弯曲正应力实验报告
电测弯曲正应力实验报告

实验六 直梁弯曲正应力测定一、实验目的:1. 测定矩形截面直梁在纯弯曲(非纯弯曲)时横截面上正应力的分布,并与理论公式比较,以验证弯曲正应力公式。
2. 进一步熟悉电测方法及电阻应变仪的使用。
二、实验装置及仪器1. 矩形截面梁弯曲实验装置2.电阻应变仪 3.钢板尺 三、实验概述直梁受纯弯曲时横截面上的正应力公式为z I yM ⋅=σ 或为zI y M ⋅∆=∆σ 式中M 为作用在横截面的弯矩,Iz 为梁的横截面对中性轴Z 的惯性矩,y 为中性轴到欲求应力点的距离,此公式在非纯弯曲时于一定条件下也可应用。
本实验采用碳钢制成的矩形截面梁,实验装置如图9所示。
在梁跨度中点沿梁的高度h 分别贴电阻应变片,均匀分布共贴五片,贴片位置如图9所示,用砝码加载,即先加一初载荷,测取点的电阻应变仪读数,然后再依次加载,同样测读每点的读数。
每点相邻两次读数差(相邻的大载荷应变读数减去小载荷的应变读数的平均值)即为相应载荷增量下此点的纵向应变值。
当应力在比例极限内时,应用虎克定律εσ⋅=E ,(εσ∆⋅=∆E ),即可算出各点相应的正应力的实验值。
由前述公式可算出各点正应力的理论值,将这些结果画在一张坐标纸上可得到正应力沿高度的分布规律。
图9 测梁弯曲正应力装置示意图四、实验步骤1.测量梁的横截面尺寸b 、h 。
2.按指定的l 、a 长度架设梁,并仔细调整使之平稳。
-21-3.将各点电阻片导线接在应变仪的预调平衡箱上,按半桥线路连接,然后,开启电源,预热仪器,并将灵敏系数K钮旋旋到所需刻度(或相应的标定数)。
4.按给定的载荷加载实验。
从P0~P n,每次载荷下记录各点的读数。
纯弯曲情况实验2~3次。
5.非纯弯测定时,摘掉一个销子,方法同纯弯曲。
6.整理数据,经教师检查通过后,结束实验,整理仪器用具。
五、预习要求1.阅读本讲义,并复习电测法与电阻变应仪介绍,弄清本次实验目的,准备好有关记录表格。
2.若弯曲梁的l=100cm,a=40cm,b=12mm,h=20mm,材料的[σ]=160MPa,试计算此梁允许最大载荷为多少?六、实验报告要求包括:实验目的,所用设备(型号、编号、最小刻度)装置简图,实验记录与结果,按材力理论计算结果,并列表比较理论值与实验值。
实验五 弯曲正应力实验报告

实验五弯曲正应力实验报告___________系____________专业__________班姓名____________ 学号_________ 1.实验目的:(1)测定梁在纯弯曲下的弯曲正应力大小及其分布规律。
(2)验证弯曲正应力计算公式。
(3)掌握电测方法。
2.实验设备:3.实验记录及计算结果:a.梁的已知数据试件材料:A3 钢弹性模量: E= GPa电阻片灵敏系数: K=试件尺寸电阻片到中性层的距离(mm)b = mm Y1= mmh = mm Y2= mmL = mm Y3= mma = mm Y4= mmI z= mm4Y5= mmb.实验记录:c.计 算:实验值计算:根据测得的应变增量平均值Δε平均,应用虎克定律算出各点对应的应力增量:平均实i i εσ∆•E =∆ (i=1,2,3,4,5)理论值计算:zii I y •∆M =∆理σ (i=1,2,3,4,5) 式中 : 123bh I z = ——惯性矩a 2∆P=∆M ——弯矩增量 y i ——各测点到中性层的距离d.正应力实验结果与理论计算值比较: 各测点正应力值(MPa )测点 1 2 3 4 5 实验值σ∆实 理论值σ∆理误差%100⨯∆∆-∆=理实理σσσe.按比例绘出(实测应力和理论计算应力)正应力分布图。
4.问题讨论:1)说明梁在纯弯曲时正应力沿梁高度的分布规律。
2)比较各测点的实测应力值与理论计算应力值,并分析产生误差的原因。
指导教师:________________________年_______月______日。
纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。
实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。
实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。
实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。
实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。
实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。
根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。
实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。
根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。
这符合我们的理论预期。
在实验过程中,可能存在一些误差。
一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。
梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。
二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。
实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。
实验装置主要包括梁、应变片、静态数字电阻应变仪等。
三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。
四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。
五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。
直梁弯曲正应力实验报告

直梁弯曲正应力实验报告1. 背景直梁是一种常见的结构元件,广泛应用于建筑、桥梁、机械等领域。
在实际使用中,直梁会受到外部载荷的作用而产生弯曲变形。
为了保证直梁的安全可靠性,需要对其弯曲变形情况进行分析研究。
本实验旨在通过测量直梁上不同位置的正应力分布,探究直梁在弯曲过程中正应力的变化规律。
2. 实验目的•理解直梁受弯曲作用时产生的正应力分布规律;•掌握测量和分析直梁上不同位置的正应力方法;•分析并总结直梁弯曲过程中正应力变化规律。
3. 实验设备和材料•直梁:长约1m,宽约5cm,高约1cm;•弯曲装置:用于施加外部载荷使直梁发生弯曲;•应变计:用于测量直梁上不同位置处的应变值。
4. 实验步骤4.1 实验准备•将直梁固定在弯曲装置上,并调整装置,使直梁处于自由悬空状态;•确保应变计与直梁表面充分接触,并校准应变计。
4.2 弯曲实验•施加逐渐增加的外部载荷,使直梁发生弯曲;•同时记录不同外部载荷下直梁上各位置处的应变值。
4.3 数据处理•根据应变计测得的应变值,计算出各位置处的正应力;•绘制正应力与位置的关系曲线。
5. 实验结果分析通过实验测量得到的正应力与位置的关系曲线如下图所示:从图中可以看出,随着外部载荷的增加,直梁上不同位置处的正应力呈现出不同的变化规律。
在弯曲中心附近,正应力较大;而在距离中心较远的位置,正应力逐渐减小。
进一步分析发现,在弯曲中心附近,由于受到较大弯矩作用,直梁产生了较大的拉伸应力。
而在离中心较远的位置,由于受到较小弯矩作用,直梁的拉伸应力逐渐减小。
6. 结论通过本次实验,我们得出以下结论:•直梁在受到外部载荷作用时会发生弯曲变形;•弯曲中心附近的直梁产生较大的正应力;•距离中心较远的位置处的直梁正应力逐渐减小。
7. 建议根据实验结果,我们提出以下建议:•在设计直梁结构时,应合理考虑弯曲中心附近的正应力,并采取相应措施加强该区域的抗拉能力;•对于距离中心较远的位置,可以适当减小材料厚度以降低材料成本。
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。
本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。
二、实验原理。
梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。
在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。
根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。
三、实验装置和仪器。
本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。
其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。
四、实验步骤。
1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。
五、实验数据处理和分析。
通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。
通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。
六、实验结论。
通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。
因此,本实验取得了预期的实验目的。
七、实验总结。
本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。
希望通过本次实验,能够对大家有所帮助。
八、参考文献。
[1] 《材料力学实验指导书》。
[2] 《材料力学实验讲义》。
以上为梁的纯弯曲正应力实验报告,谢谢阅读。
纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告
梁是工程结构中常见的构件,在实际工程中经常受到弯曲载荷的作用。
因此,了解梁在弯曲过程中的应力分布规律对于工程设计和结构分析具有重要意义。
本实验旨在通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量,探究梁在弯曲过程中的力学性能。
实验装置主要包括梁、加载装置、应变测量装置和数据采集系统。
首先,将梁放置在加载装置上,施加一定的弯曲载荷,然后通过应变测量装置采集梁上不同位置处的应变数据。
最后,利用数据采集系统对应变数据进行处理分析,得到梁在弯曲过程中的应力分布规律。
实验结果表明,梁在弯曲过程中的应力分布呈现出一定的规律性。
在梁的上表面,应力呈现出线性分布,最大应力出现在梁的上表面中点处;而在梁的下表面,应力也呈现出线性分布,最大应力出现在梁的下表面中点处。
此外,梁的中性轴处应力为零。
通过实验数据的分析,我们得到了梁在弯曲过程中的应力分布曲线,进一步验证了梁在弯曲载荷作用下的力学性能。
总之,本实验通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量和分析,得到了梁在弯曲过程中的应力分布规律。
这对于工程设计和结构分析具有一定的指导意义,也为进一步深入研究梁的力学性能提供了一定的参考。
通过本次实验,我们对梁在弯曲载荷作用下的力学性能有了更深入的了解,也为今后的相关研究工作奠定了基础。
希望通过本实验报告的编写,能够对相关领域的研究工作提供一定的参考和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲正应力实验报告
矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力P∆时,梁的四个受力点处分别增加作用力/2
∆,如下图所示。
P
为了测量梁纯弯曲时横截面上应变分布
规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎
克定律公式E
σε
=,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ
=E
实
ε
实
式中E是梁所用材料的弹性模量。
图
3-16
为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。
把Δσ实与理论公式算出的应力Z
I
MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算:
Pa ∆=
M 2
1
(3.16) 四、实验步骤
1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中
性层的距离i
y 。
2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。
检查应变仪的工作状态是否良好。
分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。
3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0
P (一般按00.1s
P σ=确定)、最
大载荷max
P (一般按max
0.7s
P
σ≤确定)和分级载荷P ∆
(一般按加载4~6级考虑)。
本实验中分四次加载。
实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。
4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。
五、数据处理 1、原始数据。
其中a=80mm b=19.62mm h=39.38mm
1/4桥
荷载
测点
测点
测点
测点
测点
(N ) 一 二 三 四 五 一次加载 400 -15 -6 0 7 15 二次加载 600 -22 -10 0 11 24 三次加载 800 -29 -13 1 15 31 四次加载 1000 -36 -16 3 18 39 五次加载
1200
-44
-19 2
21
46
n
i
∑∆=
∆εε实
实
实εσ∆=∆E
测点一 测点二 测点三 测点四 测点五 实ε∆
7.25
3.25
0.5 3.5 7.75 实
σ∆(KPa )
152.25 68.25
10.5
73.5
162.75
2
*a
P M ∆=
∆
12
3
bh I z =
z
y *I M ∆=
∆理σ
测点测点测点
测点四 测点五
一
二 三 Y (mm )
19.69
9.845
9.845
19.69
理
σ∆(KPa )
157.75 78.88 0 78.88 157.75
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一
测点二
测点三 测点四 测点五 相对对误差
3.49% 13.4%
6.82% 3.17%
在梁的中性层内,因0
=∆理
σ,只需计算绝对误差,
绝对误差=10.5KPa 。
1/2桥(1)
荷载(N )
测点一五
测点二四
一次加载 400 -31 11 二次加载 600 -46 19 三次加载
800
-60 27 四次加载
1000 -75 34 五次加载
1200 -89
40
n
i
∑∆=
∆εε实
实
实εσ∆=∆E
测点一五
测点二四 实ε∆
14.5 7.25 实
σ∆(KPa )
304.5
152.25
2
*a P M ∆=
∆ 12
3
bh I z =
z
y *I M ∆=
∆理σ*2
测点一五
测点二四
Y (mm )
19.69 9.845
理
σ∆(KPa )
315.5 157.76
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一五
测点二四 相对对误差
3.49%
3.49%
1/2桥(2)
荷载(N )
测点一五
测点二四
一次加载 400 31 -10 二次加载 600 47 -18 三次加载
800
62 -25 四次加载
1000 77 -33 五次加载
1200 89
-41
n
i
∑∆=
∆εε实
实
实εσ∆=∆E
测点一五
测点二四 实ε∆
14.5 7.75 实
σ∆(KPa )
304.5
162.75
2
*a P M ∆=
∆
12
3
bh I z =
z
y *I M ∆=
∆理σ*2
测点一五
测点二四
Y (mm )
19.69 9.845
理
σ∆(KPa )
315.5 157.76
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一五
测点二四 相对对误差
3.48%
3.16%
全桥
荷载(N )
测点
一次加载 400 12 二次加载 600 21 三次加载 800 27 四次加载 1000 37 五次加载
1200
42
n
i
∑∆=
∆εε实
实
实εσ∆=∆E
测点 实ε∆
7.5 实
σ∆(KPa )
157.5
2
*a P M ∆=
∆
12
3
bh I z =
z
y *I M ∆=
∆理σ
测点一 测点二 测点三 测点四 测点五 Y
19.69
9.845
9.845
19.69
(mm )
理
σ∆(KPa )
157.75 78.88 0 78.88 157.75
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
理
σ∆=Δσ1+Δ
σ5+Δσ2-Δσ4=157.74KPa
测点 相对对误差 0.15%
六、实验小结 1、通过1/4,1/2桥,全桥各种接法以及结果分析,我们可以发现,全桥接法是误差最小的,其次是1/2桥,最后是1/4桥,在1/2桥接法中,我们还把接线反接过来,最后得出的误差和未反接相差不大。
2、弯曲试验是测定材料承受弯曲载荷时的力
学特性的试验,是材料机械性能试验的基本方法之一。
本试验采用地塑性材料,检测其延展性和均匀性展性和均匀性,为冷弯试验。
3、试验的误差主要来源于试样的安装,试样安装时一定要在同一平面内,否则荷载不是垂直作用在试样上,造成误差。
还有就是试样应变片陈旧,造成测量不准。
4、荷载采用等荷加载方式,便于计算比较。
5、试样测量平面为弯矩最大平面,在该平面上分五点测量,在中性层上的点的理论应变为零,多点测量能较好的掌握试样的应变情况。