高考物理带电粒子在复合场中的运动答题技巧及练习题
高考物理带电粒子在复合场中的运动解题技巧讲解及练习题

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.3.如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.25m 的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。
高考物理带电粒子在复合场中的运动解题技巧及练习题含解析

一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
带电粒子在复合场、组合场中的运动(解析版)2024年高考物理压轴题专项训练(新高考通用)

压轴题08带电粒子在复合场、组合场中的运动1.本专题是电磁场的典型题型之一,包括应用电场力洛伦兹力的知识解决实际问题。
高考中经常在选择题中命题,更是在在计算题中频繁出现。
2024年高考对于复合场、组合场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场的知识,磁场的知识等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型带电粒子在复合场中的运动,组合场中的运动等。
考向一:带电体在磁场中的运动1.带电体在匀强磁场中速度变化时洛伦兹力往往随之变化,并进一步导致弹力、摩擦力等的变化,带电体将在变力作用下做变加速运动。
2.利用牛顿运动定律和平衡条件分析各物理量的动态变化时要注意弹力为零的临界状态,此状态是弹力方向发生改变的转折点。
考向二:带电粒子在叠加场中的运动1.三种场的比较力的特点功和能的特点重力场大小:G =mg 方向:竖直向下重力做功与路径无关;重力做功改变物体的重力势能电场大小:F =qE方向:正电荷受力方向与场强方向相同,负电荷受力方向与电强方向相反电场力做功与路径无关;W =qU ;电场力做功改变电势能磁场大小:f =qvB (v ⊥B )方向:可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能2.分析的基本思路(1)弄清叠加场的组成。
(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(3)画出粒子的运动轨迹,灵活选择不同的运动规律。
①由于洛伦兹力的大小与速度有关,带电粒子在含有磁场的叠加场中的直线运动一定为匀速直线运动,根据平衡条件列式求解。
②当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解。
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
考向三:带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动。
高考物理高考物理带电粒子在复合场中的运动解题技巧讲解及练习题

一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=-g g 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='-g g 联立以上两个方程可得35m /s<230m /s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围32m 23m 2x '≤<2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高考物理高考物理带电粒子在复合场中的运动解题技巧和训练方法及练习题
一、带电粒子在复合场中的运动专项训练1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:(3)由几何关系得:设粒子在电场中运动的时间为t 1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t 2,有:2.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-+++((iii )如图3,00k E qU <由02mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--++-;3.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】(1)根据mvrqB=,因为212r r=,所以212v v=,所以221211122W mv mv=-,(2)=,,所以.(3),,所以.(4)4.如图所示,两条竖直长虚线所夹的区域被线段MN分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
高考物理带电粒子在复合场中的运动答题技巧及练习题
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p(t)进入弹性盒后,通过与铰链O相连的“”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿x轴方向做微小振动,其位移x与压力p成正比(,0x pαα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d,单位体积内自由电子数为n的N型半导体制成,磁场方向垂直于x轴向上,磁感应强度大小为(1)0B B xββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C方向的电流I,则在侧面上D1、D2两点间产生霍尔电压U0.(1)指出D1、D2两点那点电势高;(2)推导出U0与I、B0之间的关系式(提示:电流I与自由电子定向移动速率v之间关系为I=nevbd,其中e为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd = 得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:010U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=3.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU =mv -m(v 0)2r 3=r 3=a 解得B 1=B 0(3)对速度为0的离子 qU =mv r 4==a2r 4=1.5a离子打在x 轴上的区间为[1.5a,3a] N =N 0=N 0对打在x =2a 处的离子 qv 3B 1=对打在x =3a 处的离子 qv 4B 1=打到x 轴上的离子均匀分布,所以=由动量定理 -Ft =-0.8Nm +0.2N(-0.6m-m)解得F =N 0mv 0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x 轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x 轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a ,由半径公式也就能求出磁感应强度;取时间t=1s ,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动【答案】min B =v θ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得B ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min B =⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v mθ=⑧由⑦⑧式得v θ=⑨5.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lmt qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =① 211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.6.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B (图像中的B 0末知)随时间t 的变化情况如图乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0向右做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.不考虑地磁场的影响,求:(1)电场强度E 的大小;(2)小球从M 点开始运动到第二次经过D 点所用的时间; (3)小球运动的周期,并画出运动轨迹(只画一个周期).【来源】【百强校】2015届辽宁师范大学附属中学高三模拟考试物理卷(带解析)【答案】(1)mg qE =(2)2t 0(13π+1) (3)T =8t 0,【解析】 【分析】 【详解】(1)小球从M 点运动到N 点时,有qE =mg , 解得mg qE =.(2)小球从M 点到达N 点所用时间t 1=t 0,小球从N 点经过个圆周,到达P 点,所以t 2=t 0 小球从P 点运动到D 点的位移x =R =00mv B q,小球从P 点运动到D 点的时间300R m t v B q==02m t qB π=,t 3=023tπ, 所以时间1230()1321t t t t t π+++==. (3)小球运动一个周期的轨迹如图所示.小球的运动周期为T =8t 0.7.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高考物理带电粒子在复合场中的运动解题技巧及练习题含解析
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p(t)进入弹性盒后,通过与铰链O相连的“”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿x轴方向做微小振动,其位移x与压力p成正比(,0x pαα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d,单位体积内自由电子数为n的N型半导体制成,磁场方向垂直于x轴向上,磁感应强度大小为(1)0B B xββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C方向的电流I,则在侧面上D1、D2两点间产生霍尔电压U0.(1)指出D1、D2两点那点电势高;(2)推导出U0与I、B0之间的关系式(提示:电流I与自由电子定向移动速率v之间关系为I=nevbd,其中e为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd = 得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:010U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=3.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t 1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t 2,有:4.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-+++((iii )如图3,00k E qU <由020mvmv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--++-;5.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
高考物理带电粒子在复合场中的运动解题技巧讲解及练习题
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为、重力不计的d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功W1(2)粒子第n次经过电场时电场强度的大小En(3)粒子第n次经过电场所用的时间tn(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W = (2)21(21)2nn mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
0t =时,一带正电、质量为m 的微粒从左边界上的1N 点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的2N 点,Q 为线段12N N 的中点,重力加速度为g ,上述d 、0E 、m 、v 、g 为已知量。
(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。
【来源】2010年普通高等学校招生全国统一考试(安徽卷)理综【答案】(1)02E B v=;(2)122d v T t t v g π=+=+;(3)min 1min 2(21)2v T t t g π+=+。
【解析】 【分析】根据物体的运动性质结合物理情景确定物体的受力情况。
再根据受力分析列出相应等式解决问题。
【详解】(1)根据题意,微粒做圆周运动,洛伦兹力完全提供向心力,重力与电场力平衡, 则mg=qE 0 ①∵微粒水平向右做直线运动,∴竖直方向合力为0. 则 mg+qE 0=qvB ② 联立①②得:q=③B=④(2)设微粒从N 1运动到Q 的时间为t 1,作圆周运动的周期为t 2, 则=vt 1⑤qvB=m⑥2πR=vt 2 ⑦联立③④⑤⑥⑦得:t 1=,t 2=⑧ 电场变化的周期T=t 1+t 2=+⑨(3)若微粒能完成题述的运动过程,要求 d≥2R ⑩ 联立③④⑥得:R=,设N 1Q 段直线运动的最短时间t 1min ,由⑤⑩得t 1min =,因t 2不变,T 的最小值 T min =t 1min +t 2=。
答:(1)微粒所带电荷量q 为,磁感应强度B 的大小为。
(2)电场变化的周期T 为+。
(3)T 的最小值为。
【点睛】运动与力是紧密联系的,通过运动情况研究物体受力情况是解决问题的一个重要思路。
4.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【来源】【市级联考】陕西省榆林市2019届高三第二次理科综合模拟试题(物理部分) 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯5.如图所示,在xOy 坐标平面内,虚线PQ 与x 轴正方向的夹角为60°,其右侧有沿y 轴正方向的匀强电场;左侧有垂直于纸面向里的匀强磁场,磁感应强度大小为B .一质量为m ,带电量为q 的带负电的粒子自坐标原点O 射入匀强磁场中,经过一段时间后恰好自虚线PQ 上的M 点沿x 轴正方向进入匀强电场,粒子在电场中的运动轨迹与x 轴的交点为N .已知O 、M 两点间的距离为3L ;O 、N 两点间的距离为(3+1)L ,粒子重力不计.求:(1)带电粒子自坐标原点O 射入匀强磁场的速度大小;(2)匀强电场的电场强度大小;(3)若自O 点射入磁场的粒子带正电,粒子的质量、带电量、初速度等都不变,则在粒子离开O 点后的运动中第二次与虚线PQ 相交的交点坐标. 【来源】2019年山东省德州市高三一模物理试卷【答案】(1)qBL m ;(2)23qB L m ;(3)(36L ,12L ).【解析】 【详解】(1)粒子在磁场中运动时qvB =2mv r,3L =2r sin60°解得粒子自坐标原点O 射入匀强磁场的速度大小v =qBLm(2)粒子自M 到N 做类平抛运动 沿电场方向:3L sin60°=212qE t m垂直电场方向;(31+)L -360Lcos ︒=vt 1 得电场强度E =23qB Lm(3)若自O 点射人磁场的粒子带正电,粒子在磁场中逆时针转过240°后自R 点垂直于电 场方向离开磁场,如图所示.离开磁场时x 坐标;3302R x rcos L =-︒=-y坐标:3302 Ry r rsin L =-+︒=()粒子进入电场后自R到S做类平抛运动垂直电场方向;2Rsx vt=沿电场方向:222RsqEy tm=tan60°=RSRSyx解得:2t=23m,RSx=23L,2RSy L=第二次与虚线PQ的交点S的x坐标:RS Rx x x=+=3Ly坐标:12RS Ry y y L=+=则第二次与虚线PQ的交点S的坐标为(36L,12L)6.如图1,光滑绝缘水平平台MNQP为矩形,GH∥PQ,MP=NQ=1m,MN=GH=PQ=0.4m,平台离地面高度为h=2.45m.半径为R=0.2m的圆形匀强磁场区域,磁感应强度B=0.05T,方向竖直向上,与MP边相切于A 点,与NQ边相切于D点,与GH相切于C点.平台上PGHQ区域内有方向由P指向G的匀强电场,场强大小为E=0.25V/m.平台右方整个空间存在方向水平向右的电场,场强大小也为E=0.25V/m,俯视图如图2.两个质量均为m=2×10-5kg的小球a、b,小球a带正电,电量q=4×10-4C,小球b不带电,小球a、b均可视为质点.小球a从A点正对圆心O 射入磁场,偏转90°后离开磁场,一段时间后与静止在平台D点的小球b发生弹性碰撞,碰后两球离开平台,并在此后的运动过程中发生多次弹性碰撞,a球带电量始终不变,碰撞时间忽略不计.已知重力加速度g=10m/s2,π=3.14,不计空气阻力,求:(1)小球a 射入磁场时的速度大小;(2)从小球a 射入磁场到第一次与小球b 相碰撞,小球a 运动的路程; (3)两个小球落地点与NQ 的水平距离.【来源】【市级联考】重庆市2019届高三5月调研测试(第三次诊断性考试)理综试卷物理试题【答案】(1)0.2m/s (2)0.636m (3)0.684m 【解析】 【详解】(1)小球a 从A 点正对圆心O 射入磁场,偏转90°后离开磁场,小球a 在洛伦兹力作用下做圆周运动,轨迹如图:分析得半径R =0.2m由2v qvB m R=得:v =0.2m/s(2)磁场中运动的路程s 1=πR=0.628m 电场中加速度25m/s qEa m== 电场的路程2220.008m 2v s a=⨯=小球a 射入磁场到与小球b 相碰过程运动的路程120.636m s s s =+= (3)a 、b 球弹性碰撞,质量相等每一次碰撞速度交换. D 点碰后,两球速度分别为v a D =0,v b D =0.2m/s 此后两球抛离平台,竖直方向均做自由落体运动由22gt h =得,两小球在空中运动时间20.7s h t g == 水平方向:b 球匀速运动,a 球加速运动,加速度25m/s qEa m== 每次碰到下一次碰撞,两球位移相等,v —t 图如图所示:可得,每两次碰撞间隔时间是定值:21()2bD v t a t ⋅∆=∆ 0.08s t ∆=由0.7380.084t t ==∆ 所以小球在空中碰8次后,再过0.06s 落地小球b 在空中碰n 次后速度为v bN =(n +1)v bD =0.2(n +1) m/s小球离开D 点后在空中第一次碰撞前,水平位移x 1=v b 1·△t=0.016m 小球在空中第一次到第二次碰撞水平位移x 2=2v b 1·△t=0.032m 以此类推,小球在空中第n -1次到第n 次碰撞水平位移x n =nx 1=0.016m 所以,在空中碰撞8次时的水平位移x 0=0.016×(1+2+3+4+5+6+7+8)=0.576m 第8次碰后 v b 8=1.8m/s v a 8=1.6m/s所以,8次碰后0.06s 内,△x b =v b 8×0.06=0.108m △x a =v a 8×0.06+12a ×0.062=0.105m 所以,水平位移分别为x a =x 0+△x a =0.681m xb =x 0+△x b =0.684m7.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x垂直.粒子速度大小50 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020v B qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at =Eq a m=tan 45v at︒=联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r由如图所示几何关系得:()12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211vB qv m r '=解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:()2222r r y R +=+由带电粒子在匀强磁场中运动可得:212vB qv m r ''=解得1210.2410B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T =102RT v π= 20x t v =3212t T =222r T vπ=解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯8.如图所示,在竖直平面内的xoy 直角坐标系中,x 轴上方存在正交的匀强电场和匀强磁场,电场强度E1,方向沿y轴向上,磁感应强度B,方向垂直纸面向里.x轴下方存在方向沿y轴向上的匀强电场(图中未画出),场强为E2.质量为m、电荷量为q的带正电小球(可视为质点),从y轴上的A点以速度大小v0沿x轴正方向抛出,经x轴上的P点后与x轴正向成45°进入x轴上方恰能做匀速圆周运动.O、P两点间距离x与O、A两点间距离0y满足以下关系,20022=y xgv,重力加速度为g,以上物理量中m、q、v0、g为已知量,其余量大小未知.(1)电场强度E1与E2的比值(2)若小球可多次(大于两次)通过P点,则磁感应强度B为多大?(3)若小球可恰好两次通过P点,则磁感应强度B为多大?小球两次通过P点时间间隔为多少?【来源】安徽省黄山市2019届高中毕业班第二次质量检测高三理综物理试题【答案】(1)12;(2)mgBqv=;(3)1mgB1n qv=+()(n=1,2,3……..);nv3πt22g=+()(n=1,2,3……..)【解析】【分析】【详解】解:(1)小球在x轴上方匀速圆周,可得:1qE mg=小球从A到P的过程做内平抛运动:00x v t=21y at2=结合:2002gy x2v=可得:a g=由牛顿第三定律可得:2qE mg ma-=解得:2qE2mg=故:12E1E2=(2) 小球第一次通过P点时与x轴正向成45︒,可知小球在P点时则有:y0v v=故P 点时的速度:0v 2v =由类平抛的位移公式可得:200v x g= 小球多次经过P 点,轨迹如图甲所示,小球在磁场中运动34个周期后,到达x 轴上的Q 点,P 、Q 关于原点O 对称,之后回到A 并不断重复这一过程,从而多次经过P 点设小球在磁场中圆周运动的半径为R ,由几何关系可得:0R 2x =又由:2v qvB m R=联立解得:0mgB qv =(3)小球恰能两次经过P 点,轨迹如图乙所示 在x 轴上方,小球在磁场中的运动周期:2πmT qB= 在x 轴下方,小球的运动时间:0020x 2v t 2v g== 由规律可知,小球恰能两次经过P 点满足的几何关系为:012x 2R 2R n=+ (n=1,2,3……..)解得:1(1)mgB n qv =+ (n=1,2,3……..) 两次通过P 点的时间间隔为:23(1)4t n T nt =++ (n=1,2,3……..) 解得:03(2)2nv t gπ=+(n=1,2,3……..)9.如图,为一除尘装置的截面图,塑料平板M .N 的长度及它们间距离均为d .大量均匀分布的带电尘埃以相同的速度v o 进入两板间,速度方向与板平行,每颗尘埃的质量均为m ,带电量均为-q .当两板间同时存在垂直纸面向外的匀强磁场和垂直板向上的匀强电场时,尘埃恰好匀速穿过两板间;若撤去板间电场,并保持板间磁场不变,尘埃恰好全部被平板吸附,即除尘效率为100%;若撤去两板间电场和磁场,建立如图所示的平面直角坐标系xoy ,y 轴垂直于板并紧靠板右端,x 轴与两板中轴线共线,要把尘埃全部收集到位于P (2d ,-1.5d)处的条状容器中,需在y 轴右侧加一垂直于纸面向里的圆形匀强磁场区域.尘埃颗粒重力、颗粒间作用及对板间电场磁场的影响均不计,求: (1)两板间磁场磁感应强度B i 的大小;(2)若撤去板间磁场,保持板间匀强电场不变,除尘效率为多少; (3)y 轴右侧所加圆形匀强磁场区域磁感应强度B 2大小的取值范围.【来源】【市级联考】山东省青岛市2019届高三下学期5月第二次模考理综物理试题 【答案】(1)0i mv B qd =;(2)除尘效率为50%;(3)0022mv mvB qd qd≤≤ 【解析】 【详解】(1)沿N 极板射入的尘埃恰好不从极板射出时尘埃的运动轨迹如图所示,由几何知识可知,尘埃在磁场中的半径:r=d,尘埃在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:2mv qvBr=,解得:0imvBqd=;(2)电场、磁场同时存在时,尘埃匀速直线,满足:0qE qv B=,撤去磁场以后粒子在电场作用下平抛,假设距离N极板y的粒子恰好离开电场:水平方向:0d v t=竖直方向:212y at=加速度:qEam=解得:0.5y d=当0.5y d>时,时间更长,水平位移x d>,即0.5d到d这段距离的粒子会射出电场,则从平行金属板出射的尘埃占总数的百分比:0.5100%50%d dd-⨯=;(3)设圆形磁场区域的半径为R0,尘埃颗粒在圆形磁场中做圆周运动的半径为R2,要把尘埃全部收集到位于P处的条状容器中,就必须满足20R R=另2022vqv B mR=如图,当圆形磁场区域过P点且与M板的延长线相切时,圆形磁场区域的半径R0最小,磁感应强度B2最大,有0R d=小解得:0 2mvBqd大=如图,当圆形磁场区域过P点且与y轴在M板的右端相切时,圆形磁场区域的半径R0最大,磁感应强度B2最小,有02R d=大解得:022mvBqd=小所以圆形磁场区域磁感应强度B2的大小须满足的条件为0022mv mvBqd qd≤≤.10.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U;(2)粒子在圆形磁场区域中运动的时间t;(3)圆形磁场区域的半径R.【来源】甘肃省张掖市2019届高三上学期第一次联考理科综合试题(物理部分)【答案】(1)U=Bv0d;(2)mqBθ;(3)R=0tan2mvqBθ【解析】【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=2rv π 粒子在圆形磁场区域中运动的时间t=2θπT 解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan 2mv qBθ11.磁流体发电的工作原理示意如图.图中的长方体是发电导管,其中空部分的长、高、宽分别为l a b 、、,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R 相连.整个发电导管处于匀强磁场中,磁感应强度为B ,方向如图垂直前后侧面.发电导管内有电阻率为ρ的高温高速电离气体沿导管向右流动,并通过专用管道导出.由于运动的电离气体受到磁场作用,产生了电动势.已知气体在磁场中的流速为v ,求:(1)磁流体发电机的电动势E 的大小;(2)磁流体发电机对外供电时克服安培力做功的功率P 安多大; (3)磁流体发电机对外供电时的输出效率η.【来源】【全国百强校】天津市实验中学2019届高三考前热身训练物理试题【答案】(1)Bav (2)222B a v a R blρ+(3)100%R a R bl ρ⨯+ 【解析】 【详解】解:(1)磁流体发电机的电动势:E Bav = (2)回路中的电流:EI R r=+ 发电机内阻:ar blρ=受到的安培力:F BIa = 克服安培力做功的功率:P 安v F =克服安培力做功的功率:P 安222B a v a R blρ=+(3)磁流体发电机对外供电时的输出效率:UI EIη= 外电压:U IR = 磁流体发电机对外供电时的输出效率:100%RaR blηρ=⨯+12.在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径r=944m 的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角θ=37°.过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25T;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104N/C .小物体P 1质量m=2×10-3kg 、电荷量q=+8×10-6C,受到水平向右的推力F=9.98×10-3N 的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当P 1到达倾斜轨道底端G 点时,不带电的小物体P 2在GH 顶端静止释放,经过时间t=0.1s 与P 1相遇.P 1和P 2与轨道CD 、GH 间的动摩擦因数均为μ=0.5,取g=10m/s 2,sin37°=0.6,cos37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P 1在水平轨道CD 上运动速度v 的大小; (2)倾斜轨道GH 的长度s .【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析) 【答案】(1)4m/s (2)0.56m 【解析】 【分析】 【详解】(1)设小物体P 1在匀强磁场中运动的速度为v ,受到水平外力F ,重力mg ,支持力N ,竖直向上的洛伦兹力F 1,滑动摩擦力f 则F 1=qvB①N mg qvB =-,f N μ=②匀速直线运动,物体处于平衡状态;0F f -=③ 解得4v =m/s④说明:①③各1分,②④各2分(2)设物体P 1在G 点的速度为1v ,由于洛伦兹力不做功 由动能定理知22111sin 37(1cos37)22qEr mgr mv mv ︒--︒=-⑤ 解得速度15v =m/s小物体P 1在GH 上运动受到水平向右的电场力qE ,重力mg ,垂直斜面支持力N 1,沿斜面向下的滑动摩擦力f 1设加速度为1a由牛顿第二定律有1cos37cos37N mg qE =︒+︒,11f N μ=11sin 37qE mg f ma -︒-=,⑥解得110a =m/s 2小物体P 1在GH 上匀加速向上运动=0.55m⑦小物体P 2在GH 上运动受到重力m 2g ,垂直斜面支持力N 2,沿斜面向上的滑动摩擦力f 2,加速度为2a则2222sin 37cos37m g m g m a μ︒-︒=⑧解得22a =m/s 2小物体P 2在GH 上匀加速向下运动22212s a t ==0.01m⑨ 故轨道长12s s s =+⑩所以s=0.56m ⑾13.如图甲所示装置由加速电场、偏转电场和偏转磁场组成,偏转电场处在相距为d 的两块水平放置的平行导体板之间,匀强磁场水平宽度为l ,竖直宽度足够大.大量电子(重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.已知电子的质量为m 、电荷量为e ,加速电场的电压为U 1=.当偏转电场不加电压时,这些电子通过两板之间的时间为T ;当偏转电场加上如图乙所示的周期为T 、大小恒为U 0的电压时,所有电子均能通过电场,穿过磁场后打在竖直放置的荧光屏上.(1)求水平导体板的板长l 0;(2)求电子离开偏转电场时的最大侧向位移y m ;(3)要使电子打在荧光屏上的速度方向斜向右下方,求磁感应强度B 的取值范围.【来源】模拟仿真预测卷(一)-2019《试吧大考卷》高中全程训练计划�物理 【答案】(1);(2);(3)【解析】【分析】 (1)应用动能定理求得电子经加速获得的速度,电子进入偏转电场后水平方向做匀速直线运动,可求板长;(2)电子在时进入电场,电子在偏转电场中半个周期的时间内做类平抛运动,偏转最小;电子在时进入电场,偏转最大且是最小偏转的3倍;(3)电子打在荧光屏上的速度方向斜向右下方的临界是电子垂直打在荧光屏上和电子轨迹与屏相切,据临界时的半径可求出对应的临界磁感应强度。