正弦波,(1) 在BJT的
饱8.3和.2压分降析可计以忽算略不计的情况下,负载上可能得到的最大输
出功率Pom, (2)每只管子允许的管耗PCM至少应为多少?(3) 每个管子的耐压应为多大?
对称电路比较。
解.(1) v0(t)=V0+Vomsinωt,V0为直流分量, Vm为交流振幅
Rb vi C
12V RL 8Ω
v0 T
最大不失真功率:
Pom
V2 O
RL
1 RL
V0m
2
2
1 8
VCC 2
VCES 2
2
2.07
MECHANICAL & ELECTRICAL ENGINEERING COLLEGE OF SHANDONG AGRICULTURAL UNIVERSITY
8.1 功 率 放 大 电 路 的 一 般 问 题
模拟电子技术基础
第四十四讲
MECHANICAL & ELECTRICAL ENGINEERING COLLEGE OF SHANDONG AGRICULTURAL UNIVERSITY
20- 1
8.1 功 率 放 大 电 路 的 一 般 问 题

《模拟电子线路》宋树详 第8章答案

《模拟电子线路》宋树详 第8章答案

(√)
9. 功率放大电路如图 8.20 所示,已知电源电压 VCC=VEE=6V,负载 RL=4Ω。 (1)说明电路名称及工作方式;
(2)求理想情况下负载获得的最大不失真输出功率;
(3)若 UCES=2V,求电路的最大不失真功率; (4)选择功放管的参数 ICM、PTm 和 U(BR)CEO 。
+ ui
(1)定性画出 uo 端波形。 (2)负载 RL 上输出功率 Po 约为多大? (3)输入信号 ui 足够大时,电路能达到的最大输出功率 Pom 为多大? 解:(1)略
显著变化。消除办法可以通过加静态偏置电压,使管子预导通。
4. 乙类推挽功率放大器的管耗何时最大?最大管耗值与最大输出功率间有何关系?管 耗最大时输出功率是否也最大?
答:当U om » 0.64VCC 时,管耗最大; PT1max = PT 2 max » 0.2Po max ;不是
5 .什么是热阻?如何估算和选择功率器件所用的散热装置?
(1)顾名思义,功率放大电路有功率放大作用,电压放大电路只有电压放大作用而没
有功率放大作用。
(Χ)
(2)在功率放大电路中,输出功率最大时功放管的管耗也最大。
(Χ)
(3)乙类互补对称功率放大电路的交越失真是由三极管输入特性的非线性引起的。
(√ )
(4)在 OTL 功放电路中,若在输出端串连两个 8Ω 的喇叭,则输出功率将比在输出端
能超出安全工作区。
(√)
(8)分析功率放大器时常采用图解法,而不是用微变等效电路法,这主要是因为电路
工作在大信号状态,工作点的变化范围大,非线性失真较严重。
(√)
(9)要提高输出功率,就应尽可能扩大动态工作范围并实现阻抗匹配,因此工作点要

功率放大电路工作原理

功率放大电路工作原理

功率放大电路工作原理功率放大电路是电子设备中常见的一种电路,它能够将输入信号的功率放大到更大的输出功率,从而驱动负载实现相应的功能。

在现代电子产品中,功率放大电路被广泛应用于音频放大、射频放大、功率放大等领域。

本文将介绍功率放大电路的工作原理,以便读者能够更好地理解和应用功率放大电路。

功率放大电路的工作原理主要包括输入信号放大、功率放大和输出负载驱动三个方面。

首先,输入信号放大是功率放大电路的基本功能之一。

当输入信号进入功率放大电路时,经过放大器的放大作用,输入信号的幅值会得到增大,从而实现对输入信号的放大处理。

而放大器的放大倍数则取决于放大器本身的增益特性,通常通过调节放大器的电路参数来实现不同的放大倍数。

其次,功率放大是功率放大电路的核心功能之一。

在输入信号经过放大器放大后,功率放大电路会将输入信号的功率放大到更大的输出功率。

这通常通过功率放大器来实现,功率放大器能够将输入信号的电压和电流进行放大,从而实现对输入信号功率的放大。

在功率放大的过程中,需要注意功率放大器的工作状态和输出功率的稳定性,以确保输出信号的质量和稳定性。

最后,输出负载驱动是功率放大电路的另一个重要功能。

在输出信号经过功率放大后,需要通过输出负载来驱动相应的负载,实现对负载的驱动和控制。

输出负载通常是电阻、电容、电感等元件,通过合理设计输出负载电路,可以实现对负载的匹配和驱动,从而实现对输出信号的有效控制和传输。

总的来说,功率放大电路的工作原理是通过输入信号放大、功率放大和输出负载驱动三个方面的功能实现对输入信号的处理和输出功率的放大。

在实际应用中,需要根据具体的需求和电路设计要求来选择合适的功率放大电路,并合理设计电路参数和工作状态,以实现对输入信号的有效放大和输出功率的稳定控制。

希望通过本文的介绍,读者能够更好地理解和应用功率放大电路,为相关领域的电子设备设计和应用提供参考和帮助。

康华光《电子技术基础-模拟部分》(第5版)笔记和课后习题(含考研真题)..

康华光《电子技术基础-模拟部分》(第5版)笔记和课后习题(含考研真题)..

目 录第1章 绪 论1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 运算放大器2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 二极管及其基本电路3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 双极结型三极管及放大电路基础4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 场效应管放大电路5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 模拟集成电路6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 反馈放大电路7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 功率放大电路8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 信号处理与信号产生电路9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 直流稳压电源10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 电子电路的计算机辅助分析与设计第1章 绪 论1.1 复习笔记一、电子系统与信号电子系统指若干相互连接、相互作用的基本电路组成的具有特定功能的电路整体。

信号是信息的载体,按照时间和幅值的连续性及离散性可把信号分成4类:①时间连续、数值连续信号,即模拟信号;②时间离散、数值连续信号;③时间连续、数值离散信号;④时间离散、数值离散信号,即数字信号。

二、信号的频谱任意满足狄利克雷条件的周期函数都可展开成傅里叶级数(含有直流分量、基波、高次谐波),从这种周期函数中可以取出所需要的频率信号,过滤掉不需要的频率信号,也可以过滤掉某些频率信号,保留其它频率信号。

幅度频谱:各频率分量的振幅随频率变化的分布。

相位频谱:各频率分量的相位随频率变化的分布。

三、放大电路模型信号放大电路是最基本的模拟信号处理电路,所谓放大作用,其放大的对象是变化量,本质是实现信号的能量控制。

放大电路有以下4种类型:1.电压放大电路电路的电压增益为考虑信号源内阻的电压增益为2.电流放大电路电路的电流增益为考虑信号源内阻的电压增益为3.互阻放大电路电路的互阻增益为4.互导放大电路电路的互导增益为四、放大电路的主要性能指标1输入电阻:输入电压与输入电流的比值,即对输入为电压信号的放大电路,R i越大越好;对输入为电流信号的放大电路,R i越小越好。

电工电子技术第八章集成运算放大电路

电工电子技术第八章集成运算放大电路

8.1 集成运算放大器的简单介绍
• 运算放大器开环放大倍数大,并且具有深 度反馈,是一种高级的直接耦合放大电路。 它通常是作为独立单元存在电路中的。最 初是应用在模拟电子计算机上,可以独立 地完成加减、积分和微分等数学运算。早 期的运算放大器由电子管组成,自从20世 纪60年代初第一个集成运算放大器问世以 来,运算放大器才应用在模拟计算机的范 畴外,如在偏导运算、信号处理、信号测 量及波形产生等方面都获得了广泛的应用。
• 4.在集成电路中,比较合适的电阻阻值范 围大约为100 ~300 Ω。制作高阻值的电阻 成本高、占用面积大并且阻值偏差也较大 (10~20%)。因此,在集成运算放大器中 往往用晶体管恒流源代替高电阻,必须用 直流高阻值时,也常采用外接的方式。
8.1.2 集成运算放大器的简单说明
• 集成运算放大器的的电路常可分为输入级、 中间级、输出级和偏置电路四个基本组成 部分,如图8-1所示。
• 2.信号的输入 • 当有信号输入时,差动放大电路(见图8-5)的工作情况可以分为以下几种情
况。
• (1)共模输入。 • 若两管的基极加上一对大小相等、极性相同的共模信号(即vi1 = vi2),这种
输入方式称为共模输入。这将引起两管的基极电流沿着相同的方向发生变化, 集电极电流也沿相同方向变化,所以集电极电压变化的方向与大小也相同, 因此,输出电压vo = ΔvC1-ΔvC2 = 0,可见差动放大电路能够抑制共模信号。 而上述差动放大电路抑制零点漂移则是该电路抑制共模信号的一个特例。因 为输出的零点漂移电压折合到输入端,就相当于一对共模信号。
u
u
u0 Au 0
0
u+≈u-
(8-2)
• 当反向输入端有信号,而同向端接地时,u+=0,由上式 可见,u-≈u+=0。此时反向输入端的电位近似等于地电位, 因此,它是一个不接地的“地”电位端,通常称为虚地端。

童诗白《模拟电子技术基础》第5版教材复习试题

童诗白《模拟电子技术基础》第5版教材复习试题

童诗白《模拟电子技术基础》第5版教材复习试题童诗白《模拟电子技术基础》(第5版)配套题库【考研真题精选+章节题库】目录第一部分考研真题精选一、选择题二、填空题三、分析计算题第二部分章节题库第1章常用半导体器件第2章基本放大电路第3章集成运算放大电路第4章放大电路的频率响应第5章放大电路的反馈第6章信号的运算和处理第7章波形的发生器和信号的转换第8章功率放大电路第9章直流电源第10章模拟电子电路读图•试看部分内容考研真题精选一、选择题1以下说法正确的是()。

[中山大学2018研]A.在N型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体B.因为N型半导体的多子是自由电子,所以它带负电C.处于放大状态的晶体管,集电极电流是多子漂移运动形成的D.若耗尽型N沟道MOS管的u G S大于零,则其输入电阻会明显变小【答案】A查看答案【解析】B项,N型半导体虽然多子是自由电子,但不带电;C项,放大状态下集电结反偏,促进非平衡少子漂移运动,而非多子;D项,若耗尽型N沟道MOS管的u G S大于零,其输入电阻并不会有明显变化。

2当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将()。

[中山大学2018研]A.增大B.不变C.变小【答案】A查看答案【解析】低频跨导g m为ΔI D与Δu G S之比,当漏极直流电流I D从2mA变为4m A时,显然g m增大。

3PN结加正向电压,空间电荷区将()。

[中山大学2017研] A.变窄B.基本不变C.变宽【答案】A查看答案【解析】PN结外加正向电压,P区中的多数载流子空穴和N区中的多数载流子电子都要向PN结移动,中和了其中部分负、正离子,结果使得PN结变窄。

4二极管的电流方程为()。

[中山大学2017研]A.I s e UB.C.【答案】C查看答案【解析】二极管的I-V特性方程为其中,n为发射系数,其值在1~2之间,通常取1,则5U G S=0时,能够工作在恒流区的场效应管有()和()。

功率放大电路工作原理

功率放大电路工作原理

功率放大电路工作原理功率放大电路是指能够将输入信号的功率放大的电路。

在现代电子设备中,功率放大电路被广泛应用于音频放大、射频放大等领域。

本文将介绍功率放大电路的工作原理,帮助读者更好地理解其工作原理。

首先,功率放大电路的基本结构包括输入端、输出端和放大器。

输入端接收输入信号,经过放大器放大后,输出到输出端。

放大器是功率放大电路的核心部件,它能够将输入信号的功率放大到一定的水平,以满足实际应用的需求。

在功率放大电路中,放大器通常采用晶体管、场效应管等器件。

这些器件能够根据输入信号的变化,控制电流或电压的变化,从而实现对输入信号的放大。

在放大器中,通常还会加入负载电阻、耦合电容等元件,以提高放大器的稳定性和线性度。

功率放大电路的工作原理可以通过以下步骤来解释,首先,输入信号经过输入端进入放大器,放大器根据输入信号的变化,控制输出端的电流或电压变化;其次,输出端的信号经过负载电阻等元件,最终输出到外部电路。

在这个过程中,放大器起到了将输入信号功率放大的作用。

在实际应用中,功率放大电路通常需要满足一定的性能要求,比如输出功率、频率响应、失真度等。

为了实现这些性能要求,设计功率放大电路需要考虑放大器的工作点、负载匹配、反馈电路等因素。

通过合理的设计,可以使功率放大电路达到较好的性能指标。

除了单级功率放大电路外,还有级联放大、并联放大等多种功率放大电路结构。

这些结构能够根据实际应用的需求,灵活地组合使用,以满足不同的功率放大要求。

总的来说,功率放大电路是现代电子设备中不可或缺的部分,它能够将输入信号的功率放大到一定水平,满足实际应用的需求。

通过合理的设计和优化,可以使功率放大电路达到较好的性能指标,为各种电子设备的正常工作提供保障。

综上所述,功率放大电路的工作原理是基于放大器对输入信号功率的放大,通过合理的设计和优化,能够实现对输入信号的有效放大,满足实际应用的需求。

希望本文能够帮助读者更好地理解功率放大电路的工作原理,为相关领域的研究和应用提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 乙类双电源互补对称功率放大电路 8.3.1 电路组成
8.3.2 分析计算 8.3.3 功率BJT的选择
寻找提高电路能量转换效率的途径: ⑴乙类无静态损耗,能量转换效率高。
⑵乙类只导通180º ,失真严重。 ⑶使用两只不同类型管子,各导通180º ,
将两全其美。
8.3.1 电路组成及工作原理
1. 电路组成
9 6
uCE / V
ห้องสมุดไป่ตู้9 6
uCE / V
iC / mA
3 2 1
t
iC / mA
3 2 1 0
由一对NPN、PNP特性相同的互补 3 三极管组成,采用正、负双电源供电。 0 0 t u /V 这种电路也称为OCL互补功率放大电路。 u /V 3 3
3
通 止
t
t
0
O
O
2. 工作原理
0 -3
0 t -3
t


两个三极管在信号正、负半 周轮流导通,使负载得到一个完 整的波形。
⑴当有信号vi时,正半周T1导 通,T2截止,有电流流向负载RL。
⑵当vi的负半周T1截止,T2导通, 电流通过负载RL流向T2。
所以又叫推拉电路
8.3.2 分析计算
图解分析:
1、正半周 2、负半周
8.3.2 分析计算
哪种工作状态静态功耗最小?
几种工作状态下适合的电路
1、甲类:静态损耗大,转换效率低,无波形失真,只适合 电压放大电路。 2、乙类:静态损耗为零,转换效率最高,但波形失真严 重,但采用互补电路后能适合功率放大电路。 3、甲乙类:静态损耗较小,转换效率较高,但波形失真 有改善,采用互补电路后适合功率放大电路。
8.4 甲乙类互补对称功率放大电路
8.4.1 甲乙类双电源互补对称电路(OCL)
8.4.2 甲乙类单电源互补对称电路(OTL)
乙类互补对称电路存在的交越失真问题
产生交越失真的原因?
8.4.1 甲乙类双电源互补对称电路 T 设置有合适的
3
1. 静态偏置
可克服交越失真 二极管等效为恒压模型
静态工作点,工作 在甲类,T1T2工作 在甲乙类。
2
dPT 1 1 VCC Vom ( )0 dVom RL 2
(应用函数求极值理论)

Vom
2 VCC 0.6VCC时, 具 有 最 大 管 耗 为 : π
PT1m
2 1 VCC 2 0.2 Pom π RL
选管依据之一
8.3.3 功率BJT的选择
功率与输出幅度的关系 2. 功率BJT的选择 ⑴BJT的PCM>0.2Pom; ⑵ICM>VCC/RL; ⑶反向击穿电压> 2VCC。
忽略VCES时
V Pom CC 2 RL
2
(8.3.2)
2. 管耗PT
单个管子在半个周期内的管耗 vo 1 π PT1 = (VCC vo ) d(ω t ) 0 2π RL
1 2π

π
0
(VCC Vomsint )
Vomsint d( t ) RL
2
V 1 π VCCVom ( sint om sin2t ) d( t ) 2π 0 RL RL 2 1 VCCVom Vom ( ) RL π 4
1.输出功率
Po = Vo I o V om 2 RL
2
Vom 2
Vom 2 RL (8.3.1)
2. 最大不失真输出功率Pom
( POm VCC VCES 2 RL )2
(VCC VCES ) 2 RL

两管管耗
2 VCCVom Vom ( ) PT = PT1 PT2 RL π 4
2
转换效率
3. 电源供给的功率PV
2 2 Vom 2VCCVom 2 VCCVom Vom ( ) PV PO PT 2 RL RL 4 RL
(8.3.5)
当 Vom VCC 时,
2 V PVm CC RL
2

4. 效率
当 Vom
Po π Vom = PV 4 VCC
π VCC 时 , 78.5 % 4
(8.3.7)
8.3.3 功率BJT的选择
1. 最大管耗和最大输出功率的关系
因为

1 VCCVom Vom PT1 ( ) RL π 4
既消除了交越 失真,静态损 耗也较小。
vi=0,iC3>0 vo=0
D1D2导通,T1T2导通
iC1=iC2较小, iL=0
用三极管代替二极管
3
6
2 1
3
VCE4
R1 R2 0 VBE4 u R2 3
O
/V
t
0
t t
VBE4可认为是定值 0
t
R1、R2不变时,VCE4也是
定值,可看作是一个直流电源。 2.动态工作原理:当有信号vi 时,负半周T1导通,有电流通过 负载RL。 正半周T2导通,电流通 过负载RL流向T2。
功率放大电路是一种以输出较大功率为目的的放大 电路。因此,要求同时输出较大的电压和电流。管子工 作在接近极限状态。
一般直接驱动负载,带载能力要强。
(2) 要解决的问题
提高效率 减小失真 管子的保护
2. 功率放大电路提高效率的主要途径
降低静态功耗,即减小静态电流。 BJT四种工作状态: 根据正弦信号整个周期 内三极管的导通情况划分 甲类:导通角为一个周期360 乙类:导通角等于180° 甲乙类:导通角大于180° 丙类:导通角小于180°
-3
- + + -



计算Po、PT、PV和PTm的 公式同乙类互补功放电路
这个电路又叫OCL电路
6
2 1 0
t t
8.4.2 甲乙类单电源互补对称电路
3
3
当有信号vi时,负半周T1 0 3 导通,有电流通过负载RL, 0 同时向C充电。 -3
uO / V
t
t
- +
正半周T2导通,则已充电的电容C 通过负载RL放电。 只要满足RLC >>T信,电容C就 可充当原来的-VCC。 静态时,偏置电路使VK=VC≈VCC/2 (电容C充电达到稳态)。 计算Po、PT、PV和PTm的公 式必须加以修正,以VCC/2代 替原来公式中的VCC。 这个功放电路又 叫OTL电路
8.1 功率放大电路的一般问题
8.2 射极输出器——甲类放大的实例
8.3 乙类双电源互补对称功率放大电路 8.4 甲乙类互补对称功率放大电路 *8.5 集成功率放大器
8.1 功率放大电路的一般问题
1. 功率放大电路的特点及主要研究对象
2. 功率放大电路提高效率的主要途径
1. 功放电路的特点及问题 (1) 功率放大电路的主要特点
相关文档
最新文档