最新五年级奥数.行程.-时钟相遇与追及问题(-AB级).-教师版

合集下载

五年级奥数相遇与追及问题教师版

五年级奥数相遇与追及问题教师版

1、 五年级奥数相遇与追及问题教师版2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识精讲教学目标相遇与追及问题三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

奥数基础二:追及相遇和时钟问题(最新整理)

奥数基础二:追及相遇和时钟问题(最新整理)

奥数基础二:相遇、追及(行程)与时钟问题一、行程问题两人的行程问题,从方向看有两种情况:同向或反向。

方向相同,就是两人一前一后,快的从后面追上慢的,这种问题叫做追及问题。

追及实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程),这种情况,要用到两人的速度差。

方向相反的,就是两人面对面起来,直到相遇,所以叫作相遇问题。

这类题实质上是两人一起走了这段路程,要计算路程和,所以要用到速度和。

记住要点:方向相同,速度要相减,方面相反,速度要相加。

1、相遇问题一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?A、B两地相距9000米,包子和菠萝从A、B两地同时出发相对而行,经过60分钟相遇。

已知包子每分钟走80米,菠萝分钟走多少米?甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?2、追及问题甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行千米,300乙机每小时行千米,飞行小时后它们相隔多少千米?这时候甲机提高速度用34042小时追上乙机,甲机每小时要飞行多少千米?甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,甲要行多少千米才追上乙?两船同时到达目的地A,问两地距离?甲乙两人要从A地到B地办事。

五年级奥数第38讲时钟问题一-

五年级奥数第38讲时钟问题一-

加油站
加油站
行程问题核心公式时钟问题
行程问题核心公式:路程=速度×时间速度=路程÷时间时间=路程÷速度
加油站
相遇问题:
路程和=速度和×相遇时间
追及问题:
路程差=速度差×追及时间
加油站
环形跑道问题:
每合走一圈相遇一次每多走一圈追上一次每合走一圈,相遇一次每多走一圈,追上一次
现在是2点,从现在开始,分针与时针在什么时刻第一次重合在一起?
现在是7点40分,从现在开始过多长时间时针与分针第一次重合?
一个时钟现在显示的时间是3点整,请问:再经过多少分钟后,时针与2点钟以后,什么时刻分针与时针第一次成直角?什么时刻第二次成直
不到一个小时后回海海中午去吃饭,出门时看了一下表,是11点多钟。

不到一个小时后回来,发现这时时针与分针恰好交换了位置。

问海海出门多长时间?
在3点到4点之间有一时刻,时针与分针关于“6”对称。

请问:这一时
本讲总结
时钟问题→环形跑道上的相遇追及
追及→重合;成角度。

奥数—相遇问题(讲义)-2023-2024学年五年级上册数学人教版

奥数—相遇问题(讲义)-2023-2024学年五年级上册数学人教版

相遇问题【知识导航】行程问题是研究路程、速度、时间这三者之间数量关系的问题。

基本的数量关系式是:速度×时间=路程。

相遇问题一般是两个物体从两个地点相向而行(运动的方向相反),经过一段时间在两地之间的某一点相遇的问题。

如果两个物体同时出发在途中相遇,两地相距的距离实际就是两个物体所走的路程和。

甲所走的路程+乙所走的路程=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间因此相遇问题常常要考虑速度和。

【精典例题1】甲、乙两车分别从A、B两地相向而行,甲车每小时行80千米,乙车每小时行68千米。

两车相遇时,距全程的中点30千米,A、B两地相距多少千米?思路导航:相遇时,甲车比乙车多行30×2=60(千米),而甲车每小时比乙车多行12千米,要多行60千米需要几小时呢?这个时间就是相遇时间。

解:30×2=60(千米)60÷(80-68)=5(小时)(80+68)×5=740(千米)答:A、B两地相距740千米。

解这类题的关键是求出相遇时间,还要注意相遇点距中点a千米,快车比慢车就多行2a千米。

多行的路程÷速度差=相遇时间相遇路程=速度和×相遇时间【小试身手】1.客、货两车分别从A、B两城相向而行,客车每小时行70千米,货车每小时行60千米,相遇时两车距两城的中点20千米,A、B两城相距多少千米?2.兄弟两人同时从A、B两地相向而行,哥哥每分钟行120米,弟弟每分钟行100米,当哥哥到达两地中点时,弟弟离中点还有60米,A、B两地相距多少米?3.快车每小时行75千米,比慢车每小时多行10千米,两车同时从甲、乙两地相向而行,在距中点15千米处相遇,求甲、乙两地的路程。

【精典例题2】甲、乙两车同时从A、B两地相向而行,两车在距A地30千米处第一次相遇,相遇后两车继续行驶,在到达对方出发点后立即沿原路返回,第二次相遇点距B 地20千米,A、B两地的距离是多少?思路导航:第一次相遇,甲、乙两车共行一个全程,第二次相遇,两车共走完3个全程,这时甲走30×3=90(千米),90千米比一个全程还多20千米千米,全程是90-20=70(千米)。

五年级奥数.行程.-时钟相遇与追及问题(-AB级).-教师版

五年级奥数.行程.-时钟相遇与追及问题(-AB级).-教师版

时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度? 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答【解析】 142.5度 【答案】142.5度例题精讲知识框架时钟追及与相遇问题【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题【难度】☆☆【题型】填空【解析】16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有秒。

【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】解:它们的速度比为1:12:720,所以秒针转了1466÷(720+12+1)×720=1440圈.即1440×60=86400秒【答案】86400秒.【巩固】在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有秒。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟问题是关于时针和分针的追及或相遇问题,可以看作是一个特殊的圆形轨道问题。

时钟问题包括时钟的快慢、周期和时针与分针所成的角度等。

不同于其他行程问题,时钟问题的速度和总路程的度量方式是指针“每分钟走多少角度”或“每分钟走多少小格”,其中分针速度为每分钟走1小格或6度,时针速度为每分钟走1/12小格或0.5度。

但是对于一些“怪钟”或“坏了的钟”,它们的速度可能与常规时钟不同,需要进行独立分析。

时钟问题可以视为行程问题,其中分针快,时针慢,因此分针与时针的问题就是追及问题。

解决时钟的快慢问题时,可以使用十字交叉法。

例如,在标准时钟中,时针与分针从一次重合到下一次重合所需时间为65.5分。

例1中,当时钟表示1点45分时,时针和分针所成的钝角为142.5度。

例2中,时针、分钟和秒针转动的圈数之和为1466圈,求这段时间有多少秒。

解答中,它们的速度比为1:12:720,因此秒针转了1440圈,即秒。

在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有多少秒?解析:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格,即3600秒。

答案:3600秒。

有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解析:在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“l/12”,再过54/11分钟,时针与分针将第一次重合。

第二次重合时显然为12点整,所以再经过65分钟,时针与分针第二次重合。

标准的时钟,每隔65分钟,时针与分针重合一次。

答案:54分钟。

钟表的时针与分针在4点多少分第一次重合?解析:此题属于追及问题,追及路程是20格,速度差是1/11.如果设分针的速度为单位“l”,那么时针的速度为“l/12”。

第12讲 行程问题之相遇追及.含答案.5年级数学.尖子班.秋季.教师版

1. 掌握相遇追及基本公式,并且会利用公式解决直线上的相遇追及问题;2. 掌握相遇追及基本公式,并且会利用公式解决环形行程的相遇追及问题;3. 掌握解决复杂行程问题的方法:包括多次相遇追及、多人相遇追及问题。

多次相遇追及一次相遇追及多人的相遇追及两人的相遇追及行程问题相遇追及问题火车过桥问题流水行船问题直线上的相遇追及环形跑道上的相遇追及行程问题在历年各类小学奥数竞赛试题中,都占有很大的比重,同时也是小学奥数专题中的难点。

行程问题经常作为一份试卷中的压轴难题出现。

提高解决行程问题的能力不仅能帮助学生各类数学竞赛中取得优异成绩,还能为学生在今后初中阶段的数学、物理等学科打下良好的基础。

在行程问题中涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题。

相遇问题:路程和=速度和⨯时间追及问题:路程差=速度差⨯时间多次相遇追及问题:“线段示意图”和“折线示意图”是解决这类问题的常用方法。

在相遇问题和追及问题中有以下几种特殊情况,本讲不作专门的介绍,但是学生可以了解一下: 发车间隔问题: 汽车间距=汽车速度⨯汽车发车时间间隔汽车间距=(汽车速度+行人速度)⨯相遇事件时间间隔汽车间距=(汽车速度-行人速度)⨯追及事件时间间隔流水问题和自动扶梯问题:本类题目解题的关键在于将其转化为相遇问题和追及问题来做。

另外,行程问题通常和分数应用题,列方程解应用题结合起来,巧妙的运用一些代数的方法解决,通常可以取得事半功倍的效果。

还有一些行程问题,运用比例知识解决也是非常便捷的:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。

碰到综合性问题,可以先把综合性问题分解成几个单一问题,然后逐个解决。

第十二讲行程问题之相遇追及【例1】 【超常班、超常3班、超常2班、超常1班】甲乙两地相距60km ,小王骑车以10/km h 的速度在上午8点从甲地出发去乙地。

过了一会儿,小李骑车以15/km h 的速度也从甲地去乙地。

追及问题(教案)2023-2024学年数学五年级下册-沪教版

追及问题(教案)2023-2024学年数学五年级下册-沪教版教学内容:本节课主要讲解追及问题的基本概念和方法。

追及问题是指两个或多个物体从同一地点出发,以不同的速度行驶,要求找出它们相遇的时间或地点。

通过本节课的学习,学生将掌握追及问题的解题思路和技巧。

教学目标:1. 让学生理解追及问题的基本概念和条件。

2. 培养学生运用追及问题的解题方法,解决实际问题。

3. 提高学生分析问题和解决问题的能力。

教学难点:1. 追及问题的条件和解题思路的理解。

2. 追及问题中速度、时间、距离的关系的运用。

教具学具准备:1. 教学PPT或黑板。

2. 练习题和草稿纸。

3. 计算器(可选)。

教学过程:1. 导入:通过一个简单的追及问题,引起学生的兴趣,让他们了解追及问题的基本概念。

2. 讲解:讲解追及问题的条件和解题思路,通过例题进行示范,让学生理解追及问题中速度、时间、距离的关系。

3. 练习:让学生独立完成一些追及问题的练习题,巩固所学知识。

4. 讨论与解答:学生互相讨论练习题的解题过程,教师解答学生的疑问。

5. 总结:总结追及问题的解题方法和技巧,强调重点和难点。

6. 作业布置:布置一些追及问题的作业题,让学生在课后进行巩固练习。

板书设计:1. 追及问题2. 副2023-2024学年数学五年级下册-沪教版3. 教学目标4. 教学难点5. 教学过程6. 练习题和答案7. 作业布置作业设计:1. 基础题:解决一些简单的追及问题,要求学生理解追及问题的基本概念和解题思路。

2. 提高题:解决一些稍微复杂的追及问题,要求学生运用所学的解题方法和技巧。

3. 挑战题:解决一些更复杂的追及问题,要求学生运用所学的知识进行推理和计算。

课后反思:通过本节课的教学,学生对追及问题的基本概念和解题方法有了更深入的理解。

在练习过程中,学生能够运用追及问题的解题方法解决实际问题,提高了他们分析问题和解决问题的能力。

但也发现一些学生在理解追及问题的条件和解题思路上还存在一些困难,需要进一步加强讲解和指导。

(完整版)小学奥数-行程追及问题(教师版)

行程追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例1】★甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?【解析】甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)【例2】★哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?【解析】哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)【小试牛刀】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?【解析】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)【例3】★★一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

小学奥数精讲 相遇与追及问题.教师版

1、 根据学习的“路程和=速度和× 时间”继续学习简单的直线上的相遇与追及问题2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇 甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

知识精讲教学目标相遇与追及问题⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题 【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度? 【考点】行程问题之时钟问题 【难度】☆☆【题型】解答【解析】 142.5度 【答案】142.5度例题精讲知识框架时钟追及与相遇问题【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题【难度】☆☆【题型】填空【解析】16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有秒。

【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】解:它们的速度比为1:12:720,所以秒针转了1466÷(720+12+1)×720=1440圈.即1440×60=86400秒【答案】86400秒.【巩固】在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有秒。

【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】解:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格.即3600秒【答案】3600秒.【例 3】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l ”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l ”,那么时针的速度为“112”. 【答案】65411分钟【巩固】 钟表的时针与分针在4点多少分第一次重合? 【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

【答案】92111分【例 4】钟表的时针与分针在8点多少分第一次垂直? 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答【解析】 32711此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。

【答案】32711分【巩固】 2点钟以后,什么时刻分针与时针第一次成直角? 【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分)【答案】3 2711分【例 5】时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到秒)【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】时针、分针下一次反向成一直线是在7点以后,这时分针应比时针多走钟面上5格,分针每分钟走1格,时针每分钟走112格.5÷(1-112)=6011=5511,511×60≈27。

即在7点5分27秒,时针、分针再次反向成一直线。

【答案】7点5分27秒【巩固】时钟的时针和分针在9点多反向成一直线,问:下—次反向成—直线经过了多长时间? 【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】分针追了360(度),7205360(60.5)651111÷-==(分)【答案】5 6511【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分),即分针与时针的速度差是6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,,第一次在一条直线时,分针与时针的夹角是180度,,即分针与时针从60度到180度经过的时间为所求。

,所以答案为9(18060) 5.52111-÷=(分)【答案】9 2111分【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为490(60.5)1611÷-=(分)和1270(60.5)4911÷-=(分)【答案】14911分【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。

做完作业再看钟,还不到9点,而且分针与时针恰好重合。

小华做作业用了多长时间?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,从在一条直线上追到重合,需要分针追180度,8180(60.5)3211÷-=(分)【答案】8 3211分【巩固】小红上午8点多钟开始做作业时,时针与分针正好重合在一起。

10点多钟做完时,时针与分针正好又重合在一起。

小红做作业用了多长时间?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】8点多钟时,时针和分针重合的时刻为:17401431211⎛⎫÷-=⎪⎝⎭(分)10点多钟时,时针和分针重合的时刻为:16501541211⎛⎫÷-=⎪⎝⎭(分)67101054843210111111-=时分时分时分,小红做作业用了1021011时分时间【答案】1021011时分【例 8】某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.评注:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.【答案】40分钟【巩固】 某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为800,七时前回家时又看手表,发现时针和分针的夹角仍是800.那么此人外出多少分钟?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 如下示意图,开始分针在时针左边800位置,后来追至时针右边800位置.于是,分针追上了1600.所需时间为3201160(60.5)291111÷-==分钟.所以此人外出12911分钟.【答案】12911分钟【例 9】一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【考点】行程问题之时钟问题【难度】☆☆☆【题型】解答【解析】根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即5360(60.5)5513÷+=(分)【答案】5 5513分【巩固】一部电影放映的时间大约2小时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【考点】行程问题之时钟问题【难度】☆☆☆【题型】解答【解析】根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了两圈,即10720(60.5)11013÷+=(分)【答案】10 11013分【例 10】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【考点】行程问题之时钟问题【难度】☆☆☆【题型】解答【解析】8点整的时候,时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为112 40(1)361213÷+=分钟,即在8点123613分钟为题中所求时刻.【答案】8点12 3613分【巩固】3时到4时之间时针和分针在“3”的两边,并且两针所形成的射线到“3”的距离相等.问这时是3时多少分?【考点】行程问题之时钟问题【难度】☆☆☆【题型】解答【解析】 3点整的时候,时针与分针夹角90度,设在满足题意时,时针走过x 度,那么分针走过90-x 度,所以时针、分针共走过x+(90-x)=90度.于是,所需时间为1801190(60.5)131313÷+==分钟,即在8点111313分钟为题中所求时刻. 【答案】8点111313分【随练1】现在是3点,什么时候时针与分针第一次重合?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 根据题意可知,3点时,时针与分针成90度,第一次重合需要分针追90度,490(60.5)1611÷-=(分)【答案】41611分【随练2】时钟的时针和分针在1点多反向成一直线,问:下—次反向成—直线经过了多长时间? 【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 分针追了360(度),7205360(60.5)651111÷-==(分) 【答案】56511【随练3】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道课堂检测题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 9点和10点之间分针和时针在一条直线上的时刻为:14151161211⎛⎫÷-= ⎪⎝⎭(分),时针与分针第一次重合的时刻为: 11451491211⎛⎫÷-= ⎪⎝⎭(分),所以这道题目所用的时间为:148491632111111-=(分) 【答案】83211分【随练4】1时到2时之间时针和分针在“1”的两边,并且两针所形成的射线到“1”的距离相等.问这时是1时多少分?【考点】行程问题之时钟问题【难度】☆☆☆【题型】解答【解析】 1点整的时候,时针与分针夹角30度,设在满足题意时,时针走过x 度,那么分针走过30-x 度,所以时针、分针共走过x+(30-x)=30度.于是,所需时间为60830(60.5)41313÷+==分钟,即在8点8413分钟为题中所求时刻. 【答案】8点8413分【作业1】当时钟表示12点30分时,时针和分针所成的钝角是多少度? 【考点】行程问题之时钟问题 【难度】☆☆【题型】解答【解析】 165度 【答案】165度家庭作业【作业2】上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】时针与分针第一次重合的经过的时间为:11451491211⎛⎫÷-=⎪⎝⎭(分),当钟表的时针和分针重合时,钟表表示的时间是9点14911分。

相关文档
最新文档