人教版数学九年级下册教案

合集下载

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。

1、教材编排。

(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。

并且已经采取逐步渗透的方法来培养代数思维。

例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。

第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。

2、教学目标。

(1)结合具体情境,建立方程的概念。

(2)寻找简单情况下的等价关系,会用方程表示。

(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。

3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。

抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

(2)难点:数量关系向等量关系的转化。

二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。

由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。

列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
突破方法:教师可通过图示和实际操作,帮助学生理解直角三角形中的对边、邻边、斜边关系,并强调在计算函数值时要注意这些关系。
(2)实际问题中的数学建模:学生在解决实际问题时,往往不知道如何构建数学模型,将实际问题转化为数学问题。
突破方法:教师可以引导学生通过分析实际问题,找出其中的关键信息,然后运用正弦、余弦、正切函数构建数学模型。同时,通过举例讲解,让学生了解这一过程。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
一、教学内容
本节课选自人教版初中九年级数学下册,章节为《正弦、余弦、正切函数的简单应用》。教学内容主要包括以下两个方面:
1.掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-正弦函数:在直角三角形中,正弦值等于对边与斜边的比值。
-余弦函数:在直角三角形中,余弦值等于邻边与斜边的比值。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生理解正弦、余弦、正切函数的简单应用。从导入新课到实践活动,再到小组讨论,我发现学生们在这些环节中的表现各有亮点,也有一些需要改进的地方。
首先,在导入新课环节,通过提出与日常生活密切相关的问题,成功引起了学生的兴趣。他们积极参与,提出了很多有关测量物体高度和距离的想法。这说明实际情景的引入有助于激发学生的学习热情,使他们更愿意投入到新知识的学习中。

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)第一章:相似三角形1.1 教学目标:理解相似三角形的定义及其性质。

学会运用相似三角形解决实际问题。

1.2 教学内容:相似三角形的定义及判定条件。

相似三角形的性质:对应边成比例,对应角相等。

应用相似三角形解决实际问题。

1.3 教学步骤:1. 引入:通过实际问题引出相似三角形的概念。

2. 讲解:讲解相似三角形的定义、判定条件和性质。

3. 练习:学生自主完成练习题,巩固相似三角形的理解和应用。

1.4 教学评价:通过课堂提问和练习题检查学生对相似三角形概念和性质的理解。

评估学生运用相似三角形解决实际问题的能力。

第二章:数据的收集与处理2.1 教学目标:学会使用调查、实验等方法收集数据。

掌握数据的整理、描述和分析方法。

2.2 教学内容:数据的收集方法:调查、实验等。

数据的整理:排序、分类、绘制统计图表。

数据的描述:众数、平均数、中位数等。

数据的分析:频率分布、数据变异等。

2.3 教学步骤:1. 引入:通过实际问题引出数据收集与处理的重要性。

2. 讲解:讲解数据的收集方法、整理、描述和分析方法。

3. 练习:学生自主完成练习题,巩固数据处理的方法。

2.4 教学评价:通过课堂提问和练习题检查学生对数据收集与处理方法的理解。

评估学生运用数据处理解决实际问题的能力。

第三章:圆3.1 教学目标:理解圆的定义及其性质。

学会运用圆解决实际问题。

3.2 教学内容:圆的定义及圆心、半径的概念。

圆的性质:圆的对称性、圆的周长和面积公式。

应用圆解决实际问题。

3.3 教学步骤:1. 引入:通过实际问题引出圆的概念。

2. 讲解:讲解圆的定义、性质和应用。

3. 练习:学生自主完成练习题,巩固圆的理解和应用。

通过课堂提问和练习题检查学生对圆的定义和性质的理解。

评估学生运用圆解决实际问题的能力。

第四章:概率初步4.1 教学目标:理解概率的概念及其计算方法。

学会运用概率解决实际问题。

4.2 教学内容:概率的定义:必然事件、不可能事件、随机事件。

人教版九年级下数学教案

人教版九年级下数学教案

人教版九年级下数学教案人教版九年级下数学教案1教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).(3)掌握 ? = (a≥0,b≥0), = ? ;= (a≥0,b0), = (a≥0,b0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a ≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用 (a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如 (a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x0)、、、- 、、 (x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、 (x0)、、- 、 (x≥0,y≥0);不是二次根式的有:、、、 .例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如 (a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A.-B.C.D.x2.下列式子中,不是二次根式的是( )A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是( )A.5B.C.D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有( )个.A.0B.1C.2D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值. 第一课时作业设计答案:一、1.A 2.D 3.B二、1. (a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x- 且x≠0时, +x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1. (a≥0)是一个非负数;2.( )2=a(a≥0).教学目标理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a ≥0);最后运用结论严谨解题.教学重难点关键1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;•用探究的方法导出( )2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:( )2=_______;( )2=_______;( )2=______;( )2=_______;( )2=______;( )2=_______;( )2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有( )2=4.同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以( )2=a(a≥0)例1 计算1.( )22.(3 )23.( )24.( )2分析:我们可以直接利用( )2=a(a≥0)的结论解题.解:( )2 = ,(3 )2 =32?( )2=32?5=45,( )2= ,( )2= .三、巩固练习计算下列各式的值:( )2 ( )2 ( )2 ( )2 (4 )2四、应用拓展例2 计算1.( )2(x≥0)2.( )23.( )24.( )2分析:(1)因为x≥0,所以x+10;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+10( )2=x+1(2)∵a2≥0,∴( )2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴( )2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1. (a≥0)是一个非负数;2.( )2=a(a≥0);反之:a=( )2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》人教版九年级下数学教案2教材分析本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学面直角坐标系的学习做好准备。

人教版九年级数学下册全册教案

人教版九年级数学下册全册教案

正弦和余弦(一)一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A 1,A 2,A 3重合在一起,记作A,并使直角边AC 1,AC 2,AC 3……落在同一条直线上,则斜边AB 1,AB 2,AB 3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B 1C 1∥B 2C 2∥B 3C 3……,∴△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽……,∴形中,∠A 的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为2360sin =︒作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计正弦和余弦(二)一、素质教育目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA 表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.(二)能力训练点逐步培养学生观察、比较、分析、概括的思维能力.(三)德育渗透点渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、教学重点、难点第十四章解直角三角形一、锐角三角函数证明:------------------结论:--------------------练习:---------------------1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.三、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.(二)整体感知只要知道三角形任一边长,其他两边就可知.而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)重点、难点的学习与目标完成过程正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.例1求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.学生练习1中1、2、3.让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.例2求下列各式的值:为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1)sin45°+cos45;(2)sin30°·cos60°;在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即0<sinA<1,0<cosA<1(∠A为锐角).还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”四、布置作业教材习题14.1中A组3.预习下一课内容.五、板书设计14.1正弦和余弦(二)一、概念:三、例1----------四、特殊角的正余弦值-------------------------------------------------------二、范围:------------------五、例2------------正弦和余弦(三)一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:(2)已知sin35°=0.5736,则cos______=0.5736.(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=0.9225,求cos22°42′;(3)已知cos4°24′=0.9971,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业教材习题14.1A组4、5.五、板书设计14.1正弦和余弦(三)一、余角余函数关系二、例3------------------------------------------------------------------------------------------------------------------------正弦和余弦(四)一、素质教育目标(一)知识教学点使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育训练点培养学生良好的学习习惯.二、教学重点、难点1.重点:“正弦和余弦表”的查法.2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.三、教学步骤(一)明确目标1.复习提问1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.(二)整体感知我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.(三)重点、难点的学习与目标完成过程1.“正弦和余弦表”简介学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.2)表中角精确到1′,正弦、余弦值有四位有效数字.3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.2.举例说明例4查表求37°24′的正弦值.学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.例5查表求37°26′的正弦值.学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).解:sin37°24′=0.6074.角度增2′值增0.0005sin37°26′=0.6079.例6查表求sin37°23′的值.如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.解:sin37°24′=0.6074角度减1′值减0.0002sin37°23′=0.6072.在查表中,还应引导学生查得:sin0°=0,sin90°=1.根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.可引导学生查得:cos0°=1,cos90°=0.根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.(四)总结与扩展1.请学生总结本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.四、布置作业预习教材中例8、例9、例10,养成良好的学习习惯.五、板书设计14.1正弦和余弦(四)一、正余弦值随角度变二、例题例5例6化规律例4-----------------------------------------------------------------------------------------------------------------------正弦和余弦(五)一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.三、教学步骤(一)明确目标1.锐角的正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆.答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______.3.不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°.学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.(三)重点、难点的学习与目标完成过程.例8已知sinA=0.2974,求锐角A.学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.解:查表得sin17°18′=0.2974,所以锐角A=17°18′.例9已知cosA=0.7857,求锐角A.分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.解:查表得cos38°12′=0.7859,所以:0.7859=cos38°12′.值减0.0002角度增1′0.7857=cos38°13′,即锐角A=38°13′.例10已知cosB=0.4511,求锐角B.例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.解:0.4509=cos63°12′值增0.0003角度减1′0.4512=cos63°11′∴锐角B=63°11′为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.2.已知下列正弦值或余弦值,求锐角A或B:(1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931.此题是配合例题而设置的,要求学生能快速准确得到答案.(1)45°6′,69°34′,20°39′,34°40′;(2)34°0′,40°26′,72°34′,6°44′.3.查表求sin57°与cos33°,所得的值有什么关系?此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).(四)、总结、扩展本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.四、布置作业教材复习题十四A组3、4,要求学生只查正、余弦。

人教版九年级数学下册全册教案

人教版九年级数学下册全册教案

26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。

教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。

这一情境为后面学习反比例函数概念作铺垫。

情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。

人教版九年级数学下册《数学活动》教案及教学反思

人教版九年级数学下册《数学活动》教案及教学反思

人教版九年级数学下册《数学活动》教案及教学反思一、《数学活动》教案1.教学目标1.知识与能力:学生能够理解到数字的多重表达、想象和形象化定义,并自己动手制作多种有趣的数学游戏。

2.情感态度和价值观:学生主动思考参与,积极探索数学的乐趣和趣味。

3.学习策略:学生能够在进一步学习的过程中坚持勤思考、主动探究、灵活变通,有效地提高学习方法和自主学习能力。

2.教学内容1.数字的多重表达2.数学类游戏制作3.教学过程时间教学内容教学过程5min导入利用班级公告向学生介绍本节活动的主题20min数码的多重表达1.教师介绍数字的多重表达;2.示范如何将奇数用若干个偶数与1相加得来;3.学生相互交流,让学生轮流演示其他数的表达方法。

45min数学类游戏制作1.引导学生思考自己喜欢哪种数学游戏,并介绍游戏的玩法;2.向学生介绍游戏制作的过程,让他们自己按照步骤制作;3.学生展示他们制作的游戏,并进行游戏互动。

10min总结反思让学生回顾学习的过程,总结学到的知识,讨论最喜欢的数学游戏。

4.教学资源1.数学游戏策划表;2.移动数字盒子材料;3.数学游戏制作相应物品。

二、教学反思经过教学实践,我们意识到本活动提供了多种有趣、创新的数学学习方式和方法,取得了以下成果:•促进学生学习兴趣培养本活动涉及了创新性丰富、趣味性高的数学游戏制作,能吸引学生的目光,培养兴趣,增加数学学习的互动性。

•促进学生思维方式转换教师将数字的多重表达进行演示,让学生互相交流、模仿,促进学生思考方式的转换,开启数学智慧面纱。

•提高师生关系,激发学生成就感活动中教师为学生提供个性化游戏制作方案,更好地了解学生,并引导学生创造自己的游戏。

学生兴致高涨,相互激励,促进师生情感联系,让学生成就感倍增,更加愿意探索和学习数学。

当然,本活动也有可以改进的地方,例如:•游戏设计需要更人性化我们发现,在游戏制作过程中,需要提前制作的成品有些学生缺乏实践经验,因此难以完成制作任务。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

新人教版九年级数学下册《投影与视图》全章教案第一节:投影的概念与分类教学目标:1. 了解投影的概念,掌握投影的分类。

2. 能够运用投影的知识解决实际问题。

教学重点:投影的概念,投影的分类。

教学难点:投影的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影的概念。

2. 新课:介绍投影的分类,讲解不同类型的投影特点。

3. 练习:让学生运用投影的知识解决实际问题。

课后作业:1. 复习投影的概念与分类。

2. 运用投影的知识解决实际问题。

第二节:视图的概念与分类教学目标:1. 了解视图的概念,掌握视图的分类。

2. 能够运用视图的知识解决实际问题。

教学重点:视图的概念,视图的分类。

教学难点:视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考视图的概念。

2. 新课:介绍视图的分类,讲解不同类型的视图特点。

3. 练习:让学生运用视图的知识解决实际问题。

课后作业:1. 复习视图的概念与分类。

2. 运用视图的知识解决实际问题。

第三节:三视图教学目标:1. 了解三视图的概念,掌握三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学重点:三视图的概念,三视图的画法。

教学难点:三视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考三视图的概念。

2. 新课:介绍三视图的画法,讲解不同类型的三视图特点。

3. 练习:让学生运用三视图的知识解决实际问题。

课后作业:1. 复习三视图的概念与画法。

2. 运用三视图的知识解决实际问题。

第四节:投影与视图的应用教学目标:1. 了解投影与视图在实际中的应用,掌握投影与视图的转换方法。

2. 能够运用投影与视图的知识解决实际问题。

教学重点:投影与视图的应用,投影与视图的转换方法。

教学难点:投影与视图在实际问题中的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影与视图在实际中的应用。

2. 新课:介绍投影与视图的转换方法,讲解不同类型的投影与视图应用。

3. 练习:让学生运用投影与视图的知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。

一起看看人教版数学九年级下册教案!欢迎查阅!人教版数学九年级下册教案1一、教学目标1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。

2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。

3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。

二、教材分析在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。

在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。

本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。

三、学校及学生状况分析九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。

另外,计算器的使用可以极大减轻学生的负担。

因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。

学生自小学起就开始使用计算器,对计算器的操作比较熟悉。

同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。

四、教学设计(一)复习提问1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?学生活动:根据题意,求出数值。

2.在生活中,梯子与地面的夹角总是60°吗?不是,可以出现各种角度,60°只是一种特殊现象。

图1(二)创设情境引入课题1?如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。

已知缆车的路线与平面的夹角为∠A=16 °,那么缆车垂直上升的距离是多少?哪条线段代表缆车上升的垂直距离?线段BC。

利用哪个直角三角形可以求出BC?在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。

那么,怎样用科学计算器求三角函数呢?用科学计算器求三角函数值,要用sin cos和tan键。

教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。

按键顺序显示结果sin16°sin16=sin 16°=0?275 637 355学生活动:按表中所列顺序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):按键顺序显示结果cos 42°cos42 =cos 42°=0?743 144 825tan85°tan85=tan 85°=11?430 052 3sin 72°38′25″sin72D′M′S38D′M′S25D′M′S=sin 72°38′25″→0?954 450 321师:利用科学计算器解决本节一开始的问题。

生:BC=200sin 16°≈52?12(m)。

说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。

(三)想一想师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了 200 m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。

(2)互相补充并在这个过程中加深对三角函数的认识。

(四)随堂练习1.一个人由山底爬到山顶,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(结果精确到0.1 m)。

2.如图2,∠DAB=56°,∠CAB=50°,AB=20 m,求图中避雷针CD的长度(结果精确到0.01 m)。

图2图3(五)检测如图3,物华大厦离小伟家60 m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到0?1 m)。

说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。

(六)小结学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。

(七)作业1.用计算器求下列各式的值:(1)tan 32°;(2)cos 24?53°;(3)sin62°11′;(4)tan 39°39′39″。

图42?如图4,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1 m)。

五、教学反思1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。

本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性精神等方面得到了良好的发展。

2.教师作为学生学习的组织者、引导者、合作者和帮助者,依据教材特点创设问题情境,从学生已有的知识背景和活动经验出发,帮助学生取得了成功。

人教版数学九年级下册教案2教材分析本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点重点:方位角的判别与应用难点:方位角的画法及变式题教学过程(本文来自优秀教育资源网斐.斐.课.件.园)教学环节教师活动预设学生行为设计意图一、创设情境,导入新课二、讲授新课三、巩固练习四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法3.出示补充例题,引对学生通过小组合作完成。

思考并回答老师提出的问题生观察图并理解老师的讲解。

生观察并独立完成书中的例题生先独立思考然后与同学合作完成。

激发学生的学习兴趣通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法进一步掌握方位角的有关知识,达到知识提升。

板书设计4.3.3余角和补角(二)——方位角学生学习活动评价设计我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。

累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。

最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。

出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。

以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。

以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

人教版数学九年级下册教案3教材分析本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点重点:方位角的判别与应用难点:方位角的画法及变式题教学过程(本文来自优秀教育资源网斐.斐.课.件.园)教学环节教师活动预设学生行为设计意图一、创设情境,导入新课二、讲授新课三、巩固练习四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法3.出示补充例题,引对学生通过小组合作完成。

思考并回答老师提出的问题生观察图并理解老师的讲解。

生观察并独立完成书中的例题生先独立思考然后与同学合作完成。

激发学生的学习兴趣通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法进一步掌握方位角的有关知识,达到知识提升。

板书设计4.3.3余角和补角(二)——方位角学生学习活动评价设计我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。

累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。

最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。

相关文档
最新文档