基于单片机的多点无线温度监控系统设计-毕业设计

合集下载

毕业设计(论文)-基于单片机的无线温度控制系统设计

毕业设计(论文)-基于单片机的无线温度控制系统设计

摘要本文介绍的是一个由单片机构成的无线温度控制系统,它利用8051单片机和DS18B20及LED等其他器件实现。

首先单片机进行温度采集,然后进行无线发送,接收端收到信号后,进行解码,之后实现温度显示。

本文对硬件和软件进行了框图设计,protel原理图设计,程序框图设计,源程序设计,并对样机进行了联机和脱机仿真调试,文后附录了完整源程序。

关键词单片机无线发送接收温度控制LED显示定时AbstractAn applied system of wireless temperature control by microcontroller is introduced in this paper, it uses 8051 , DS18B20, LED and other components to realize. First, the microcontroller takes in the temperature , then the signal is transmitted. When the receiver receives the signal ,it decode the signal , then the temperature is displayed with the LED. The block diagram of the hardware and software, the schematic diagram of protel , the program flowchart and the source program will be designed in this paper. I also debug the model machine on-line and under-line.The complete source program is in the appendix.Keywords:microcontroller; wireless transmission and reception; temperature control; LED display; timing目录摘要 (I)Abstract (I)第1章绪论 (1)1.1 课题背景 (1)1.2 课题来源 (2)1.3 本章小结 (2)第2章MCS-51单片机的结构 (2)2.1 控制器 (3)2.1.1 程序计数器PC(Program Counter) (3)2.1.2 指令寄存器IR、指令译码器及控制逻辑电路 (4)2.2 存储器的结构 (4)2.3 并行I/O口 (6)2.4 时钟电路与时序 (7)2.5 单片机的工作方式 (7)2.6 单片机的性能特点 (9)2.7 单片机的应用领域 (10)2.8 本章小结 (11)第3章电路的硬件设计 (12)3.1 温度采集电路 (12)3.2 无线发送电路 (13)3.3 传感电路 (13)3.4 无线接收电路 (14)3.4.1 接收电路总论 (14)3.4.2 无线接收电路总体设计 (15)3.4.3无线接收电路详细设计 (16)3.5 数码管显示温度电路 (16)3.6 相关控制电路设计 (18)3.7 本章小结 (18)第4章电路的软件设计 (18)4.1 软件程序内容 (18)4.2 软件流程图 (19)4.3 定时程序设计 (19)4.3.1发送接收实现的基本方法 (20)4.3.2 发送接收程序详细设计 (20)4.4 MCS-51的中断 (21)4.5 定时程序设计 (24)4.6 本章小结 (25)第5章电路仿真 (26)5.1 仿真结果 (26)5.2 仿真中出现的问题及解决办法 (26)5.3 本章小结 (26)第6章结论与展望 (27)6.1 结论 (27)6.2 单片机的发展趋势 (27)参考文献 (29)总体电路框图 (29)总体电路protel原理图 (30)完整源程序: (30)致谢 (39)第1章绪论1.1 课题背景单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统近年来,无线传感器网络技术得到了广泛的应用和发展,其在工业、农业、医疗等领域都有着重要的作用。

无线传感器网络可以实现对各种参数的监测和数据的实时采集,极大地方便了人们对环境和设备状态的监控。

特别是在温度监控方面,无线传感器网络可以实时监测温度变化,并将数据远程传输到监控中心或者手机端,为人们提供及时的温度信息。

本设计旨在基于单片机技术,设计一种多点无线温度监控系统,实现对多个温度传感器的监测和数据传输。

该系统可以应用在各种需要温度监控的场合,例如仓储、生产车间、温室等。

通过该系统,用户可以实时监测各个监测点的温度变化,及时发现异常情况并进行处理。

系统设计采用了低功耗的无线传输模块,能够实现长期监测,并且具有一定的抗干扰能力,保证了数据的可靠性和稳定性。

本系统的核心是基于单片机的温度采集模块和无线传输模块,其主要功能包括温度数据的采集、处理和传输。

下面将从硬件设计和软件设计两方面对本系统进行详细的介绍。

一、硬件设计1. 硬件系统框图本系统的硬件设计包括多个温度传感器节点和一个数据接收节点。

每个温度传感器节点包括温度传感器、单片机和无线传输模块,用于采集和传输该节点的温度数据;数据接收节点包括单片机和无线接收模块,用于接收并处理各个节点传输的温度数据。

硬件系统框图如下图所示:(此处插入硬件系统框图)2. 温度传感器节点设计温度传感器节点的主要功能是采集温度数据,并通过无线传输模块将数据传输给数据接收节点。

具体的设计方案如下:(1)温度传感器选择:选用精度高、响应快、价格低廉的DS18B20数字温度传感器。

(2)单片机选择:选用低功耗、性能稳定的STM32系列单片机,用于温度数据的采集和处理。

(3)无线传输模块选择:选用低功耗、长距离传输的nRF24L01无线模块,用于将温度数据传输给数据接收节点。

3. 数据接收节点设计(3)数据显示设备:可以选择LCD显示屏或者LED指示灯,用于显示温度数据。

基于单片机的无线远程温度监控系统设计

基于单片机的无线远程温度监控系统设计

编号:201234140143 本科毕业设计基于单片机的无线远程温度监控系统设计系院:信息工程学院姓名:学号:0835140143专业:通信工程年级:2008级指导教师:职称:副教授完成日期:2012年5月摘要本文论述的远程温度控制是将无线发射与接收和自动控制相结合的一种控制。

基于这种技术,本系统以AT89S51系列单片机为控制单元,采用Dallas 单线数字温度传感器DS18B20和无线收发模块NRF24L01对试验现场温度数据进行远程无线测量与控制.整个系统包括主、从两个子系统,其中主系统完成对试验现场设定温度值、设定值显示、实际值显示、失控报警和接收数据功能;子系统完成温度采集、温度控制和发送数据功能.该系统结构简单实用、功能齐全,通用性强,可被应用于许多工业生产领域,它可使操作人员与恶劣的工作环境分离开来,实现生产自动化,提高企业的生产效率.关键词:AT89S51;温度传感器;NRF24L01;显示;报警AbstractThe long—distance temperature controlling this paper presents is a technology of linking wireless receiving and sending to automation. Based on the technology,the system is based on the control of AT89S51 SCM, using Dallas single line digital thermometer DS18B20, wireless receiving and sending module NRF24L01 to test and control the temperature data of a experiencing place。

The whole system consists of the main system and subsystem。

基于单片机的多点温度监测系统设计与仿真毕业设计

基于单片机的多点温度监测系统设计与仿真毕业设计

毕业设计题目基于单片机的多点温度监测系统设计与仿真毕业设计(论文)任务书题目基于单片机的多点温度监测系统设计与仿真专业电气工程及其自动化学号201350712130 姓名宋红娜主要内容:1.系统硬件设计。

2.模块化设计。

3.主控电路的设计。

4.系统设计的仿真实现。

基本要求:1.能够实时测量对象温度,超过设定值声光报警。

2.DS18B20测温范围-55o C~+128o C,以0.1o C递增。

3.得到优化的仿真软件程序;蜂鸣器的原理是由振动产生声音。

主要参考资料:[1] 张开生,郭国法.MCS-51单片机温度控制系统的设计[J].微计算机信息,2005,21(7) 68-69[2] 余发山,王福忠.单片机原理及应用技术[M].中国矿业大学出版社,2007.[3] 何立民.单片机应用技术选编[M].北京:北京航空航天大学出版社,2004.[4] 高云红.数字温度传感器在多点温度测量系统中的应用[J].沈阳航空工业学院学报,2006,(02):61-63.完成期限:指导教师签名:专业负责人签名:年月日目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1课题设计的背景 ............................................................1謀荞抟箧飆鐸怼类蒋薔。

1.2课题研究的目的和意义 ................................................1厦礴恳蹒骈時盡继價骚。

1.3国内外发展的现状及水平 ............................................2茕桢广鳓鯡选块网羈泪。

1.4课题设计的主要内容 ....................................................3鹅娅尽損鹌惨歷茏鴛賴。

2 方案的论证比较与选择 (4)2.1方案设计 ........................................................................4預頌圣鉉儐歲龈讶骅籴。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着社会的发展,物联网技术越来越普及,智能化的生活方式深受人们的欢迎,而温度监测技术也是智能化生活中重要的一环,温度监测系统广泛应用于医药、食品、化工等行业中。

传统的温度监测系统需要人工测温,既费时又不精确,为了提高温度监测的精确度和效率,设计了一种基于单片机的多点无线温度监控系统。

一、系统结构本系统主要由传感器、单片机、无线模块、接收器以及中心控制终端组成。

传感器采集物体温度的数据,并将数据通过单片机的模拟信号采集口传输到单片机。

单片机通过无线模块将信息传输到接收器中,接收器经过处理后将数据传输到中心控制终端,中心控制终端通过显示屏或者软件对温度数据进行分析和显示。

二、系统设计1.传感器传感器是整个系统的核心部件,传感器选用PT100温度传感器,PT100采用白金(Pt)为感温元素制作成的一种温度传漏,其线性度优于热敏电阻,稳定性优于热电偶,精度≤0.1℃。

2.单片机单片机采用STM32F103系列,单片机功耗低、速度高、集成度高,具有丰富的模拟和数字接口,可完成多种任务,非常适合于嵌入式设计。

3.无线模块无线模块采用433MHz无线模块,具有长距离传输、低功耗的特点,可实现数据的无线传输。

4.接收器接收器由433MHz无线模块和单片机组成,接收单片机接收无线信号并将数据发送到中心控制终端上。

5.中心控制终端中心控制终端由电脑或嵌入式系统组成,通过显示屏或者软件的方式实现温度数据的显示和分析。

三、系统工作流程1.传感器采集数据并通过单片机的模拟信号采集口传输到单片机上。

2.单片机将数据通过无线模块传输到接收器上。

3.接收器将数据处理后发送至中心控制终端。

4.中心控制终端对数据进行分析和显示。

四、系统优势1.采用PT100传感器,温度采集精度高,可满足高精度温度监测需求。

2.采用STM32F103系列单片机,功耗低、速度快、集成度高,处理能力强。

4.整个系统结构简单、操作便捷,易于维护。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统1. 引言1.1 研究背景在现代社会,温度监控系统在各个领域中发挥着重要作用,例如工业生产、环境监测、医疗保健等。

随着科技的不断发展,基于单片机的多点无线温度监控系统逐渐成为一种趋势。

研究背景部分将深入探讨这一领域的发展现状,以及存在的问题和挑战。

目前,传统的有线温度监控系统存在布线复杂、安装维护困难等问题,限制了其在一些特定场景下的应用。

而无线温度监控系统以其布线简便、实时监测等优势逐渐被广泛应用。

目前市面上的产品多数存在监测范围有限、数据传输不稳定等问题,迫切需要一种更为稳定、可靠的无线温度监控系统。

本文将基于单片机技术设计一种多点无线温度监控系统,旨在解决现有系统存在的问题,提高监测范围和数据传输稳定性。

通过对单片机、温度传感器、通信模块等关键部件的选择和设计,构建一套高性能的无线温度监控系统,为相关领域的应用提供更好的技术支持和解决方案。

1.2 研究意义无线温度监控系统的研究意义在于提高温度监控的效率和精度,实现对多个点位的远程管理和监控。

通过使用单片机技术,可以实现对多个温度传感器的同时监测和数据传输,使监控过程更加智能化和便捷化。

这对于各种需要严格控制温度的场合如实验室、制造业、医疗行业等具有重要意义。

无线温度监控系统的研究也有助于推动物联网技术的发展,为智能家居、智能城市等领域打下基础。

通过建立稳定、高效的多点无线温度监控系统,不仅可以提高生产效率,降低能耗,提升产品质量,还可以有效预防事故发生,保障人员安全。

研究基于单片机的多点无线温度监控系统具有重要的现实意义和应用前景。

1.3 研究目的本文旨在设计并实现基于单片机的多点无线温度监控系统,通过对温度传感器采集的数据进行处理和传输,实现对多个监测点的实时监控。

具体目的包括:1. 提高温度监控系统的便捷性和灵活性,使监控人员可以随时随地实时获取监测点的温度数据,为及时处理异常情况提供有力支持;2. 降低监控系统的成本,利用单片机和无线通信模块取代传统的有线连接方式,减少线缆布线成本和维护成本;3. 提升监控系统的稳定性和可靠性,通过精心选型与设计,以及合理的系统实现过程,确保系统能够持续稳定地运行,并提供准确可靠的数据;4. 探索未来监控系统的发展方向,从实际应用情况出发,进一步优化系统性能,并为未来无线温度监控系统的研究和应用奠定基础。

基于某单片机的多点温度测量系统设计

基于某单片机的多点温度测量系统设计

基于某单片机的多点温度测量系统设计设计需求及背景:在许多工业领域中,需要实时监测多点的温度数据,以确保系统的正常运行和生产过程的稳定性。

传统的温度测量系统通常使用多个独立的传感器连接到数据采集器,然后通过有线或无线的方式将数据传输到主控制系统。

这种设计方式存在布线繁琐、维护成本高等问题。

因此,我们需要设计一种基于单片机的多点温度测量系统,以实现简化布线、降低成本、提高系统可靠性等目的。

该系统需要能够同时测量多个点的温度,并将数据发送到中央控制系统进行处理和监控。

设计方案:1.硬件设计:- 选择一款适合的单片机作为系统主控制器,如Arduino或STM32等;-集成多个温度传感器,如DS18B20等,连接到单片机的GPIO口;-添加合适的电源管理模块,以确保传感器和单片机正常工作;-集成无线通信模块,如WiFi、蓝牙或LoRa等,以将数据传输至中央控制系统;-设计外壳和固定装置,以方便系统的安装和使用。

2.软件设计:-编写单片机上的程序,实现多路温度传感器数据的采集和处理;-设计通信协议,将采集到的数据封装成数据包,并通过无线通信模块发送至中央控制系统;-在中央控制系统上编写数据接收和处理程序,对接收到的数据进行解析和展示;-实现远程监控功能,可以通过手机或电脑实时查看系统各点的温度数据。

3.系统特点:-灵活布线:传感器可以分布在不同位置,无需固定布线,减少安装和维护成本;-高可靠性:采用单片机控制和无线通信,系统稳定性高,数据传输可靠;-高效监控:通过中央控制系统实现多点温度数据的集中管理和实时监控;-易扩展:可以根据需要增加更多传感器和扩展功能,满足不同的监测需求。

总结:基于单片机的多点温度测量系统设计,可以提高监测效率、降低成本并提高系统可靠性。

通过合理的硬件设计和软件开发,可以实现多路温度数据的实时采集和传输,为工业自动化和生产管理提供有力支持。

未来,在不断优化和扩展的基础上,这种系统设计还可以应用到更多领域,并实现更多功能和特性的进一步发展。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络在各个领域都得到了广泛应用。

基于单片机的多点无线温度监控系统,不仅可以实现对多个温度点的实时监控,还可以通过无线方式传输监测数据,实现远程监控和管理。

本文将介绍基于单片机的多点无线温度监控系统的原理、设计和实现过程。

一、系统概述基于单片机的多点无线温度监控系统主要由传感器节点、信号处理单元、无线通信模块、监控中心等组成。

传感器节点负责采集温度数据,信号处理单元对采集的数据进行处理和存储,无线通信模块实现数据传输,监控中心则负责接收和显示监测数据。

二、系统设计1. 传感器节点设计传感器节点是系统的核心部分,负责采集温度数据。

为了实现多点监控,传感器节点需要设计成多个独立的模块,每个模块负责监测一个特定的温度点。

传感器节点的设计需要考虑传感器的选择、数据采集和处理电路的设计、以及无线通信模块的接口设计。

传感器节点采用数字温度传感器DS18B20进行温度采集,采集到的数据通过单片机进行处理和存储,然后通过无线通信模块进行数据传输。

2. 信号处理单元设计信号处理单元主要负责对传感器采集到的数据进行处理和存储。

传感器采集到的数据需要进行数字化处理,然后存储到单片机的内部存储器中。

传感器节点采用的是单片机AT89S52作为信号处理单元,通过单片机的A/D转换功能对温度数据进行数字化处理,然后存储到单片机的内部EEPROM中。

3. 无线通信模块设计无线通信模块主要负责将传感器节点采集到的数据传输到监控中心。

传感器节点采用的是nRF24L01无线模块,通过SPI接口与单片机进行通信,并实现数据的传输。

4. 监控中心设计三、系统实现传感器节点采用DS18B20数字温度传感器进行温度采集,通过单片机AT89S52进行数据处理和存储,然后通过nRF24L01无线模块实现数据的传输。

传感器节点的设计需要考虑功耗、尺寸和成本等因素,需要尽量减小功耗和尺寸,降低成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的多点无线温度监控系统设计前言在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

因此,单片机广泛用于现代工业控制中。

随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。

传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。

因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。

另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。

温度传感器是其中重要的一类传感器。

其发展速度之快,以及其应用之广,并且还有很大潜力。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本文利用单片机结合传感器技术而开发设计了这一温度监控系统。

文中传感器理论与单片机实际应用有机结合,详细地讲述了基于单片机AT89S51和温度传感器DS18B20的温度控制系统的设计方案与软硬件实现方案。

系统包括数据采集模块,单片机控制模块,显示模块和温度设置模块,驱动电路五个部分。

文中对每个部分功能、实现过程作了详细介绍。

本设计应用性比较强,系统稍微改装可以作为生物培养液温度监控系统,可以做热水器温度调节系统、实验室温度监控系统等等。

设计后的系统具有操作方便,控制灵活等优点。

1 概述1.1 课题研究的目的及意义随着社会的发展,温度的测量及控制变得越来越重要。

温度是生产过程和科学实验中普遍而且重要的物理参数。

在工业生产过程中为了高效地进行生产,必须对生产工艺过程中的主要参数,如温度,压力,流量,速度等进行有效的控制。

其中温度的控制在生产过程中占有相当大的比例。

准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。

在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。

它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。

本课题采用51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。

作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、传感器原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。

1.2 课题研究现状分析由于现代工艺越来越多的需要对实时温度进行监测和控制,而且需要的精度越来越高。

所以温度控制系统国内外许多有关人员的重视,得到了十分广泛的应用。

温度控制系统发展迅速,而且成果显著。

由于单片微处理器的性能日益提高、价格又不断降低,使其性能价格比的优势非常明显。

因此,如何将单片微处理器应用到锅炉温度自动控制领域,为越来越多的生产厂家所重视。

目前先进国家各种炉窑自动化水平较高,装备有完善的检测仪表和计算机控制系统。

其计算机控制系统已采用集散系统和分布式系统的形式,大部分配有先进的控制算法,能够获得较好的工艺性能指标。

单片微型计算机是随着超大规模集成电路的技术的发展而诞生的。

由于它具有体积小,功能强,性价比高等优点,所以广泛应用于电子仪表,家用电器,节能装置,军事装置,机器人,工业控制等诸多领域,使产品小型化,智能化,既提高了产品的功能和质量又降低了成本,简化了设计。

1.3 技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。

炉温可以在一定范围内由人工设定,并能在炉温变化时实现自动控制。

若测量值高于温度设定范围,由单片机发出控制信号,经过驱动电路使加热器停止工作。

当温度低于设定值时,单片机发出一个控制信号,启动加热器。

通过继电器的反复开启和关闭,使炉温保持在设定的温度范围内。

◆温度设定范围为0~99℃,最小区分度为1℃,温度控制的误差≤1℃◆能够用数码管精确显示当前实际温度值◆按键控制:设置复位键、加一键、减一键◆越限报警2 总体设计2.1 系统设计方案论证实现温度控制的方法主要有以下几种。

方案一:采用纯硬件的闭环控制系统。

该系统的优点在于速度较快,但可靠性比较差控制精度比较低、灵活性小、线路复杂、调试、安装都不方便。

且要实现题目所有的要求难度较大。

方案二:FPGA/CPLD或采用带有IP内核的FPGA/CPLD方式。

即用FPGA/CPLD完成采集,存储,显示及A/D等功能,由IP核实现人机交互及信号测量分析等功能。

这种方案的优点在于系统结构紧凑,可以实现复杂的测量与与控制,操作方便;缺点是调试过程复杂,成本较高。

方案三:单片机与高精度温度传感器结合的方式。

即用单片机完成人机界面,系统控制,信号分析处理,由前端温度传感器完成信号的采集与转换。

这种方案克服了方案一、二的缺点,所以本课题任务是基于单片机和温度传感器实现对温度的控制。

2.2 系统结构框图系统主要包括数据采集模块,单片机控制模块,显示模块和温度设置模块,驱动电路五个部分。

系统框图如图2.2-1所示图2.2-1 系统框图其中数据采集模块负责实时采集温度数据,采集到的温度数据传输到单片机,由单片机处理后的数据送显示部分显示。

设置模块可设置预定温度,当检测到的温度低于设定温度时,单片机控制驱动电路启动加热,并发出报警声;当检测温度高于设定温度时,停止加热。

3 硬件设计3.1 元器件的选择3.1.1 单片机选择单片机的选择在整个系统设计中至关重要,要满足大内存、高速率、通用性、价格便宜等要求,本课题选择AT89S51作为主控芯片。

AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S51芯片具有以下特性:◆指令集和芯片引脚与Intel公司的8051兼容;◆4KB片内在系统可编程Flash程序存储器;◆时钟频率为0~33MHz;◆128字节片内随机读写存储器(RAM);◆32个可编程输入/输出引脚;◆2个16位定时/计数器;◆6个中断源,2级优先级;◆全双工串行通信接口;◆监视定时器;◆2个数据指针。

AT89S51单片机的40个引脚中有2个专用于主电源引脚,2个外接晶振的引脚,4个控制或与其它电源复用的引脚,以及32条输入输出I/O引脚。

◆电源引脚Vcc和VssVcc(40脚):接+5V电源正端;Vss(20脚):接+5V电源正端。

◆外接晶振引脚XTAL1和XTAL2XTAL1(19脚):接外部石英晶体的一端。

在单片机内部,它是一个反相放大器的输入端,这个放大器构成采用外部时钟时,对于HMOS单片机,该引脚接地;对于CHOMS 单片机,该引脚作为外部振荡信号的输入端。

XTAL2(18脚):接外部晶体的另一端。

在单片机内部,接至片内振荡器的反相放大器的输出端。

当采用外部时钟时,对于HMOS单片机,该引脚作为外部振荡信号的输入端。

对于CHMOS芯片,该引脚悬空不接。

◆控制信号或与其它电源复用引脚有RST/VPD、ALE/P、PSE等4种形式。

RST/VPD(9脚):RST即为RESET,VPD为备用电源,所以该引脚为单片机的上电复位或掉电保护端。

当单片机振荡器工作时,该引脚上出现持续两个机器周期的高电平,就可实现复位操作,使单片机复位到初始状态。

当VCC发生故障,降低到低电平规定值或掉电时,该引脚可接上备用电源VPD(+5V)为内部RAM供电,以保证RAM中的数据不丢失。

ALE/ P (30脚):当访问外部存储器时,ALE(允许地址锁存信号)以每机器周期两次的信号输出,用于锁存出现在P0口的地址信号。

PSEN(29脚):片外程序存储器读选通输出端,低电平有效。

当从外部程序存储器读取指令或常数期间,每个机器周期PESN两次有效,以通过数据总线口读回指令或常数。

当访问外部数据存储器期间,PESN信号将不出现。

EA/Vpp(31脚):EA为访问外部程序储器控制信号,低电平有效。

当EA端保持高电平时,单片机访问片内程序存储器4KB(MS—52子系列为8KB)。

若超出该范围时,自动转去执行外部程序存储器的程序。

当EA端保持低电平时,无论片内有无程序存储器,均只访问外部程序存储器。

对于片内含有EPROM的单片机,在EPROM编程期间,该引脚用于接21V的编程电源Vpp。

◆输入/输出(I/O)引脚P0口、P1口、P2口及P3口T 2E RXD TXD P3.2P3.3P3.4P3.5P3.6P3.7D 0D 1D 2D 3D 4D 5D 6D 715141312111098P0口(39脚~22脚):这8条引脚有两种不同功能,分别适用于两种不同情况。

第一种情况是89S51不带片外存储器,P0口可以作为通用I/O 口使用,P0.0-P0.7用于传送CPU的输入/输出数据。

第二种情况是89S51带片外存储器,P0.0-P0.7在CPU 访问片外存储器时用于传送片外存储器的低8位地址,然后传送CPU 对片外存储器的读写数据。

P1口(1脚~8脚):这8条引脚和P0口的8条引脚类似,P1.7为最高位,P1.0为最低位。

相关文档
最新文档