第二章 2.1.1 简单随机抽样2.1.2系统抽样
简单随机抽样系统抽样分层抽样含答案

2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
高中数学必修3第二章知识点总结及练习

高中数学必修3知识点总结第二章统计2.1.1简单随机抽样1.总体和样本:在统计学中, 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究*******************************************************************************变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
高中数学第2章统计2.1抽样方法2.1.2系统抽样教案苏教版必修3

2.1.2 系统抽样整体设计教材分析当总体中个体比拟多,抽签法与随机数表法用于选取样本就比拟烦琐,而且也不能保证样本代表性,所以本节课将要学习又一种新抽样方法——系统抽样.在教学时教师不仅要让学生了解系统抽样概念,而且还要让学生掌握如何进展系统抽样,以及在进展系统抽样时所要注意一些事项,如怎样进展分段,应该分成多少段,分段时如总体个数不能被样本容量整除怎么办等等.在教学中要教会学生会比拟各种方法适用范围与各自优缺点,并会根据实际情况选择恰当抽样方法,且在讲解系统抽样时必须紧扣“每个个体被抽取概率是相等〞理论依据.黑格尔说:“教师是学生心目中‘权威人物’,是儿童心目中最神圣偶像.〞因此,我们教师在教学中要建立民主师生关系,要有意突破常规,让学生敢于在课堂上表现自己,教师也要善于表扬他们.教学时,教师要让学生充分发挥自己潜能,培养他们会对现有知识独立钻研创新精神,并培养他们会用现有知识合理辐射数学思维,得出一些具有个人特色正确结论.三维目标了解系统抽样概念及抽样步骤,会用系统抽样从总体中抽取样本,能运用所学知识判断、分析与选择抽取样本方法.能从现实生活或其他学科提出有价值数学问题,并能加以解决,培养学生运用统计思想表达思考与解决现实世界中问题能力,让学生感受数学美学价值在于鲜活实际应用,立志于学习与研究数学,最大限度地用数学知识效劳于社会,同时自身也能获得最正确生存环境.重点难点教学重点:系统抽样应用.教学难点:对系统抽样中“系统〞思想理解;对样本随机性理解.课时安排1课时教学过程导入新课当总体中个体数比拟多时,采用抽签法或随机数表法那么比拟烦琐,那么该如何抽样?如:某校高一年级共有20个班,每班有50名学生.为了了解高一学生视力状况,从这1 000人中抽取一个容量为100样本进展检查,应该怎样抽取?学生思考,交流讨论,然后代表发言,教师修改总结.推进新课新知探究1.将总体平均分成几个局部,然后按照一定规那么,从每个局部中抽取一个个体作为样本,这样抽样方法称为系统抽样〔systematic sampling〕.2.假设要沉着量为N总体中抽取容量为n样本,系统抽样步骤为:〔1〕采用随机方式将总体中N 个个体编号;〔2〕将编号按间隔k 分段,当n N 是整数时,取k=n N ;当n N 不是整数时,从总体中剔除一些个体,使剩下总体中个体个数N′能被n 整除,这时取k=nN ,并将剩下总体重新编号; 系统抽样与简单随机抽样联系:将总体均分后每一局部进展抽样时,采用是简单随机抽样.系统抽样优点是简便易行,当对总体构造有一定了解时,充分利用已有信息对总体中个体进展排队再抽样,可提高抽样效率;当总体中个体存在一种自然编号时,便于施行系统抽样法.系统抽样缺点是在不了解样本总体情况下,所抽出样本具有一定偏差.〔3〕在第一段中用简单随机抽样确定起始个体编号l ;〔4〕按照一定规那么抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k 个体抽出.应用例如〔多媒体出示题目,学生思考〕例1 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线8件产品作检验.这里采用了哪种抽取样本方法分析:此抽样选用了“等时〞抽样,与“等间距〞类似而作出判断.解:系统抽样.点评:解决此题要弄清楚目前所学两种抽样概念与特点.例2 某校为了了解全校住校生对学校食堂意见,打算从全校1 000名住校生中抽取50名进展调查,用系统抽样法进展抽取,并写出过程.分析:根据系统抽样步骤可解此题.解:首先将这1 000名学生从1开场进展编号,然后按号码顺1000=20,再从号码1~20第一段中序均分成50段,每段个体数为50用简单随机抽样抽取一个号码,假设抽到是9号,然后从9 开场,每隔20个号码抽取一个,这样就得到容量为50样本编号:9、29、49、…、989,这样,我们就得到一个容量为50样本,这种抽样方法就是系统抽样.N是整数.点评:此题“分段〞比拟方便,因为分段间隔k=n例3 某单位在岗职工共624人,为了调查工人用于上班途中所用时间,决定抽取10%工人进展调查,如何采用系统抽样方法完成这一抽样?分析:总体中每一个个体,都必须等可能地入样.为了实现“等距〞入样,且又等概率,应先剔除,再“分段〞,后定起始数.解:抽样过程如下:〔1〕先将在岗工人624人,用随机方式编号〔如按出生年月日编号〕:000,001,002, (623)〔2〕由题知应抽取62人作为样本,因为624不能被62整除,所以应从总体中剔除4个,将余下620人按编号顺序补齐000,001,002,…,619,并分成62个段,每段10人.〔3〕在第一段000,001,002,…,009这十个编号中,随机定一个起始号l 〔如006〕.〔4〕最后编号为006,016,026,…,59610名工人就为所要抽取样本.点评:1.系统抽样步骤可概括为:〔1〕编号〔采用随机方式将总体中个体编号,为简便起见,有时可直接利用个体所带号码,如考生准考证号、街道上各户门牌号,等等〕.n N 〔N 为总体中个体数,n 为样本容量〕是整数时, k=n N ;当n N 不是整数时,通过从总体中剔除一些个体,使剩下个体数N′能被n 整除,这时k=nN 〕. 〔3〕确定起始个体编号l 〔在第一段用简单随机抽样确定起始个体编号l 〕.〔4〕按照事先确定规那么.......抽取样本〔通常是将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕.“事先确定规那么〞说明不一定按“通常〞方法〔即将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕来抽取样本.2.学生解答,归纳步骤后由学生修改整理,教师巡视点拨,对整理较好同学进展及时表扬或鼓励,激发学生自信.思考:在用系统抽样方法抽样过程中,会用怎样“规那么〞来取除起始号以外其他编号呢?看例4.例4 一个总体中有100个个体,随机编号为0、1、2、 (99)依编号顺序平均分成10个小组,组号依次为1、2、3、…、10,现用系统抽样方法抽取一个容量为10样本,规定如果在第1组随机抽取号码为m,那么在第k(k≥2)组中抽取号码个位数字与m+k个位数字一样.假设m=6,那么第7组中抽取号码为__________________.分析:此题与课本中总结“通常〞方法〔即每隔10抽出一个号码〕有所不同,挖掘点在于条件“第一个号码m之后,在第k组中抽取号码个位数字与m+k个位数字一样〞.解:因为,第1组号码0~9;第2组号码10~19;第3组号码20~29;依次下去第7组中抽取号码十位数字是6.此题要求“在抽取了第一个号码m之后,在第k组中抽取号码个位数字与m+k 个位数字一样〞限制了各组抽出号码个位数.利用m及k值,求出m+k个位数字,即此题中由m=6,k=7得m+k=13,显然,m+k=13个位数字是3,故从第7组中抽取号码是63.所有被抽出号码依次为:6,18,29,30,41,52,63,74,85,96.它们“不等距〞.点评:此题是福建2004年高考卷第15〔文〕题,如果按照系统抽样经历做法“等间距〞做此题话,那么不达.一位教育专家曾指出:学习如果过分地依赖学习者经历或感情世界,即通过纯粹经历积累,而不是通过认知活动对经历进展加工,那么学习将会出现危机,因此必须重视人思维教育.所以,我们在教学时要留足够时间给学生探究,充分暴露学生思维,让学生自己打破思维中过多“经历〞束缚,展示学生创造性学习思维活动过程.知能训练课本本节练习.解答:1.系统抽样中总体与样本比必须是整数,而1 252被50整除余2,因此必须随机剔除2人.应选A.2.具体步骤为:第一步,将1 003名学生,用随机方式编号〔如按出生年月日编号〕:0000,0001,0002,…,1 002.第二步,由题知:应抽取20名学生作为样本,因为1 003不能被20整除,所以应从总体中随机剔除3名学生,将余下1 000名学生按编号顺序补齐为0000,0001,0002,…,0999,并分成20个段,每段50名学生.第三步,在第一段0000,0001,0002,…,0049这50个编号中,随机定一个起始号l〔如0006〕.第四步,编号为0006,0056,0106,…,095620名学生就是所要抽取样本.3.可选择在某个年级进展,如选择高一年级.先将所有学生随机地进展编号;然后将他们分成m段,每段n人〔如总人数不能被均分,可随机地剔除几个人再分〕;再从第一段随机抽取一个号码〔如l〕;那么编号为l,l+n,l+2n,…,l+(m-1)n学生就是需要.最后测量这些学生两臂平展长度及身高,再分别计算两组数据平均数.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕(1)系统抽样适用于总体中个数较多情况,因为这时采用简单随机抽样显得不方便.(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中个体均分后每一段进展抽样时,采用是简单随机抽样.(3)与简单随机抽样一样,系统抽样也属于等概率抽样.作业为了了解某地参加英语口语水平测试5 027名学生成绩,从中抽取了200名学生成绩进展统计分析,请写出运用系统抽样抽取样本步骤.解:具体步骤为:第一步,将参加计算机水平测试5 027名学生用随机方式编号〔如按准考证编号〕0000,0001, (5026)第二步,由题知:应抽取200人作为样本,因为5 027不能被200整除,所以应从总体中剔除27个,将余下5 000人按编号顺序补齐0000,0001,…,4999,分成200个段,每段25人.第三步,在第一段0000,0001,…,0024这25个编号中,随机定一个起始号l〔如0022〕.第四步,编号为0022,0047,…,4997工人就为所要抽取样本.设计感想由于这局部内容比拟简单,所以整节课以学生为主,尤其是根底在中下游学生,要激发他们学习积极性,从而活泼课堂气氛,使每个学生都全身心投入,动脑、举例.。
2.1.1-2 简单随机抽和系统抽样样

思考3:一般地,抽签法的操作步骤如何? 第一步:将总体中的所有个体编号,并把号码写在形状、
大小相同的号签上.
第二步:将号签放在一个容器中,并搅拌均匀. 第三步:每次从中抽取一个号签,连续抽取n次,就得 到一个容量为n的样本.
思考4:你认为抽签法有哪些优 点和 缺 点?
优点:简单易行,当总体个数不多的时候搅拌均匀很容易, 个体有均等的机会被抽中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性 差的可能性很大.
思考:假设我们要考察某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋进行检验,利用 随机数表抽取样本时应如何操作? 第一步:将800袋牛奶编号为000,001,002,…,799.
第二步:在随机数表中任选一个数作为起始数(例如选出
第8行第7列的数7为起始数). 第三步:从选定的数7开始依次向右读(读数的方向也可 以是向左、向上、向下等),将编号范围内的数取出,编 号范围外的数去掉,直到取满60个号码为止,就得到一个
第二章 统计
2.1 随机抽样
2.1.1 简单随机抽样
1936年,美国总统选举前,一份颇有名气的杂志的工作人员做了 一次民意测验,调查共和党的兰顿(当时任堪萨斯州州长)和民主党的
罗斯福(当时的总统)谁将当选下一届总统。为了了解公众意向,调查
者通过电话簿和车辆登记簿的名单给一大批人发了调查表(注意在1936 年电话和汽车只有少数富人拥有)。通过分析收回的调查表,显示兰顿
可得到一个容量为40的样本.
1.为了解1200名学生对学校某项教改试验的意见,打算从 中抽取一个容量为30的样本,考虑采用系统抽样,则分段
的间隔k为( A )
第二章2.1.2 系统抽样

曹县三中高一数学导学案1第二章2.1.2 系统抽样制作人:沙德刚 审核人:王俊兰 2016-3-【学习目标】:1. 正确理解系统抽样的概念. 2. 掌握系统抽样的一般步骤. 复习回顾: 随机抽样有什么优缺点?预习导航:引例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?问题探究(一):1、系统抽样的定义: 一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成 的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N 较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号基础上加上分段间隔的整倍数即为抽样编号. 2、系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N 个个编号。
(2)将整体按编号进行分段,确定分段间隔k ,k =[n N ].(3)在第一段用简单随机抽样确定起始个体的编号L (L ∈N,L ≤k )。
(4)按照一定的规则抽取样本,通常是将起始编号L 加上间隔k 得到第2个个体 编号L+k ,再加上k 得到第3个个体编号L+2k ,这样继续下去,直到获取整个样本。
说明:(1)从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分 块解决,从而把复杂问题简单化,体现了数学转化思想。
(2)如果遇到n N不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。
练一练:(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是( )A 、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序, 随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B 、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C 、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D 、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈(3)系统抽样与简单随机抽样比较,有何优、缺点? 例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
2.1随机抽样

例2:某车间工人加工一种轴100件,为 了了解这种轴的直径,要从中抽取10件 轴在同一条件下测量,如何采用简单随 机抽样的方法抽取样本?
B.与第几次抽样有关,第一次抽的可能性最小
C.与第几次抽样无关,每次抽到的可能性相等
D.与第几次抽样无关,与抽取几个样本无关
引例:某学校为了了解高一年级学生对教师 教学的意见,打算从高一年级500名学生中 抽取50名进行调查。请设计抽样方法。 问题: (1)例中总体容量、样本容量分别为 多少? (2)除了用简单随机抽样法完成抽样外还可 以设计怎样的抽样方法?
抽签法有哪些优点和缺点? 优点: 简单易行,当总体个数不多的时候 搅拌均匀很容易,个体有均等的机会被 抽中,从而能保证样本的代表性. 缺点: 当总体个数较多时很难搅拌均匀, 产生的样本代表性机数表、随机数骰 子或计算机产生的随机数进行抽样, 叫随机数表法,这里仅介绍随机数表 法。 怎样利用随机数表产生样本呢?下面通 过例子来说明,
解法1:(抽签法)将100件轴编号为1, 2,…,100,并做好大小、形状相同的号签, 分别写上这100个数,将这些号签放在一起, 进行均匀搅拌,接着连续抽取10个号签,然 后测量这个10个号签对应的轴的直径。
解法2:(随机数表法)将100件轴编号为00, 01,…99,在随机数表中选定一个起始位 置,如取第21行第1个数开始,选取10个 为68,34,30,13,70,55,74,77, 40,44,这10件即为所要抽取的样本。
样本中个体的数量. 5.样本容量:
1、为了了解全校240名学生的身高情况,从中 抽取40名学生进行测量,下列说法正确的是 ( ) D A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是40
2.1.2系统抽样课件人教新课标B版(1)
复习回顾
1.简单随机抽样的概念 一般地,设一个总体的个体数为N,如果通过 逐个不放回抽取的方法从中抽取n个个体作为样本, 且每个体被抽到的概率相等,就称这样的抽样方 法为简单随机抽样。
特点是:有限性,逐个性,不回性,等率性
2.简单随机抽样的方法:
抽签法 随机数法 3.适用范围:总体中个体数较少的情 况,抽取的样本容量也较小时。
因此,在保证抽样的公平性,不降低样本的 代表性的前提下,我们还需要进一步学习其 他的抽样方法,以补偿简单随机抽样的不足
下面我们先探究:
系统抽样
例:某学校为了了解高一年级学生对教师教学的 意见,打算从高一年级500名学生中抽取50名进 行调查。
第一将这500名学生从1开始进行编号,然后按 号码顺序以一定的间隔进行抽取,由于 500/50=10,所以抽取的相邻两个号码之差可定 为10,即从1~10中随机抽取一个号码,
新课引入
+ 在啤酒厂的生产包装的流水线上,如何抽样检 查产品的包装质量?
+ 在一个学校如何从教师、职员和不同年级的学 生中抽取一个样本?
显然以上方法抽出的样本就不能很好地体现总 体性能
当总体的个数很多时,或者构成总体的个体 有明显差异时,用简单随机抽样抽取样本并 不方便,快捷,抽出的样本不能很好地体现 总体。
A.不全相等 B.均不相等 C.都相等 D.无法确定
例5 采用系统抽样从个体数为 83的总体中抽取一个样本容量 为10的样本,那么每个个体入 样的可能性为
数学运用
例6、某单位在岗职工共624人,为了调查工人 用于上班途中的时间,决定抽取10%的工人进 行调查。试采用系统抽样方法抽取所需的样本. 解:
D、电影院调查观众的某一指标,邀请每排(每 排人数相等)座位号为14的观众留下来座谈。
§2.1.12简单随机抽样与系统抽样
§2.1.1 -2 简单随机抽样与系统抽样(课前预习案)班级:___ 姓名:________一、新知导学1、一般把所考查的对象的__________的全体构成的集合看作总体;构成总体的________作为个体。
从总体中抽出若干个体所组成的集合叫做________,样本个体的数目叫做________。
2、在抽样时,要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样条件的抽样是___________。
3、简单随机抽样:从元素个数为N的总体中________容量为n的样本,如果每次抽取总体中的各个人体有________被抽到,这种抽样方法叫做________,优点是简单易行。
4、常用的简单随机抽样有________法和________法。
5、抽签法(抓阄法),用抽签法从容量为N的总体中抽取一个容量为n的样本的步骤是:S1:给总体中的所有个体编号,号码可以为1至N;S2:将1—N这个N个号码写在形状,大小完全相同的号签上(号签可以用小球、卡片、纸片等制作)S3:将号签放在一个不透明的容器中,并________。
S4:从容器中每次抽取一个号签,并记录其编号,连续抽取________次。
S5:从总体中将与抽出的号签的编号相一致的个体取出就组成一个样本。
5、用随机读数法的抽取样本的步骤:S1:将总体中的所有个体编号(每个号码位数一致)S2:在随机数表中任选一个数作为开始S3:从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则________,若在编号中,且不与前面取出的数重复,就把它取出,否则_______,如此进行下去,直至取满为止;S4:根据选定的号码抽取样本。
6.系统抽样:当总体中的个体数较多时,可将总体分成___ 的几个部分,然后按预先定出的规则,从每一部分_____ ,得到所需要的样本,这种抽样叫做系统抽样。
由于抽样的间隔相等,因此系统抽样也被称做___ ,在进行大规模的抽样调查时,系统抽样比简单随机抽样要方便的多。
19-20版 第2章 2.1 2.1.2 系统抽样
2.1.2系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组抽0 068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14A[将20分成4组.每组5个号,间隔等距离为5.]4.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.40[分段间隔k=Nn=1 20030=40.]系统抽样的概念【例1】下列抽样中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样C[根据系统抽样的定义和特点判断,A项中的总体有明显的层次区别,不适宜用系统抽样;B项中样本容量很小,适合随机数表法;D项中总体容量较小,适合抽签法.]系统抽样的判断方法(1)首先看是否在抽样前知道总体是由什么组成,多少个个体.(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样.(3)最后看是否等距抽样.1.下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈C[A编号间隔相同,B时间间隔相同.D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.]们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为() A.7B.9C.10D.15思路点拨:求出第n组抽到的号码,然后解不等式即可.C[从960人中用系统抽样的方法抽取32人,则抽样间隔为k=96032=30.因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21.由451≤30n-21≤750,即151115≤n≤25710,所以n=16,17,…,25,共有25-16+1=10(人).]系统抽样计算问题的解法及技巧(1)若已知总体数,且样本容量已知,则采用系统抽样方法进行抽样时,如果要剔除一些个体,那么需要剔除的个体数为总体数除以样本容量所得的余数.(2)利用系统抽样的概念与等距特点,若在第一段抽取的编号为m,分段间隔为d,则在第k段中抽取的第k个编号为m+(k-1)d.(3)若求落入区间[a,b]的样本个数,则可通过列出不等式a≤m+(k-1)d≤b,解出满足条件的k的取值范围.再根据k∈N*,求出其范围内的正整数个数即可.2.某单位有200名职工,现要从中抽取40名职工作为样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.37[由系统抽样的知识可知,将总体分成均等的若干部分是将总体分段,且分段间隔为5.因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.]1.用系统抽样抽取样本时,每段各取一个号码,其中第一段的个体编号怎样抽取?[提示]使用简单随机抽样方法抽取.2.用系统抽样抽取样本时,当Nn不是整数时,随机剔除了多余的个体,这样还公平吗?[提示]因为剔除多余个体是用简单随机抽样的方法进行的,每一个个体被剔除的机会都一样,所以是公平的.3.用系统抽样抽取样本时,第1段是随机取出的号码,其余各段都是由计算式算出来的,并没有抽签,这样公平吗?[提示]虽然除第1段外,后面的样本都是通过计算抽取的,但由于第1段号码确定是随机的,故后面各段号码的确定均是随机的,是公平的.【例3】某工厂有工人1 007名,现从中抽取100人进行体检,试写出抽样方案.思路点拨:样本容量为100,总体容量为1 007,不能被100整除,因此首先需要剔除7个个体,然后确定分段间隔为1 000100=10,利用系统抽样即可.[解]用系统抽样的方法抽取样本.第一步,编号.将1 007名工人编号,号码为0001,0002, (1007)第二步,利用随机数表法抽取7个号码,将对应编号的工人剔除.第三步,将剩余的1 000名工人重新编号,号码为0001,0002, (1000)第四步,确定分段间隔k=1 000100=10,将总体分成100段,每段10名工人.第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m.第六步,利用分段间隔,将m,m+10,m+20,…,m+990共100个号码抽出.1.(变条件)某工厂有102名工人,现从中抽取10人进行体检,请写出抽样方案.[解]根据条件,可采用抽签法抽取样本.第一步:编号,把102名工人编号为1,2,3, (102)第二步:制签,做好大小、形状完全相同的号签,分别写上这102个数.第三步:搅拌,将这些号签放入暗箱,充分摇匀.第四步:入样,每次从中抽一个号签,不放回地连续抽10次,从而得到容量为10的入选样本.2.(变结论)某工厂有1007名工人,现从中抽取100人进行调查工资收入情况,能否用系统抽样方法抽取样本?为什么?[解]不能用系统抽样抽取,因为工人的工资状况与其年龄、工种等因素有关,总体中个体有明显的分层.系统抽样设计中的注意点(1)当总体容量不能被样本容量整除时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.(2)被剔除的部分个体可采用简单随机抽样法抽取.(3)剔除部分个体后应重新编号.(4)每个个体被抽到的机会均等,被剔除的机会也均等.1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当Nn不为整数时,取k=⎣⎢⎡⎦⎥⎤Nn,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()(3)用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,每段各有Nn个号码.()[答案](1)√(2)×(3)×2.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为() A.2B.3 C.4 D.5A[1 252=50×25+2,故应从总体中随机剔除2个个体.]3.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24 B.25C.26 D.28B[5 008=200×25+8,故每组容量为25.]4.从2 003名学生中抽取一个容量为40的样本,应如何抽取?[解]先将2 003名学生按0 001到2 003编号,利用随机数表法从中剔除3名学生,再对剩余的2 000名学生重新从0001到2 000编号,按编号顺序分成40组,每组50人,先在第一组中用抽签法抽出某一号,如0 006,依次在其他组抽取0 056,0 106,…,1 956,这样就得到了一个容量为40的样本.课时分层作业(十)系统抽样(建议用时:60分钟)[基础达标练]一、选择题1.下列问题中,最适合用系统抽样法抽样的是()A.从某厂生产的30个零件中随机抽取6个入样B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家.为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C.从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况D.从参加期末考试的2 400名高中生中随机抽取10人了解某些情况C[A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次,不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D总体容量较大,样本容量较小,可用随机数表法.故选C.] 2.采用系统抽样的方法从2 005个个体中抽取一个容量为50的样本,则抽样间隔和随机剔除的个体数分别为()A.40,5B.50,5C.5,40 D.5,50A[因为2 005÷50=40余5,所以用系统抽样的方法从2 005个个体中抽取一个容量为50的样本,抽样间隔是40,且应随机剔除的个体数为5.] 3.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,32B [根据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B 符合.]4.总体容量为524,若采用系统抽样,下列的抽取间隔不需要剔除个体的是( )A .3B .4C .5D .6B [因为只有5244=131,没有余数,所以当间隔为4时,不需要剔除个体.]5.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是( )A .7B .5C .4D .3B [由公式125=l +(16-1)×16020,解得l =5.]二、填空题6.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是________.20 [由系统抽样原理知,抽样间隔k =524=13,故抽取样本的编号分别为7、7+13、7+13×2、7+13×3.故还有一位同学的编号应是20.]7.某公司有52名员工,要从中抽取10名员工参加国庆联欢活动,若采用系统抽样,则该公司每个员工被抽到的机会是________.526 [采用系统抽样,需先剔除2名员工,确定间隔k =5,但每名员工被剔除的机会相等,即每名员工被抽到的机会也相等,故虽然剔除了2名员工,但这52名员工中每名员工被抽到的机会仍相等,且均为1052=526.]8.已知标有1~20号的小球20个,若我们的目的是估计总体号码的平均值,即20个小球号码的平均数.试验者从中抽取4个小球,以这4个小球号码的平均数估计总体号码的平均值,按下面方法抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________.(1)9.5(2)10.5[20个小球分4组,每组5个.(1)若以2号为起点,则另外三个球的编号依次为7,12,17,4球编号的平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三球编号为8,13,18,平均值为3+8+13+184=10.5.]三、解答题9.在下列问题中,各采用什么抽样方法抽取样本较为合适?(1)从8台彩电中抽取2台进行质量检验;(2)一个礼堂有32排座位,每排有40个座位(座位号为1~40).一次报告会坐满了听众,会后为听取意见留下32名听众进行座谈.[解](1)总体容量为8,样本容量为2,因此适合利用抽签法进行样本的抽取.(2)总体容量为32×40=1 280,样本容量为32,由于座位数已经分为32排,因此选择系统抽样更合适.10.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?[解](1)将1 001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新编号(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 000 40=25个个体.(3)在第一段0 001,0 002,…,0 025这25个编号中用简单随机抽样法抽出一个(如0 003)作为起始号码.(4)将编号为0 003,0 028,0 053,…,0 978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.[能力提升练]1.从2 019名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 019人中剔除19人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 019人中,每个人入选的机会()A.都相等,且为502 019B.不全相等C.均不相等D.都相等,且为1 40A[因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除19人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为50 2019.]2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9B[依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.从而第Ⅲ营区被抽中的人数是50-42=8.]3.某单位有职工72人,现需用系统抽样法从中抽取一个样本,若样本容量为n,则不需要剔除个体,若样本容量为n+1,则需剔除2个个体,则n=________.4或6或9[由题意知n为72的约数,n+1为70的约数,其中72的约数有1,2,3,4,6,8,9,12,18,24,36,72,其中70能被加1整除的有1,4,6,9,其中n=1不符合题意,故n=4或6或9.]4.一个总体中的80个个体的编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,用错位系统抽样的方法抽取一个容量为8的样本,即规定先在第0组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即在第k组中抽取个位数字为i+k(当i+k<10时)或i+k-10(当i+k≥10时)的号码.当i=6时,所抽到的8个号码是________.6,17,28,39,40,51,62,73[由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28;依此类推,应选39,40,51,62,73.]5.下面给出某村委会调查本村各户收入情况作的抽样,阅读并回答问题.本村人口:1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 200/30=40;确定随机数字:取一张人民币,其编号后两位数为12;确定第一样本户:编号12的住户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改;(3)何处用了简单随机抽样?[解](1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔应为300/30=10,其他步骤相应改为确定随机数字:取一张人民币,其编号末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户……(3)确定随机数字:取一张人民币,取其末位数2.。
课件3:2.1.2 系统抽样
(1)用系统抽样抽取样本时,每个个体被抽到的可能性是相等的,
n
个体被抽取的概率等于__N__ (2)系统抽样适用于总体中个体数较多,抽取样本容量也较大时; (3)系统抽样是不放回抽样.
①下列抽样中不是系统抽样的是(C ) A.从标有1~15号的15个小球中任选3个作为样本, 按从小号到大号排序,随机确定起点i,以后为i+5, i+10 (超过15则从1再数起)号入样 B.工厂生产的产品,用传送带将产品送入包装车间前, 检验人员从传送带上每隔五分钟抽一件产品检验 C.搞某一市场调查,规定在商场门口随机抽一个人进 行询问,直到调查到事先规定的调查人数为止 D.电影院调查观众的某一指标,通知每排(每排人数 相等)座位号为14的观众留下来座谈
判断的依据: 简单随机抽样的特点: ①总体的个数有限; ②从总体中逐个进行抽取; ③是不放回抽样; ④是等可能抽样.
实例 为了了解高二年级1000名同学的视力情况,从中抽取100 名同学进行检查.
请问:应该怎样抽样?
当总体的个体数较多时,采用简单随机抽样太麻烦,这时将总 体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽 取一个个体,得到所需要的样本,这种抽样叫做_系__统__抽__样_(也称为 等__距__抽__样__).
3.系统抽样与简单随机抽样比较,有何优、缺点?
(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;
(2)系统抽样的效果会受个体编号的影响,而简单随机抽样的效果 不受个体编号的影响;系统抽样所得样本的代表性和具体的编号 有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果 编号的个体特征随编号的变化呈现一定的周期性,可能会使系统抽 样的代表性很差.例如学号按照男生单号女生双号的方法编排,那 么,用系统抽样的方法抽取的样本就可能会是全部男生或全部女生;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
在利用随机数表法抽样的过程中注意
(1)编号要求数位相同;
(2)第一个数字的抽取是随机的;
(3)读数的方向是任意的且为事先定好的.
返回
4,为了解竞赛的1 000名学生的成绩,抽取一个容量为50
的样本,采用什么抽样方法比较恰当?简述抽样过程.
解答: 适宜选用系统抽样,抽样过程如下:
(1)随机地将1 000名学生编号为000,001,002,„,999. (2)将总体按编号均分成50部分,每部分包括20个个体. (3)在第一部分000,001,002,„,019中,用简单随机抽样抽 取一个号码,如:017. (4)以017为起始号码,每间隔20抽取一个号码,这样 得到一个容量为50的样本:017,037,057,„,977,997.
4,为了解参加某种知识竞赛的1 000名学生的成绩, 从中抽取一个容量为50的样本,那么采用什么抽样 方法比较恰当?简述抽样过程
返回
(1)判断一个抽样是否为简单随机抽样的依据是其四个 特征
返回
(2).系统抽样的步骤 假设要从容量为N的总体中抽取容量为n的样本,步骤为: (1)先将总体的N个个体 编号 , N 分段间隔 k (2)确定 ,对编号进行分段.当 (n 是样 n
返回
(4)是简单随机抽样.因为总体中的个体数是有限 的,并且是从总体中逐个进行抽取的,是不放回、等 可能地进行抽样.
返回
能否把本题中不是简单随机抽样的改为简单随机抽样? 解:在(1)中把“无数个”改为“300”等大于20具体数字; (2)把“一次性抽取”改为“逐个抽取”;(3)把“指定5名个子 最高的”改为“随机指定5名同学”.
(1)编号要求数位相同;
(2)第一个数字的抽取是随机的;
(3)读数的方向是任意的且为事先定好的.
返回
课堂练习
• 1,P26 • 2,P29
返回
课堂小结
简单随 机抽样
随机数表法 抽签法
随机 抽样 系统随 机抽样
返回
课后作业
• 作业八、九
返回
备用练习
1.简单随机抽样的定义
设一个总体含有N个个体,从中逐个 不放回 地抽取n
返回
[例1]
下面的抽样方法是简单随机抽样吗?为什么?
(1)从无数个个体中抽取20个个体作为样本. (2)从50台冰箱中一次性抽取5台冰箱进行质量检查. (3)某班有40名同学,指定个子最高的5名同学参加学 校组织的篮球赛. (4)一彩民选号,从装有36个大小、形状都相同的号签 的盒子中无放回地抽出6个号签.
返回
3,机器编号为1,2,„,112,用随机数表法抽10台,写抽样过程 第一步,将原来的编号调整为001,002,„,112. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数 方向.比如,选第9行第7个数“3”向右读. 第三步,从“3”开始向右读,每次取三位,凡不在001~112 中的数跳过去不读. 前面已经读过的数不读,依次可得到 074, 100, 094, 052, 080, 003, 105, 107, 083, 092. 第四步,对应原来编号74,100,94,52,80,3,105,107,83,92
返回
1.下列抽样方式是否是简单随机抽样? (1)在某车间包装一种产品,在自动包装的传送带上,
每隔30分钟抽一包产品,称其质量是否合格.
(2)某班有56名同学,指定个子最高的5名同学参加学 校组织的篮球赛. 解:由简单随机抽样的特点可知,(1)(2)均不是简单 随机抽样.
返回
2.从60件产品中抽取5件进行检查,请用抽签法抽取产品,
返回
1.解决系统抽样问题中两个关键的步骤为 (1)分组的方法应依据抽取比例而定,即根据定义每 组抽取一个样本. (2)起始编号的确定应用简单随机抽样的方法,一旦
起始编号确定,其他编号便随之确定了.
2.当总体中的个体不能被样本容量整除时,需要在 总体中剔除一些个体.
返回
在利用随机数表法抽样的过程中注意
并写出抽样过程. 解:抽签法步骤: 第一步,将60件产品编号,号码是01,02,„,60. 第二步,将号码分别写在同样的纸条上,揉成团,制 成号签.
返回
第三步,将号签放入不透明的袋子中,并充分搅匀. 第四步,从袋子中依次抽取5个号签,并记录上面的编号. 第五步,与所得号码对应的产品就是要抽取的对象.
2.1 随机抽样 2.1.1 简单随机抽样 2.1.2 系统抽样
返回
如何得到高质量的样本? 研究样本的性质 研究总体的性质
返回
自学思考:
• 1,你学到了哪些随机抽样?分别怎样操作? 2,某大学为了支援西部教育事业,现从报名 的18名志愿者中选取6人组成志愿小组,请用 抽签法确定志愿小组成员,写出抽样步骤. 3,有一批机器编号为1,2,3,„,112,请用随 机数表法抽取10台入样,写出抽样过程.
返回
个个体作为样本(n≤N),如果每次抽取时总体内的各个个 体被抽到的机会 都相等 ,就把这种抽样方法叫做简单随 机抽样.
返回
2.简单随机抽样的分类
3.随机数法的类型
返回
1.在统计中总体、个体、样本、样本容量是如何定义的?
提示:总体:统计中所考察对象的全体叫总体;
个体:总体中的每一个考察对象叫个体;
返回
1.一个抽样试验能否用抽签法,关键看两点:一是 制签是否方便;二是个体之间差异不明显.一般地,当样
本容量和总体容量较小时,可用抽签法.
2.应用抽签法时应注意以下几点:
(1)编号时,如果已有编号可不必重新编号;
(2)号签要求大小、形状完全相同; (3)号签要均匀搅拌; (4)要逐一不放回的抽取.
返回
要从10架钢琴中抽取4架进行质量检验,请你设计抽
样方案.
[解 ]
法一:(随机数表法)
第一步,将10架钢琴编号,号码是0,1,„,9. 第二步,在随机数表中任选一数作为开始,任选一 方向作为读数方向.比如,选第3行第6列的数“2”,向 右读.
返回
第三步,从数“2”开始,向右读,每次读取1位,重
返回
思考: 若将“1 000名”改为“1 002名”,又该如何抽样?
解:因1 002=50×20+2,为保证“等距”分段,应先剔除2人. (1)将1 002名学生用随机方式编号; (2)从总体中剔除2名(剔除方法可用随机数法),将剩下的1 000 名学生重新编号(分别为000,001,002,„,999),分成50段; (3)在第一段000,001,002,„,019这二十个编号中用简单随机 抽样抽出一个(如003)作为起始号码; (4)将编号为003,023,043,„,983的个体抽出,组成样本.
N 本容量)是整数时,取 k= n ;
(3)在第1段用 简单随机抽样 确定 第一个个体 编号 l ( l ≤k) ; (4)按照一定的规则抽取样本.通常是将l 加上间隔k 得
到第2个个体编号( l+k ),再加 k得到第3个个体编号(l+
2k),依次进行下去,直到获取整个样本.
返回
(3)如何区分:
样本:从总体中抽取的一部分个体叫做样本; 样本容量:样本的个体的数目叫做样本容量.
返回
2.有同学说:“随机数表只有一张,并且读数时只能按照
从左向右的顺序读取,否则产生的随机样本就不同
了,对总体的估计就不准确了”,你认为这种说法正
确吗?
提示:不正确.随机数表的产生是随机的,读数的顺序 也是随机的,不同的样本对总体的估计相差并不大.
返回
[自主解答]
(1)不是简单随机抽样.因为总体的个数是
无限的,而不是有限的.
(2)不是简单随机抽样.虽然“一次性”抽取和“逐个” 抽取不影响个体被抽到的可能性,但简单随机抽样的定义要 求的是“逐个抽取”. (3)不是简单随机抽样.因为是指定5名同学参加比赛,每 个个体被抽到的可能性是不同的,不是等可能抽样.
一种抽样方法是系统抽样还是简单随机抽样?
系统抽样的显著特点是抽出个体的编号是等距的. 简单随机抽样的间隔不是恒定的.
返回
2某大学为了支援西部教育事业,现从报名的18名志愿者中选取6
人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤 抽样步骤是: 第一步,将18名志愿者编号,号码是01,02,„,18; 第二步,将号码分别写在同样的小纸片上,揉成团,制成号签; 第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀 第四步,从袋子中依次抽取6个号签,并记录上面的编号; 第五步,与所得号码对应的志一次,依次可得到2,7,6,5.
第四步,以上号码对应的4架钢琴就是要抽取的对象.
法二:(抽签法)
第一步,将10架钢琴编号,号码是0,1,„,9.
第二步,将号码分别写在一张纸条上,揉成团,制成
号签.
返回
第三步,将得到的号签放入一个不透明的袋子中,并充分 搅匀. 第四步,从袋子中逐个抽取4个号签,并记录上面的编号. 第五步,所得号码对应的4架钢琴就是要抽取的对象.