七年级下册数学知识点总结与归纳

合集下载

七年级数学下册知识总结

七年级数学下册知识总结

【导语】学习效率的⾼低,是⼀个学⽣综合学习能⼒的体现。

在学⽣时代,学习效率的⾼低主要对学习成绩产⽣影响。

当⼀个⼈进⼊社会之后,还要在⼯作中不断学习新的知识和技能,这时候,⼀个⼈学习效率的⾼低则会影响他(或她)的⼯作成绩,继⽽影响他的事业和前途。

可见,在中学阶段就养成好的学习习惯,拥有较⾼的学习效率,对⼈⼀⽣的发展都⼤有益处。

下⾯是为您整理的《七年级数学下册知识总结》,仅供⼤家参考。

【篇⼀】七年级数学下册知识总结 1、整式的乘除的公式运⽤(六条)及逆运⽤(数的计算)。

(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p== 2、单项式与单项式、多项式相乘的法则。

3、整式的乘法公式(两条)。

平⽅差公式:(a+b)(a-b)= 完全平⽅公式:(a+b)2(a-b)2 常⽤公式:(x+m)(x+n)= 4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

5、互为余⾓和互为补⾓和 6、两直线平⾏的条件:(⾓的关系线的平⾏) ①相等,两直线平⾏; ②相等,两直线平⾏; ③互补,两直线平⾏. 7、平⾏线的性质:两直线平⾏。

(线的平⾏ 8、能判别变量中的⾃变量和因变量,会列列关系式(因变量=⾃变量与常量的关系) 9、变量中的图象法,注意:(1)横、纵坐标的对象。

(2)起点、终点不同表⽰什么意义(3)图象交点表⽰什么意义(4)会求平均值。

10、三⾓形 (1)三边关系:⾓的关系) (2)内⾓关系: (3)三⾓形的三条重要线段: (4)三⾓形全等的判别⽅法:(注意:公共边、边的公共部分对顶⾓、公共⾓、⾓的公共部分) (5)全等三⾓形的性质: (6)等腰三⾓形:(a)知边求边、周长⽅法(b)知⾓求⾓⽅法(c)三线合⼀: (7)等边三⾓形: 11、会判轴对称图形,会根据画对称图形,(或在⽅格中画) 12、常见的轴对称图形有: 13、(1)等腰三⾓形:对称轴,性质 (2)线段:对称轴,性质 (3)⾓:对称轴,性质 14、尺规作图:(1)作⼀线段等已知线段(2)作⾓已知⾓(3)作线段垂直平分线 (4)作⾓的平分线(5)作三⾓形 15、事件的分类:,会求各种事件的概率 (1)摸球:P(摸某种球)= (2)摸牌:P(摸某种牌)= (3)转盘:P(指向某个区域)= (4)抛骰⼦:P(抛出某个点数)= (5)⽅格(⾯积):P(停留某个区域)= 16、必然事件不可能事件,不确定事件 17、⽅法归纳:(1)求边相等可以利⽤ (2)求⾓相等可以利⽤。

七年级数学下册三角形知识点总结

七年级数学下册三角形知识点总结

七年级数学下册第五章三角形知识点总结 考点一、三角形1、三角形的三边关系定理及推论1三角形三边关系定理:三角形的两边之和大于第三边. 推论:三角形的两边之差小于第三边. 2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°. 推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和. ③三角形的一个外角大于任何一个和它不相邻的内角.注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.4、三角形的面积三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形. 2、三角形全等的判定 三角形全等的判定定理:1边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS”2角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA”3边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS”.4角角边定理:有两角和一边对应相等的两个三角形全等可简写成“角角边”或“AAS”.直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL”3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换.全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换.2对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换.3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.考点三、等腰三角形1、等腰三角形的性质1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线.1三角形共有三条中位线,并且它们又重新构成一个新的三角形.2要会区别三角形中线与中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:位置关系:可以证明两条直线平行.数量关系:可以证明线段的倍分关系.常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半.结论2:三条中位线将原三角形分割成四个全等的三角形.结论3:三条中位线将原三角形划分出三个面积相等的平行四边形.结论4:三角形一条中线和与它相交的中位线互相平分.结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等.解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半.3、直角三角形斜边上的中线等于斜边的一半4、直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、锐角三角函数的概念 3~8分 1、如图,在△ABC 中,∠C=90° ①c asin =∠=斜边的对边A A②c bcos =∠=斜边的邻边A A③batan =∠∠=的邻边的对边A A A④abcot =∠∠=的对边的邻边A A A2、一些特殊角的三角函数值3、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A,tanA=cot90°—A,cotA=tan90°—A2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4弦切关系:tanA=AAcos sin 三角形相似考点一、比例线段 1、比例的性质 1基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔22更比性质交换比例的内项或外项dbc a =交换内项 ⇒=d c b a acb d =交换外项 abc d =同时交换内项和外项3反比性质交换比的前项、后项:cd a b d c b a =⇒= 4合比性质:ddc b b ad c b a ±=±⇒= 5等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC,BCAC>BC,并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈ 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 考点三、相似三角形 1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.相似用符号“∽”来表示2、相似三角形的基本定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似.相似三角形的等价关系:1反身性:对于任一△ABC,都有△ABC∽△ABC;2对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC3传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’.3、三角形相似的判定1三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似4、相似三角形的性质1相似三角形的对应角相等,对应边成比例2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比3相似三角形周长的比等于相似比4相似三角形面积的比等于相似比的平方.5、相似多边形1如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比或相似系数2相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比.性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比.由一个图形得到它的位似图形的变换叫做位似变换.利用位似变换可以把一个图形放大或缩小.。

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。

垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

同位角相等,两直线平行。

判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

内错角相等,两直线平行。

判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

同旁内角互补,两直线平行。

5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。

两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

两直线平行,同旁内角互补。

5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。

如果题设成立,那么结论一定成立,这样的命题叫做真命题。

题设成立时,不能保证结论一定成立,这样的命题中做假命题。

七年级数学下册全部知识点归纳(含概念公式实用)

七年级数学下册全部知识点归纳(含概念公式实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包含它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1〞。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包含项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。

〔2〕按去括号法则去括号。

〔3〕合并同类项。

4、代数式求值的一般步骤:〔1〕代数式化简。

〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。

江苏初中七年级数学下册知识点

江苏初中七年级数学下册知识点

江苏初中七年级数学下册知识点
1. 同数代数运算
- 同数的加法和减法运算
- 同数的乘法和除法运算
- 同数的混合运算
2. 数轴与相反数
- 数轴的表示和使用方法
- 正数、负数和零在数轴上的表示
- 相反数的概念和计算方法
3. 数的大小比较
- 正整数、负整数和零之间的大小比较
- 小数的大小比较
- 小数与整数的大小比较
4. 有理数的加法和减法
- 同号有理数的加法和减法
- 异号有理数的加法和减法
- 有理数混合运算的步骤和方法
5. 有理数的乘法和除法
- 有理数的乘法和除法的基本概念- 同号有理数的乘法和除法
- 异号有理数的乘法和除法
- 有理数乘法与除法的运算法则
6. 百分数
- 百分数的概念和表示方法
- 百分号的意义和读法
- 百分数与分数之间的转换方法
7. 线段和角
- 线段的定义和性质
- 角的定义和表示
- 线段和角的度量单位
8. 平行线和平行四边形
- 平行线的定义和判定方法
- 平行四边形的定义和性质
- 平行四边形的判定方法
9. 直角三角形
- 直角三角形的定义和性质
- 斜边、直角边和斜角的概念
- 直角三角形的求解方法
10. 定义域和值域
- 函数的定义和基本概念
- 定义域和值域的意义和计算方法
- 函数定义域和值域的图示表示方法
以上是江苏初中七年级数学下册的知识点总结,希望能对同学们的学习有所帮助。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册数学知识点归纳
1. 有理数的运算
- 有理数的加法、减法、乘法和除法
- 有理数的乘方和开方
- 有理数的混合运算法则
2. 整式的加减
- 单项式和多项式的概念
- 同类项的定义及合并同类项法则
- 整式的加减运算
3. 一元一次方程
- 一元一次方程的概念和解法
- 等式的性质
- 应用题的列方程解法
4. 几何图形初步
- 点、线、面、体的概念
- 直线、射线、线段的性质
- 角的概念和分类
5. 平行线与相交线
- 平行线的定义和性质
- 相交线的定义和性质
- 平行线和相交线的判定方法
6. 平面直角坐标系
- 坐标系的建立和坐标表示
- 点的坐标和图形的坐标
- 坐标系中点的平移变换
7. 三角形
- 三角形的分类和性质
- 三角形的内角和定理
- 三角形的外角和定理
8. 数轴与绝对值
- 数轴的概念和性质
- 绝对值的定义和性质
- 绝对值的运算法则
9. 代数式
- 代数式的定义和分类
- 代数式的化简
- 代数式的求值
10. 概率初步
- 概率的定义和计算方法 - 简单事件的概率
- 概率在实际问题中的应用
11. 数据的收集与处理
- 数据的收集方法
- 数据的整理和表示
- 统计图表的绘制和解读
12. 几何图形的初步认识
- 几何图形的基本概念
- 几何图形的性质和定理
- 几何图形的构造和证明
以上是七年级下册数学的主要知识点归纳,涵盖了数与代数、几何与图形、统计与概率等数学基础知识。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。

2. 同底数幂的除法:底数不变,指数相减。

3. 幂的乘方:底数不变,指数相乘。

4. 积的乘方:等于各因式分别乘方后的积。

5. 单项式与单项式的和:系数相加,字母部分不变。

6. 单项式与单项式的差:系数相减,字母部分不变。

7. 单项式与单项式的积:系数相乘,字母部分合并。

8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。

9. 多项式与多项式的和:同类项的系数相加,字母部分不变。

10. 多项式与多项式的差:同类项的系数相减,字母部分不变。

11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。

二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。

2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。

3. 一元一次方程的解法:移项、合并同类项、化系数为1。

4. 一元一次不等式的解法:移项、合并同类项、化系数为1。

5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。

6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。

7. 二元一次方程组的解法:消元法、代入法。

8. 二元一次不等式组的解法:消元法、代入法。

9. 分式方程:含有分母的方程。

10. 分式方程的解法:去分母、化系数为1、检验。

11. 分式不等式:含有分母的不等式。

12. 分式不等式的解法:去分母、化系数为1、检验。

三、几何图形1. 点、线、面的概念。

2. 直线的性质:无端点、无限延伸、不可度量长度。

3. 射线的性质:有一个端点、无限延伸、不可度量长度。

4. 线段的性质:有两个端点、有限长度、可度量长度。

5. 角的概念:两条射线从同一点出发所形成的图形。

6. 角的分类:锐角、直角、钝角、平角、周角。

7. 角的性质:度数大小关系、补角和余角、角的和差。

8. 三角形的概念:由三条边和三个内角组成的封闭图形。

湘教版七年级数学下册,知识点总结

湘教版七年级数学下册,知识点总结

湘教版七年级数学下册,知识点总结湘教版七年级数学下册知识点总结第一章:有理数1. 有理数的概念:有理数由整数和分数组成,可以表示为有限小数或无限循环小数。

2. 有理数的比较:可以使用大小判断法则进行有理数的比较。

3. 加法和减法:有理数的加法和减法遵循相同符号相加减、异号相减原则。

4. 乘法和除法:有理数的乘法和除法遵循同号得正、异号得负的原则。

5. 有理数的混合运算:可以进行有理数的混合运算,先计算括号内的运算,再进行乘除法,最后进行加减法。

第二章:代数初步1. 代数式的概念:代数式是由数字、字母和运算符号组成的式子,代表数与数的关系。

2. 简单的代数式:简单的代数式是只含有一个字母的代数式,如3x、2y等。

3. 代数式的运算:可以对代数式进行加法、减法、乘法和乘方运算。

4. 代数式的化简:可以根据同类项合并、分配律等原则将代数式进行化简。

5. 代数式的值:可以将给定的字母赋予特定的值,计算代数式的值。

第三章:图形初步1. 点、线、面的概念:点是没有大小的,用大写字母表示;线是由一条无限延伸的直线和两个端点组成;面是由线围成的区域。

2. 直线和线段:直线是没有起点和终点的线,线段是直线上选取的两个点的部分。

3. 角的概念:角是由两条射线共同起点的部分,可以用∠ABC 表示。

4. 平行线和垂直线:平行线是在同一个平面内始终保持相同距离的线,垂直线是两条直线相交且相交角度为90°的线。

5. 三角形的分类:三角形可以根据边长和角度分为等边三角形、等腰三角形、直角三角形等。

以上是湘教版七年级数学下册的知识点总结。

希望对你的学习有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。

方程一般形式是 ax+by=c(a ≠0,b ≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a)()(== 6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

7、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

8、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

9、多项式与多项式相乘的法则:多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

10、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

11、完全平方公式:2222)(b ab a b a +±=±公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

注意: ab b a ab b a b a 2)(2)(2222-+=-+=+ ab b a b a 4)()(22-+=-222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

第三章 多项式的因式分解1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法A.提公因式法:式子中有公因式时,先提公因式。

B. 公式法:根据平方差和完全平方公式(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.C.十字相乘法:2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.第四章相交线与平行线1、平行于相交:同一平面内两条直线的位置关系有两种1相交2平行在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b。

2.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即平行于同一条直线的两条直线平行3、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

4、相交所成的角对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

6.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

性质:(1)平移不改变图形形状、大小(2)对应点连线平行或在同一直线上且相等对应线段平行或在同一直线上且相等对应角相等7.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

8.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

9.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

10.垂线:两条直线相交所成的四个角中,有一个角是直角时(易知其余三个角也是直角),这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

11.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

12.两条平行线间的距离与两条平行直线都垂直的直线,叫做这两条平行直线的公垂线,这时连接两个垂足的线段叫做这两条平行直线的公垂线段。

13.两条平行线的所有公垂线段都相等。

我们把这两条平行线的公垂线段的长度叫做两条平行线间的距离。

第五章轴对称与旋转一,基本概念1.轴对称图形,对称轴如果一个图形沿着某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形不一定只有一条对称轴,但至少有一条。

2.轴对称对于两个图形,如果沿一条直线对折后,它们能完全的重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称。

3.轴对称和对称轴图形中的对称轴是直线,而不是线段和射线。

4.轴对称的性质:1)对应点所连的线段被对称轴垂直平分;2)对应线段相等,对应角相等。

5.轴对称变换把图形(a)沿着直线l翻折并将图形“复印”下来得到图形(b),就叫做该图形关于直线l作了轴对称变换,也叫做轴反射。

图形(a)叫做原像,图形(b)叫做图形(a)在这个轴反射下的像。

第二十章数据的分析1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

相关文档
最新文档