专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)

合集下载

2025年高考数学一轮复习(新高考版) 第5章 §5.4 平面向量中的综合问题

2025年高考数学一轮复习(新高考版) 第5章 §5.4 平面向量中的综合问题

AEQF为菱形,
则A→Q=A→E+A→F=
→ AB →

→ AC →

|AB| |AC|
所以A→P=λ|AA→ →BB|+|AA→ →CC|=λA→Q,
又因为AQ平分∠BAC,故AP必经过△ABC的内心,故B错误; 对于 C,因为|O→A|=|O→B|=|O→C|,所以 O 到△ABC 的三个顶点距离相
则△ABC 的面积为
2+ 2 A. 2
√B.1+2 2
C. 2
DHale Waihona Puke 2设AB的中点为D, 则O→A+O→B+ 2O→C=0 可化为 2O→D+ 2O→C=0, 即为O→C=- 2O→D,
∴ O,D,C三点共线且CD⊥AB,
∴△ABC为等腰三角形, 由垂径定理得|O→A|2=|O→D|2+|A→D|2,
对于 A,由题意可得P→A·P→B-P→B·P→C=P→B·(P→A-P→C)=P→B·C→A=0,
所以PB⊥AC,同理可得PA⊥BC,PC⊥AB,故P为△ABC的垂心,
故A正确;
对于
B,如图设A→E=
→ AB →
,A→F=
→ AC →
,则|A→E|=|A→F|=1,
|AB|
|AC|
以AE,AF为邻边作平行四边形AEQF,则平行四边形
设△ABC外接圆的半径为R,
则 R2=R22+ 222,
解得 R=1,CD=1+ 22,
∴S△ABC=12|AB||CD|=12×
2×1+
22=1+2
2 .
思维升华
用向量方法解决平面几何问题的步骤 平面几何问题―设――向――量→向量问题―计――算→解决向量问题―还――原→解决几何问题.
跟踪训练 1

高考数学压轴专题新备战高考《平面向量》全集汇编含答案解析

高考数学压轴专题新备战高考《平面向量》全集汇编含答案解析

【最新】《平面向量》专题解析一、选择题1.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案. 【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.2.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )A .12-B .12C 3D .3 【答案】A 【解析】 【分析】由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r,可得20t a a b ⋅+⋅=r r r,即可得出答案.【详解】由|2|||a b a b -=+r r r r两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r .又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r,即20t a a b ⋅+⋅=r r r . 所以2221122ba b t a b⋅=-=-=-r r r r r 故选:A 【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.3.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( ) A.2+B.3+C.5+D.7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以22333333,,(2)()1322222AD DB OB =⨯==∴=++=, 所以772cos 13213BOA ∠==, 所以71327213OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r的最大值为32cos023⨯⨯=o ,∴43λμ+的最大值是723+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =,且30BDC ∠=︒,∴|||3 302|326BD CD BD CD cos =⨯⨯︒=⨯⨯=⋅u u u r u u u r u u u r u u u r ,故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..5.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.6.已知a =r 2b =r ,且()(2)b a a b -⊥+r rr r ,则向量a r 在向量b r 方向上的投影为( ) A .-4 B .-2C .2D .4【答案】D 【解析】 【分析】根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r方向上的投影a b b ⋅r r r .【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g , 即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r方向上的投影为4a b b⋅=r r r .故选:D . 【点睛】本题考查向量的投影,属于基础题.7.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C 【解析】 【分析】先计算出16a b r r⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r rr 可得【详解】()4,3a =r Q ,()5,12b =-r,4531216a b ⋅=⨯-⨯=-r r,则向量a r 在b r方向上的投影为1613a b b⋅-=r rr ,故选:C. 【点睛】本题考查平面向量的数量积投影的知识点. 若,a b r r的夹角为θ,向量a r 在b r方向上的投影为cos a θ⋅r 或a b b⋅r rr8.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u uv u u u v B .53AD BE +u u uv u u u v C .4132AD BE +u u u v u u u v D .5132AD BE +u u u v u u u v 【答案】B 【解析】利用向量的加减运算求解即可 【详解】 据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .故选B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题10.已知向量(b =r ,向量a r 在b r 方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r 6=-,()4x λ=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴62a b x b⋅+==-r rr 即12x +=-.又 ()a b b λ+⊥r r r,∴()0a b b λ+⋅=r r r 即130x y λ++=,∴()4x λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.11.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r【答案】A 【解析】由平面向量的加法法则运算即可. 【详解】如图,过E 作//,EF BC 由向量加法的平行四边形法则可知1.2BE BF BC AB AD =+=-+u u u v u u u v u u u v u u uv u u u v故选A. 【点睛】本题考查平面向量的加法法则,属基础题.12.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.13.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u v u u u v ( ) A .1 B .2C .2D .2【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠, 又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v即2222 222C Ccos2C2C cos112C+22232C2AB BC CA A BAB BC B A CA B CBC A BCA BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuvuu u v uu u v uu u v uu v uuvuu u v uu u v uu u vuu u v uu u v()所以32ABBC=uu u vuu u v.【点睛】本题主要考查平面向量的线性运算.14.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB ACλμ=+u u u r u u u r u u u r,则λμ+等于()A.333-+B.333+C31D31+【答案】B【解析】【分析】建立坐标系,求出D点坐标,从而得出λ,μ的值.【详解】解:1AC=Q,3AB=30ABC∴∠=︒,60ACB∠=︒,以AB,AC为坐标轴建立坐标系,则13,12D⎛+⎝⎭.)3,0AB=u u u r,()0,1AC=uu u r,∴13,12AD⎛=+⎝⎭u u u r.Q AD AB AC λμ=+u u u r u u u r u u u r , ∴132312λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴331λμ⎧=⎪⎪⎨⎪=+⎪⎩, 231λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.15.已知向量()()75751515a b ︒︒︒︒==r r cos ,sin ,cos ,sin ,则a b -r r 的值为 A .12 B .1 C .2 D .3【答案】B【解析】【分析】【详解】因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=r r r r ,所以2221||()12112a b a b -=-=-⨯+=r r r r ,故选B. 点睛:在向量问题中,注意利用22||a a =r ,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.16.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D【解析】【分析】【详解】 因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v , 而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D 17.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r ,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( )A .[0,2]B .[0,2]C .[0,4]D .[0,8]【答案】D【解析】【分析】以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解.【详解】 设,,OA a OB b OC c ===u u u r r u u u r r u u u r r, 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动, 设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,由圆心到直线22x y t +=的距离d =≤,可得[0,8]t ∈.故选:D .【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.18.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). AB.C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.19.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( ) A .194 B 11C .32 D .74【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

备战2023年数学高考一轮复习真题演练(2021-22年真题) 最全归纳平面向量中的范围与最值问题

备战2023年数学高考一轮复习真题演练(2021-22年真题) 最全归纳平面向量中的范围与最值问题

专题18 最全归纳平面向量中的范围与最值问题【考点预测】一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步 : 根据题意建立适当的直角坐标系并写出相应点的坐标第二步: 将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解 (3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论 (4)几何意义法第一步: 先确定向量所表达的点的轨迹第二步: 根据直线与曲线位置关系列式第三步:解得结果二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:2222||||2(||||)a b a b a b ++-=+证明:不妨设,AB a AD b == ,则C A a b =+,DB a b =-()22222C 2AC A a b a a b b ==+=+⋅+ ① ()222222DB DB a b a a b b ==-=-⋅+ ② ①②两式相加得: ()()22222222AC DB a b AB AD +=+=+(2)极化恒等式:上面两式相减,得:()()2214a b a b ⎡⎤+--⎢⎥⎣⎦————极化恒等式①平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦ 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14. ②三角形模式:2214a b AM DB ⋅=-(M 为BD 的中点) 三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:2222OA OC OB OD +=+。

【证明】(坐标法)设,AB a AD b ==,以AB 所在直线为轴建立平面直角坐标系xoy ,则(,0),(0,),(,)B a D b C a b ,设(,)O x y ,则222222()[()()]OA OC x y x a y b +=++-+-222222[()][()]OB OD x a y x y b +=-+++-2222OA OC OB OD ∴+=+四.等和线(1)平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。

平面向量中最值、范围问题(含解析)高三数学备考冲刺

平面向量中最值、范围问题(含解析)高三数学备考冲刺

问题7平面向量中最值、范围问题一、考情分析平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展 1..2.四、题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b=x1x2+y1y2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例1】【江苏省苏州市2019届高三上学期期末】如图,在边长为2的正方形ABCD中,M,N分别是边BC,CD上的两个动点,且BM+DN=MN,则的最小值是_______.【答案】【分析】由题意,以点A为原点,建立的平面直角坐标系,设点,其中,则向量求得,再由,整理得,利用基本不等式,即可求解.【解析】由题意,以点A为原点,建立如图所示的平面直角坐标系,设点,其中,则向量,所以又由,则,整理得,又由,设,整理得,解得,所以,所以的最小值为.【点评】与几何图形有关的平面向量的数量积的运算及应用,常通过建立空间直角坐标系,利用向量的数量积的坐标运算求解【小试牛刀】【江苏省盐城中学2018届高三上学期期末】已知ABC ∆的周长为6,且,,BC CA AB 成等比数列,则BA BC ⋅的取值范围是______. 【答案】【解析】因为,,BC CA AB 成等比数列,所以,从而02b <≤,所以,又,即,解得,故.(二) 平面向量模的取值范围问题 设(,)a x y =,则,向量的模可以利用坐标表示,也可以借助“形”,向量的模指的是有向线段的长度,过可结合平面几何知识求解,尤其注意,如果直接求模不易,可以将向量用基底向量表示再求.【例2】已知向量,,a b c 满足a 与b 的夹角为4π,,则c a -的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系, ∵a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x,y ) ∵,∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点A,C 的距离即圆上的点与点A (4,0)的距离;∵圆心到B 的距离为,∴c a -的最大值为12+.【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【2018届山东省济南高三上学期期末】已知平面上的两个向量OA 和OB 满足OA a =,OB b =,且221a b +=, 0OA OB ⋅=,若向量,且,则OC 的最大值为__________.【答案】32【解析】因为OA a =, OB b =,且221a b +=, 0OA OB ⋅=,,,如图,取AB 中点D ,则,12OD =, ,由可得, 1DC ∴=, C ∴在以D 为圆心, 1为半径的圆上, ∴当O C ,, D 共线时OC 最大, OC ∴的最大值为312OD +=,故答案为32. (三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则.【例3】已知向量→OA 与→OB 的夹角为θ,0t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ ,转化为求二次函数的最小值问题,当时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解. 【解析】由题意知,,,所以,由二次函数的图像及其性质知,当上式取最小值时,.由题意可得,,求得,所以322πθπ<<. 【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数在R 上存在极值,则a 和b 夹角的取值范围为【答案】,3ππ⎛⎤⎥⎝⎦【解析】,设a 和b 夹角为θ,因为()f x 有极值,所以,即,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. (四)平面向量系数的取值范围问题平面向量中涉及系数的范围问题时,要注意利用向量的模、数量积、夹角之间的关系,通过列不等式或等式得系数的不等式,从而求系数的取值范围.【例4】已知()2,λ=a ,()5,3-=b ,且a 与b 的夹角为锐角,则λ的取值范围是 . 【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于a 与b 的夹角为锐角,0>⋅∴b a ,且a 与b 不共线同向,由,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.【点评】注意向量夹角与三角形内角的区别,向量夹角的范围是[0,]π,而三角形内角范围是(0,)π,向量夹角是锐角,则cos 0,θ>且cos 1θ≠,而三角形内角为锐角,则cos 0,θ>. 【小试牛刀】【江苏省泰州中学2018届高三10月月考】如图,在ABC ∆中,.(1)求AB BC ⋅的值;(2)设点P 在以A 为圆心, AB 为半径的圆弧BC 上运动,且,其中,x y R ∈.求xy 的取值范围.【解析】(1).(2)建立如图所示的平面直角坐标,则.设,由,得.所以.所以..因为,所以,当262ππθ-=时,即3πθ=时, xy 的最大值为1; 当或即0θ=或23πθ=时, xy 的最小值为0.五、迁移运用1.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.2.【江苏省无锡市2019届高三上学期期末】已知点 P 在圆 M: (x-a)2 +(y-a+2)2=1 上, A,B 为圆 C:x2 +(y-4)2=4 上两动点,且 AB =2, 则的最小值是____.【答案】【解析】取AB的中点D,因为AB =2,R=2,CD==1,所以,=.C(0,4),M(a,a-2)当C、D、P、M在一条直线上时,|PD|最小,此时,|PD|=|CM|-|CD|-|PM|=所以,=≥19-12,当a=3时取到最小值19-12.故答案为:.3.【江苏省清江中学2019届高三第二次教学质量调研】在平面直角坐标系中,已知点为圆上的两动点,且若圆上存在点使得则正数的取值范围为________.【答案】【解析】设BD的中点为D,所以所以点D在以原点为圆心,以1为半径的圆上,所以点D的轨迹方程为,因为,所以设所以所以m表示动点到点(1,1)的距离,由于点在圆上运动,所以,所以正数m 的取值范围为.故答案为:4.【江苏省如皋市2018-2019学年高三数学第一学期教学质量调研】在△ABC 中,D 为AB 的中点,若,则的最小值是_______.【答案】.【解析】根据D 为AB 的中点,若,得到,化简整理得,即,根据正弦定理可得,进一步求得,所以,求导可得当时,式子取得最大值,代入求得其结果为,故答案为.5.【江苏省常州2018届高三上学期期末】在ABC ∆中, 5AB =, 7AC =, 3BC =, P 为ABC ∆内一点(含边界),若满足,则BA BP ⋅的取值范围为________.【答案】525,84⎡⎤⎢⎥⎣⎦【解析】由余弦定理,得,因为P 为ABC ∆内一点(含边界),且满足,所以30,4λ⎡⎤∈⎢⎥⎣⎦,则.6.【江苏省南通市2018届高三上学期第一次调研】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P ,Q 分别在边BC , CD 上,且,则AP AQ ⋅的最小值为_________.【答案】424-【解析】以A 坐标原点,AB,AD 所在直线为x,y 轴建立直角坐标系,设所以AP AQ ⋅因为,所以因为,所以因此7.【江苏省如皋市2017--2018学年度高三年级第一学期教学质量调研】已知点P 是边长为23的正三角形ABC 内切圆上的一点,则PA PB ⋅的取值范围为_______.【答案】[]3,1-【解析】以正三角形ABC 的中心为原点,以AB 边上的高为y 轴建立坐标系,则,正三角形ABC 内切圆的方程为221x y +=,所以可设,则,,故答案为[]3,1-.8.【南京市、盐城市2018届高三年级第一次模拟考试】如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则AB CD ⋅ 的最大值为________.【答案】24【解析】先建立直角坐标系,由向量投影知AB CD ⋅ 取最大值时,即AB CD ⋅9.【江苏省泰州中学2018届高三12月月考】已知单位向量a , b 的夹角为120︒,那么2a xb -(x R ∈)的最小值是__________. 【答案】3 【解析】∴ 2a xb-的最小值为3.10.【江苏省溧阳市2017-2018学年高三第一学期阶段性调研】扇形AOB 中,弦2AB C =,为劣弧AB 上的动点, AB 与OC 交于点P ,则·OP BP 的最小值是_____________________. 【答案】14-【解析】设弦AB 中点为M,则若,MP BP 同向,则0OP BP ⋅>,若,MP BP 反向,则0OP BP ⋅<,故OP BP ⋅的最小值在,MP BP 反向时取得,此时,则:,当且仅当时取等号,即OP BP ⋅的最小值是14-. 11.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB ⋅的取值范围是 . 【答案】[9,0]- 【解析】 试题分析:,而,所以MA MB ⋅的取值范围是[9,0]-12.在ABC ∆中, ,则角A 的最大值为_________.【答案】6π 【解析】试题分析:由题设可得,即,也即,故,由于,因此,故,所以,所以6max π=A ,应填答案6π. 13.在平面内,定点,,,A B C D 满足,动点,P M 满足,则BM 的最大值是__________.【答案】321- 【解析】 试题分析:设,则.由题设可知,且.建立如图所示的平面直角坐标系,则,由题意点P 在以A 为圆心的圆上,点M 是线段PC 的中点.故结合图形可知当CP 与圆相切时,BM 的值最大,其最大值是123-.应填答案321-.14.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足,则AM AN ⋅的取值范围是__________.【答案】[1,9]【解析】分别以AB,AD 为x,y 轴建立直角坐标系,则,设,因为,所以33xb -=,则,故,所以,故填[1,9].15.在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若,则x 的取值范围是__________.【答案】()2,0- 【解析】 因为,因为12BC CD =,点O 在线段CD 上, 所以()0,2y ∈,因为,所以()2,0x ∈-.16.已知向量(),2a x =-,(),1b y =,其中x ,y 都是正实数,若a b ⊥,则2t x y =+的最小值是___________. 【答案】4【解析】由a b ⊥,得0=⋅b a ,即,所以2=xy .又x ,y 都是正实数,所以.当且仅当y x 2=时取得等号,此时2=x ,1=y ,故答案为:4.17.在ABC ∆中,已知3AB =,3C π=,则CA CB ⋅的最大值为 .【答案】32【解析】,由余弦定理得:,所以32CA CB ⋅≤,当且仅当a b =时取等号18.已知△ABC 中,4AB =,2AC =,(R λ∈)的最小值为23,若P 为边AB 上任意一点,则PB PC ⋅的最小值是 . 【答案】94-【解析】令()f λ==216λ+24(22)λ-+=,当cos 0A =时,()f λ=,因为2322>,所以2A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则,,所以PB PC ⋅=(4)x x --=2(2)4x --;当cos 0A ≠时,()f λ=+1cos ]2A+≥,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则, ,所以PB PC ⋅==259()24x --.综上所述,当52x =时,PB PC ⋅取得最小值94-.。

专题16 平面向量(选填压轴题)(教师版)-2024年高考数学压轴专题复习

专题16 平面向量(选填压轴题)(教师版)-2024年高考数学压轴专题复习

专题16 平面向量(选填压轴题)目录①向量模问题(定值,最值,范围) (1)②向量数量积(定值,最值,范围) (12)③向量夹角(定值,最值,范围) (21)④向量的其它问题 (27)①向量模问题(定值,最值,范围)A .314B .132【答案】C【详解】在ABC V 中,由BAC ∠=4.(2023春·江西赣州·高二统考期中)已知O 为坐标原点,0PA PC ⋅=,则O P 的最大值为( )A .2B .31+C .2【答案】D【详解】因为2O C ≤,所以点C 在圆22:4O x y +=的内部或圆周上,又动点P 满足0PA PC ⋅=,当点C 在圆O 内时,延长AC 交圆则,,M A M P O N A D A M A =⊥<当点C 在圆O 上时,,M N 两点重合,所以AM AN ≤,当且仅当点C 在圆则O P O M M P O M A M ≤+=+因为O M A M O N M N A +≤++222||||||4ON AN OA +==,所以(,)c x y =的终点在以32⎛ ⎝所以1|2|22a c a c -=-,几何意义为由儿何意义可知22a c -=设OC c = ,则,C A a c C B =- 所以C 点在以AB 为直径的圆上运动,由2352c a c =⋅- ,得23()4c a - 因此O C 的终点C 在以点D 直线l ,于是c tb - 是圆D 上的点与直线所以min2c tbEF DE -==-=12.(2023·上海·高三专题练习)已知非零平面向量则b的最小值是【答案】5【详解】AC a = ,AD b =,AB c = )()0a c a ⋅-=r r r ,即CD CB ⋅=uu u r uu r 的中点O ,则有1122OC BD ==2b c +r r,根据三角形的三边关系可知不妨设(1,0),,e OE a OA b OB====,由π,6a e =知,点A 在直线3(3y x x =>由题意π,456b b e e --= ,可知4,5b e b e --记(4,0)C ,(5,0)D ,则π,6BC BD =,②向量数量积(定值,最值,范围)1.(2023春·山东青岛·高一校考期中)如图,在边长为2的等边ABC V 中,点E 为中线B DA .316-B .-【答案】B【详解】由已知,2BA = ,所以cos BA BC BA BC ⋅=∠由ABC ABD ACD S S S =+V V V ,所以1sin2bc 所以2()4bc b c bc =+≥,则16bc ≥π1A .32-【答案】CA.-2B.【答案】B=【详解】由题意,A B A D ===,所以22BC DC BD∠=∠,即AC 所以ACB ACD7.(2023春·江苏徐州·高一统考期中)八边形是数学中的一种图形,由八条线段首尾相连围成的封闭图形,它有八条边、八个角.八边形可分为正八边形和非正八边形.中,点O为正八边形的中心,点P是其内部任意一点,则A.(22,422)-+-C.(2,4)【答案】A【详解】正八边形ABCDEFGHGF=,设OF x=,由余弦定理得,2△中,222OFG+-x x11.(2023春·山东淄博·高一统考期末)圆C ,D ,且2OC OD ⋅= ,则【答案】846+/468+【详解】因为点,C D 在圆O由三角函数定义知(2cos C 则(22cos ,22CA θ=--于是(22cos CA CB θ⋅=- 同理442sin (DA DB θ-⋅=设a MA =,b MB = ,c 若对任意实数x ,y 都有|则B ,C 在以M A 为直径的圆上,过b MB =在OD 上的射影最长为()b c a b AC DE ⋅-=⋅=⋅【答案】2【详解】设AG ADAE mAB λ⎧=⎪⎪=⎨,由向量共线的充要条件不妨设③向量夹角(定值,最值,范围)12OQ BQ BO BC BC μ=-=-= (cos 1OC OA OC OQ AOC OC OA ⋅⋅∠==④向量的其它问题1.(2023·北京西城·统考二模)在坐标平面内,横、纵坐标均为整数的点称为整点.点P 从原点出发,在坐标平面内跳跃行进,每次跳跃的长度都是5且落在整点处.则点P 到达点(33,33)Q 所跳跃次数的最小值是( )A .9B .10C .11D .12【答案】B【详解】每次跳跃的路径对应的向量为()()()()()()()()111122223,4,4,3,5,0,0,5,3,4,4,3,5,0,0,5a b c d a b c d =====--=--=-=-u r u r u r u r u u r u r u r u u r,因为求跳跃次数的最小值,则只取()()()()11113,4,4,3,5,0,0,5a b c d ====u r u r u r u r,设对应的跳跃次数分别为a b c d ,,,,其中,,,a b c d ∈N ,可得()()1111345,43533,33OQ aa bb cc dd a b c a b d =+++=++++=u u u r u r u r u r u r故选:B.3.(2023·河南安阳·安阳一中校考模拟预测)在4.(2023·河南·河南省内乡县高级中学校考模拟预测)已知2a b λ+ 与3a b λ+的夹角是锐角,则【答案】()(,61,-∞-- ()(6.(2023·湖南长沙·周南中学校考三模)的中点,直线A E 和直线C【答案】2【详解】记BA BG BA= ,BH =因为1BG BH ==,则平行四边形因为A 、E 、F 三点共线,则使得AF AE λ= ,即BF BA λ-= 因为E 为B C 的中点,所以,BF。

【高考数学解题指导】重难点突破:平面向量中最值问题全梳理

【高考数学解题指导】重难点突破:平面向量中最值问题全梳理

重难点突破:平面向量最值问题全梳理模块一、题型梳理题型一 数量积的最值问题例题1: 平面向量,,a b c 满足1,2,2,1a e b e a b e ⋅=⋅=-==,则a b ⋅最小值是______分析:本题条件中有1e =,而1,2a e b e ⋅=⋅=可利用向量数量积的投影定义得到,a b 在e 上的投影分别为1,2,通过作图可发现能够以e 的起点为原点,所在直线为x 轴建立坐标系,则,a b 起点在原点,终点分别在1,2x x ==的直线上,从而,a b 可坐标化,再求出a b ⋅的最值即可 【解析】如图建系可得:()()1,,2,a a b b ==由2a b -=()223a b =⇒-=而2a b ab ⋅=+,由轮换对称式不妨设a b >,则a b b a -=⇒=-(225522244a b a a a a ⎛∴⋅=+-=-+=-+≥ ⎝⎭,()min54a b∴⋅=例题2:已知点M为等边三角形ABC的中心,2AB=,直线l过点M交边AB于点P,交边AC于点Q,则BQ CP⋅的最大值为.【分析】本题由于l为过M的任一直线,所以:,:AP AB AQ AC的值不确定,从而不容易利用三边向量将,BQ CP进行表示,所以考虑依靠等边三角形的特点,建立直角坐标系,从而,,,A B C M坐标可解,再借助解析几何的思想设出直线l方程,与,AB AC方程联立解出,P Q坐标,从而BQ CP⋅可解出最大值【解析】以,BC AM为轴建立直角坐标系,()()(1,0,1,0,,0,3B C A M⎛-⎝⎭设直线:3l y kx=+,由()()(1,0,1,0,B C A-可得:)):1,:1AB y x AC y y x=+==-):31y kxPy x⎧=+⎪∴⎨⎪=+⎩得:xy⎧=⎪⎪⎨⎪=⎪⎩;):31y kxQy x⎧=+⎪⎨⎪=-⎩得:xy⎧=⎪⎪⎨⎪=⎪⎩((53353,,kBQ CP⎛⎫⎛⎫+∴==(()()22222257593162239333k k kBQ CPkk k--+∴⋅=+=+=---()222226221618401406333333k kk kk⎛⎫+-+⎛⎫===⋅+⎪ ⎪---⎝⎭⎝⎭若直线与,AB AC相交,则33k⎡∈-⎢⎣⎦;21401402266333039BQ CPk⎛⎫⎛⎫∴⋅=-≤-=-⎪ ⎪--⎝⎭⎝⎭例题3: 如图,半径为1的扇形AOB 中,23AOB π∠=,P 是弧AB 上的一点,且满足OP OB ⊥,,M N 分别是线段,OA OB 上的动点,则PM PN ⋅的最大值为( )A .2B C .1 D例题4: 在矩形ABCD 中,3AB =,1AD =,若M ,N 分别在边BC ,CD 上运动(包括端点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是__________.例题5: 已知圆C 的方程22(1)1x y -+=,P 是椭圆22143x y +=上一点,过P 作圆的两条切线,切点为A ,B ,则PA PB ⋅的取值范围为( )A .3[,)2+∞ B.3,)+∞ C.563,9⎡⎤⎢⎥⎣⎦ D .356,29⎡⎤⎢⎥⎣⎦【解析】(,)P x y ,设222221,(1,0),||||1(1)1244CPA CPB C PA PC x y x x θ∠=∠==-=-+-=-+ 2222122114sin cos 212sin 11||242444x x PC x x x x θθθ-+⇒==⇒=-=-+-+, 设221124(4)44t x x x =-+=-,又2min (2)2||cos 2(1)3223,2,()t PAPB PA t t t PA PB t tθ-•==-=+-≥-=•=max563,9,()9t PA PB =•=⇒PA PB ⋅的取值范围为563,9⎡⎤⎢⎥⎣⎦,故选C例题6: 已知△ABC 中,4AB =,2AC =,|(22)|AB AC λλ+-(R λ∈)的最小值为P 为边AB 上任意一点,则PB PC ⋅的最小值是【解析】令()f λ=22222|(22)|(22)2(22)AB AC AB AC AB AC λλλλλλ+-=+-+-⋅=216λ+24(22)λ-+2(22)8cos A λλ-⋅=216[(22cos )(2cos 2)1]A A λλ-+-+,当cos 0A =时,()f λ=221116(221)16[2()]822λλλ-+=-+≥,因为>2A π=,则建立直角坐标系,(0,0)A ,(4,0),(0,2)B C , 设(,0)P x (04)x <<,则(4,0)PB x =-,(,2)PC x =-, 所以PB PC ⋅=(4)x x --=2(2)4x --; 当cos 0A ≠时,()f λ=2116[(22cos )()2A λ--+1cos ]2A+≥88cos 12A +=,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A ,(4,0),B C ,设(,0)P x (04)x <<,则(4,0)PB x =-,(1PC x =-,所以PB PC ⋅=(4)(1)x x --=259()24x --. 综上所述,当52x =时,PB PC ⋅取得最小值94-题型二 向量模长的最值问题例题7: 已知,a b 为单位向量,且a b ⊥,向量c 满足2c a b --=,则c 范围为【解析】如图,,()OA a b OB c AB c a b =+=⇒=-+,又||||222||22OA a b c =+=⇒-≤≤+例题8: 向量,,a b c 满足4,22,a b ==a 与b 的夹角为4π,()()1c a c b -⋅-=-,则c a -的最大值为( )【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围.【解析】设c OC b OB a OA ===,,;以OA 所在直线为x ,O 为坐标原点建立直角坐标系 ∵4,22,a b ==a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x ,y ) ∵()()1c a c b -⋅-=-,∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点A ,C 的距离即圆上的点与点A (4,0)的距离. ∵圆心到B 的距离为2)01()43(22=-+-,∴c a -的最大值为12+4224681051015A BO例题9: 已知向量,a b 夹角为3π,2b =,对任意x R ∈,有b xa a b +≥-,则()2atb a tb t R -+-∈的最小值是__________.【解析】()()1,0,0,3,A B ()()1,0,1,3a b ∴=-=- ()()22132a tb a tb t t∴-+-=-+()2222113421424t tt t t t ⎛⎫+-+=-++-+= ⎪⎝⎭2222131********t t ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥-+-+-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,表示(),0P t 与11,48M N ⎛⎛⎝⎭⎝⎭的距离之和的2倍,当,,M P N 共线时,取得最小值2MN ,即有22MN ==.题型三 向量夹角的最值问题例题10:已知非零向量,a b 满足2a b =,若函数3211().132f x x a x a bx =+++ 在R 上存在极值,则a 和b 夹角的取值范围为【解析】()'2f x x a x a b =++⋅,设a 和b 夹角为θ,因为()f x 有极值,所以240a a b ∆=-⋅>,即24cos 0a a b θ∆=-⋅⋅>,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦例题11:非零向量满足=,,则夹角最小值是【解析】由题意得2212a b a b ⋅=,()24a b+=,整理得22422a b a b a b +=-⋅≥⋅,即1a b ⋅≤,11cos ,22a b a b a b a b⋅==⋅≤,,3a b ππ∴≤≤,夹角的最小值为3π例题12:已知向量满足,且关于的函数在实数集R上单调递增,则向量a,b 的夹角的取值范围是( ) A .π[0,]6 B .π[0,]3 C .π[0,]4 D .ππ[,]64b a ,b a ⋅222b a 2||||=+b ab a 与a,b |a|=22|b|0≠x 32f(x)=2x +3|a|x +6a bx+7⋅题型四 平面向量系数的最值问题例题13:已知()2,λ=,()5,3-=,且a 与b 的夹角为锐角,则λ的取值范围是【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于与的夹角为锐角,0>⋅∴,且与不共线同向,由01030>+-⇒>⋅λ,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.例题14:已知G 是ABC 的重心,过点G 作直线MN 与AB ,AC 交于点,M N ,且AM xAB =,AN y AC =,(),0x y >,则3x y +的最小值是【解析】如图M N G ,, 三点共线,MG GN λ∴=,AG AM AN AG λ∴-=-(), ∵G 是ABC 的重心,13AG AB AC ∴=+(), 1133AB AC x AB y AC AB AC λ∴+-=-+()(())1133{ 1133x y λλλ--∴-=,= 解得,31311x y --=()();结合图象可知111122x y ≤≤≤≤,; 令1131312222x m y n m n -=-=≤≤≤≤,,(,); 故11133m nmn x y ++===,,;故14443133333n n x y m m ++=++=++≥+=,当且仅当m n ==例题15:如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为【解析】因为,,M N G 三点共线,所以(),MG GN AG AM AN AG λλ=-=-, 因为G 是ABC ∆重心,所以()13AG AB AC =+()()1133AB AC xAB y AC AB AC λ⎛⎫+-=-+ ⎪⎝⎭,所以11331133x y λλλ⎧-=-⎪⎪⎨⎪=-⎪⎩, 化简得()()31311x y --=,解得题目所给图像可知111,122x y ≤≤≤≤. 由基本不等式得()()23162231622x y x y -+-⎛⎫=--≤ ⎪⎝⎭即()332323x y x y ++-≥+≥.当且仅当3162x y -=-,即x y ==例题16:直角梯形ABCD 中,CB CD ⊥,AD BC ,ABD 是边长为2的正三角形,P 是平面上的动点,1CP =,设AP AD AB λμ=+(λ,R μ∈),则λμ+的最大值为________【解析】以C 为原点,CD 为x 轴,BC 所在直线为y 轴,建立直角坐标系,1CP =∴可设()()()cos ,,1,3,2,0CP sin AD AB αα==-=-,(,,AC =-(cos 2,,AP AC CP sin αα=+=-+因为AP AD AB λμ=+,所以()()cos 2,32,3sin ααλμλ-+=--1223{{1122sin cos sin cos λαλμααμαα=+--=-⇒==-+,()133cos =26232sin λμαααϕ+=-++-+ 332≤+=96+, 即λμ+.例题17:已知向量,,.(1)若,求的值;(2)记,求的最大值和最小值以及对应的的值.【解析】(1)因为,,,所以.若,则,与矛盾,故.于是,所以.(2). 因为,所以,从而于是,当,即时,取到最大值3;当,即时,取到最小值(cos ,sin )x x =a (3,=b [0,]x π∈∥a b x ()f x =⋅a b ()f x x (cos ,sin )x x =a (3,=b ∥a b 3sin x x =cos 0x =sin 0x =22sin cos 1x x +=cos 0x ≠tan x =[0,]x π∈56x π=π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b [0,]x π∈ππ7π[,]666x +∈π1cos()6x -≤+≤ππ66x +=0x =()f x π6x +=π5π6x =()f x -例题18: 在平面直角坐标系中,已知点,,,是轴上的两个动点,且,则的最小值为______.【解析】设,,所以,当时,取得最小值.例题19: 在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( ) A .714-B .24-C .514-D .30-【分析】如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求边CD所在直线的方程,设(,M x +,利用坐标表示,AM ME ,根据二次函数性质求最大值.【解析】依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B,(C ,()5,0D ,因为点E 在线段CB的延长线上,设(0E x ,01x <AE BE =,()222001x x +=-解得01x =-,(E ∴-,(4,3C ,()5,0D ,CD ∴所在直线的方程为y =+,因为点M 在边CD所在直线上,故设(,M x +(,AM x ∴=+,(1E x M -=--, ()1AM ME x x -∴⋅=--++242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max714AM ME ⋅=-故选:A【小结】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题(10)A -,(2,0)B E F y ||2EF =AE BF ⋅(0,)E t (0,2)±F t (1,)(2,2)⋅=⋅-±AE BF t t 222(2)22(1)3=-+±=±-=±-t t t t t 1=±t AE BF⋅3-题型七 平面向量与基本不等式相结合的最值问题例题20: 若平面向量,满足:;则的最小值是.【解析】,例题21: 在等腰梯形中,已知,,,.动点和分别在线段和上,且,,则的最小值为 . 【解析】 因为,,,,,当且仅当即时的最小值为a b 23-≤a b ⋅a b _____2223494a b a b a b -≤⇔+≤+2294449448a b a b a b a b a b a b +≥≥-⇒+≥-⇔≥-ABCD AB DC ∥2AB =1BC =60ABC ∠=E F BC DC BE BC λ=19DF DC λ=AE AF ⋅19DF DC λ=12DC AB =119199918CF DF DC DC DC DC AB λλλλλ--=-=-==AE AB BE AB BCλ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+()1918AE AF AB BC AB BC λλλ+⎛⎫⋅=+⋅+ ⎪⎝⎭22191911818AB BC AB BC λλλλλλ++⎛⎫=+++⋅ ⎪⎝⎭19199421cos1201818λλλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+=2192λλ=23λ=2918BA例题22: 已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________【分析】本题根据条件构造21a b +=,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式. 【解析】由20OA aOB bOC --=可得, 2OA aOB bOC =+,根据A 、B 、C 三点共线可得21a b +=,且0,0a b >>, 所以()2222222112221222a b a b a a b b a ba b a b b a b a b b a b a b+++++++=-+-=+-≥+++++++ 所以最小值为2,故填2.题型八 平面向量与圆相结合的最值问题例题23: 在平面直角坐标系中,为原点,动点满足,则的最大值是 .【解析】设(,)D x y ,由||1CD =,得22(3)1x y -+=,向量OA OB OD ++(1,x y =-+,故||(OA OBOC x ++=的最大值为圆22(3)1x y -+=上的动点到点(1,距离的最大值,其最大值为圆22(3)1xy -+=的圆心(3,0)到点(1,的距离加上圆的半径,11=+例题24: 已知是单位向量,.若向量满足,则的最大值为ABCD 【解析】建立平面直角坐标系,令向量的坐标, 又设,代入,又的最大值为圆上的动点到原点的距离的最大值, 即圆心(1,1).O (1,0),(3,0),A B C -D ||1CD =||OA OB OD ++,a b 0⋅a b =c 1--=c a b c 112,a b ()()1,0,0,1==a b (),x y =c 1--=c a b 1=c ()()22111x y -+-=1例题25: 若过点()1,1P 的直线l 与22:4O x y +=相交于,A B 两点,则OA OB ⋅取值范围______【解析】本题中因为,OA OB 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过B 作直线OA 的垂线,垂足为D ,通过旋转AB 可发现,当OB OA ⊥时,0OA OB ⋅=,AB 位于其他位置时,D点始终位于OA 的反向延长线上,OA OB OA OD ⋅=-⋅,故0OA OB ⋅<,故()max0OA OB⋅=,下面寻找最小值,即DO 的最大值,可得当B 在OA 上的投影与C 重合时,DA 最大,即为AC ,此时直线OP 即为直线AB 。

高考数学压轴专题最新备战高考《平面向量》全集汇编含答案

高考数学压轴专题最新备战高考《平面向量》全集汇编含答案

【高中数学】数学《平面向量》复习知识要点一、选择题1.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v,则λ=( )A .13B .12C .3D .2【答案】B 【解析】 【分析】根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BABC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】因为2133BD BA BC =+u u u v u u u v u u u v ,所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r ,因为AD DC λ=u u u v u u u v ,所以λ= 12, 故选:B 【点睛】本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.2.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r与NQ uuu r有公共点N ,所以,,M N Q 三点共线. 故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.3.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为23的两点,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A .18122-B .19122-C .18122+D .19122+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()23223MP MQ ⋅≥--u u u r u u u u r ,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,22222()12PQ C D QC =-=Q ,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥Q ,1221min min MD C C C D MC ∴=-- 故()2322319122MP MQ ⋅≥--=-u u u r u u u u r .【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.4.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.5.已知,a r b r 是平面向量,满足||4a =r ,||1b ≤r 且|3|2b a -≤r r ,则cos ,a b 〈〉rr 的最小值是( ) A .1116B .78CD【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.6.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r的最小值是( ) A .0 B .1C 2D .2【答案】B 【解析】 【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r, ()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B . 【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.7.已知向量,a b r r 满足||3a =r ||4=r b ,且()4a b b +⋅=r r r,则a r 与b r的夹角为( ) A .6π B .3π C .23π D .56π 【答案】D 【解析】【分析】由()4a b b +⋅=r r r ,求得12a b ⋅=-r r,再结合向量的夹角公式,求得cos ,a b 〈〉=r r 可求得向量a r 与b r的夹角.【详解】由题意,向量,a b r r满足||a =r||4=r b ,因为()4a b b +⋅=r r r ,可得2164a b b a b ⋅+=⋅+=r r r r r,解得12a b ⋅=-r r ,所以cos ,||||a b a b a b ⋅〈〉===r rr r r r又因a r 与b r 的夹角[0,]π∈,所以a r 与b r的夹角为56π. 故选:D . 【点睛】本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.8.已知向量(sin ,cos )a αα=r,(1,2)b =r , 则以下说法不正确的是( )A .若//a b rr,则1tan 2α=B .若a b ⊥rr,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -r r1【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确. D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.9.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.10.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.11.已知椭圆2222:1(0)x y T a b a b +=>>的离心率为32,过右焦点F 且斜率为()0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r,则k =( )A .2B 3C 2D .1【答案】C 【解析】 【分析】由32e =可得3a =,3b =,可设椭圆的方程为222334x y c +=,()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r得到12123430x x c y y +=⎧⎨+=⎩,再由22211334x y c +=,22222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】因为c e a ===,所以2a b =,所以a =,b =,则椭圆方程22221x y a b+=变为222334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><, 又3AF FB =uu u r uu r,所以()()1122,3,c x y x c y --=-,所以()121233c x x c y y ⎧-=-⎨-=⎩,12123430x x cy y +=⎧⎨+=⎩因为A ,B 在椭圆上,所以22211334x y c +=,① 22222334x y c +=②. 由①—9×②,得2121212123(3)(3)3(3)(3)84x x x x y y y y c +-++-=-,所以21234(3)84c x x c ⨯-=-,所以12833x x c -=-, 所以123x c =,2109x c =,从而13y =-,29y c =所以2(,)33A c -,10(,)99B c c,故9102393c k c c +==- 故选:C. 【点睛】本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.12.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v,则λ=( )A .14B .14-C .13D .13-【答案】B 【解析】 【分析】由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u ur u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出.【详解】 13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,故选B. 【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.13.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.14.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r rB .1133a b +r rC .1124a b +r rD .1133a b -r r【答案】A 【解析】 【分析】根据向量的运算法则计算得到答案.【详解】1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u ur u u u r 2136a b =-r r .故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.15.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r,则ABC ∆的形状为( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等边三角形【答案】A 【解析】 【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断. 【详解】由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r,所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A. 【点睛】本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.16.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v( )A .843+B .843-C .12D .4【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.17.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.18.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.19.在四边形ABCD 中,若12DC AB =u u u r u u u r ,且|AD u u u r |=|BC uuu r |,则这个四边形是( ) A .平行四边形 B .矩形C .等腰梯形D .菱形 【答案】C【解析】由12DC AB =u u u r u u u r 知DC ∥AB ,且|DC|=12|AB|,因此四边形ABCD 是梯形.又因为|AD u u u r |=|BC uuu r |,所以四边形ABCD 是等腰梯形.选C20.已知单位向量,a b r r 满足3a b +=r r ,则a r 与b r 的夹角为A .6πB .4πC .3πD .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.。

高考数学压轴专题2020-2021备战高考《平面向量》分类汇编含解析

高考数学压轴专题2020-2021备战高考《平面向量》分类汇编含解析

高中数学《平面向量》知识点归纳一、选择题1.在ABC ∆中,已知3AB =,23AC =,点D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v的取值范围为( )A .()3,5B .()5,53C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()11213333AC AB AC AC AB AC AB AC AB u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅u u ur u u u r u u u r u u u r =8﹣113233cos BAC -⨯⨯∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.2.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )ABCD【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u ur 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可. 【详解】 由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r,||2||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.4.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )A .12-B .12C.2D.【解析】 【分析】由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ⋅+⋅=r r r,即可得出答案.【详解】由|2|||a b a b -=+r r r r两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r .又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r,即20t a a b ⋅+⋅=r r r . 所以2221122ba b t a b⋅=-=-=-r r r r r 故选:A 【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.5.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=,【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.6.已知,a r b r 是平面向量,满足||4a =r,||1b ≤r 且|3|2b a -≤rr,则cos ,a b 〈〉rr 的最小值是( ) A .1116B .78C .15 D .315【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】 设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.7.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r方向上的投影为4-,则向量BA u u u r 与AC u u u r的夹角为( )A .45°B .60°C .120°D .150°【答案】C 【解析】 【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u ur 方向上的投影为cos =4BD α-u u u r,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u ur 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u ur 的夹角为θ, 则cos =4BD α-u u u r,∴()cos ===BD DA AC BA AC BD AC DA ACBA AC BA AC BA AC θ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r()()cos cos180444211===1242BD AC DA AC AB ACα⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u ru ur r u, 故夹角为120°, 故选:C . 【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.8.已知向量(sin ,cos )a αα=r,(1,2)b =r, 则以下说法不正确的是( ) A .若//a b rr,则1tan 2α=B .若a b ⊥rr,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -rr 1 【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确. D 选项,()()()22||sin 1cos 2625sin a b αααφ-=-+-=-+r r的最大值为62551+=+,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.9.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOBu u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ=10,sin θ=10,又OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.10.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为AB.2C .1 D.5【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.11.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( )A .233B .355C .322D .98【答案】A 【解析】 【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-== 因为225+=8λμ,所以22522()(),3, 3.22833b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.12.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.13.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.14.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B .2C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.15.设()1,a m =r ,()2,2b =r ,若()2a mb b +⊥r r r ,则实数m 的值为( ) A .12 B .2 C .13- D .-3【答案】C【解析】【分析】 计算()222,4a mb m m +=+r r ,根据向量垂直公式计算得到答案.【详解】 ()222,4a mb m m +=+r r ,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-. 故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.16.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r 的最小值是( )A .0B .1CD .2 【答案】B【解析】【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】 由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r ,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r ,()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B .【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.19.已知向量a v ,b v 满足a v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A .2B .3CD .4【答案】D【解析】【分析】 根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】 由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r r r r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.20.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C【解析】【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】 解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122210F F c ==.∵120MF MF ⋅=u u u u v u u u u v , ∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =,设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。

相关文档
最新文档