磷酸铁锂理论知识
磷酸铁锂基础知识

磷酸铁锂基础知识一、磷酸铁锂的基本概述磷酸铁锂(LiFePO₄)是一种锂离子电池电极材料。
它具有橄榄石结构,这种结构为锂离子的嵌入和脱出提供了稳定的框架。
从外观上看,磷酸铁锂通常呈现出灰白色粉末状。
在众多锂离子电池正极材料中,磷酸铁锂以其独特的性能脱颖而出。
例如,在电动汽车领域,特斯拉Model 3部分车型采用了磷酸铁锂电池,其安全性和长寿命的特点得到了体现。
二、磷酸铁锂的性能特点(一)安全性高磷酸铁锂的热稳定性非常好。
在高温环境下,它不像其他一些正极材料那样容易发生热失控现象。
例如,在电池过充或者短路时,磷酸铁锂发生剧烈反应的可能性较低。
这是因为它的化学键能较强,化学键断裂所需要的能量较高,从而降低了安全风险。
(二)循环寿命长磷酸铁锂能够经受多次充放电循环。
一般来说,优质的磷酸铁锂电池可以达到2000次以上的循环寿命。
以电动公交车为例,每天进行 1 - 2次充放电循环,使用磷酸铁锂电池可以持续使用多年,大大降低了电池更换的频率和成本。
(三)环保性好磷酸铁锂不含有重金属元素,如钴等。
这使得在电池生产、使用以及回收过程中,对环境的污染风险大大降低。
从可持续发展的角度来看,这是它的一个重要优势。
三、磷酸铁锂的制备方法(一)固相法这是一种较为传统的制备方法。
将铁源、锂源和磷源等原料按照一定的化学计量比混合均匀,然后在高温下进行煅烧反应。
例如,以草酸亚铁(FeC₂O₄)为铁源、碳酸锂(Li₂CO₃)为锂源、磷酸二氢铵(NH₄H₂PO₄)为磷源,在700 - 800℃的高温下反应数小时到数十小时不等。
固相法的优点是工艺简单、成本较低,但是产品的一致性和性能可能受到原料混合均匀程度等因素的影响。
(二)液相法液相法包括水热法、溶胶 - 凝胶法等。
1. 水热法在密封的高压反应釜中,以水为溶剂,将原料在高温高压的条件下进行反应。
例如,将氯化铁(FeCl₃)、磷酸二氢锂(LiH₂PO₄)等原料溶解在水中,在150 - 200℃的温度下反应一段时间。
磷酸铁锂电池知识大全

磷酸铁锂电池知识大全磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。
锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。
其中钴酸锂是目前绝大多数锂离子电池使用的正极材料,而其它正极材料由于多种原因,目前在市场上还没有大量生产。
磷酸铁锂也是其中一种锂离子电池。
从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。
磷酸铁锂电池是用来做锂离子二次电池的,现在主要方向是动力电池,相对NI-H、Ni-Cd电池有很大优势。
磷酸铁锂电池充放电效率,相对高一些。
在88% - 90%之间。
而铅酸电池约为80%。
磷酸铁锂电极材料主要用于各种锂离子电池,自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCOPO4)的橄榄石结构的锂电池正极材料之后, 1997年美国德克萨斯州立大学研究群也接着报导了LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。
与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的LiCoO2相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。
磷酸铁锂电池*构造正极:正极物质在磷酸铁锂离子蓄电池中以磷酸铁锂(LiFePO4)为主要原料;负极:负极活性物质是由碳材料与粘合剂的混合物再加上有机溶剂调和制成糊状,并涂覆在铜基体上,呈薄层状分布;隔膜板:称为隔板或称隔离膜片,其功能起到关闭或阻断通道的作用,一般使用聚乙烯或聚丙烯材料的微多孔膜。
所谓关闭或阻断功能是电池出现异常温度上升时阻塞或阻断作为离子通道的细孔,使蓄电池停止充放电反应。
隔膜板可以有效防止因内、外部短路等引起的过大电流而使电池产生异常发热现象。
PTC 元件:在磷酸铁锂电池盖帽内部,当内部温度上升到一定温度时或电流增大到一定控制值时,PTC 就起到了温度保险丝和过流保险的作用,会自动拉断或断开,从而形成内部断路。
锂离子电池用磷酸铁锂正极材料

锂离子电池用磷酸铁锂正极材料磷酸铁锂是一种常见的锂离子电池正极材料,被广泛应用于电动汽车、手机、笔记本电脑等各种电子设备中。
它具有较高的比容量、优异的循环寿命和良好的安全性能,因此备受关注。
本文将从磷酸铁锂的基本特性、制备方法、优缺点以及应用领域等方面进行介绍。
一、磷酸铁锂的基本特性磷酸铁锂是一种正极材料,其化学式为LiFePO4。
相比于传统的钴酸锂和锰酸锂等材料,磷酸铁锂具有以下特点:1. 高比容量:磷酸铁锂的理论比容量为170mAh/g,相比于钴酸锂的140mAh/g和锰酸锂的100mAh/g,具有更高的储能能力。
2. 良好的循环寿命:磷酸铁锂具有较好的循环寿命,可达到几千次以上,而且在高温环境下依然能够保持较好的性能。
3. 优异的安全性:磷酸铁锂不含有稀有金属元素,对环境友好,且在过充、短路等极端条件下,不易引发安全事故。
二、磷酸铁锂的制备方法磷酸铁锂的制备主要有固相法、溶胶-凝胶法和水热法等。
其中,固相法是最常用的制备方法之一。
其主要步骤包括混合原料、烧结和研磨等。
首先,将含有锂、铁、磷元素的化合物按照一定的摩尔比混合均匀,然后进行高温烧结,使得混合物中的元素反应生成磷酸铁锂。
最后,将得到的产物进行研磨,以获得细小的颗粒。
三、磷酸铁锂的优缺点磷酸铁锂作为一种锂离子电池正极材料,具有以下优点:1. 高能量密度:磷酸铁锂具有较高的比容量,能够提供更多的储能能力,使得电池具有较高的能量密度。
2. 长循环寿命:磷酸铁锂具有优异的循环寿命,能够进行多次的充放电循环而不损失性能。
3. 良好的安全性:磷酸铁锂相对于其他材料具有较好的安全性能,不易引发火灾或爆炸。
然而,磷酸铁锂也存在一些缺点:1. 低导电性:磷酸铁锂的导电性较差,影响了电池的充放电速率和功率性能。
2. 低电压平台:磷酸铁锂的电压平台较低,导致电池的电压输出相对较低。
四、磷酸铁锂的应用领域磷酸铁锂由于其良好的性能,被广泛应用于电动汽车、手机、笔记本电脑等电子设备中。
磷酸铁锂电池的基本知识

电极 电极材料 电极反应 反应类型 得失电子的粒子 电子流动方向
负极 正极
锌片 铜片
Zn-2e-==Zn2+ 氧化反应 2H++2e-==H2↑ 还原反应
Zn原子 H+离子
Zn片→Cu片
LOGO
一 、 磷酸铁锂电池反应机理及结构
电池的组成
正极 活性物质、导电剂、溶剂、粘合剂、基体 负极 活性物质、粘合剂、溶剂、基体、导电剂 隔膜(PP+PE) 电解液 外壳铝塑膜
LOGO
二 、 磷酸铁锂电池的一些基本知识
自放电
电池完全充电后,放置一个月。然后用1C放电至 3.0V,其容量记为C2;电池初始容量记为C0;1C2/C0即为该电池之月自放电率 行业标准锂离子电池月自放电率小于12%,电池自 放电与电池的放置性能有关,其大小和电池内阻结 构和材料性能有关
LOGO
二 、 磷酸铁锂电池的一些基本知识
LOGO
二 、 磷酸铁锂电池的一些基本知识
内阻
电流通过电池内部时受到阻力,使电池的电压降低,此阻力 称为电池的内阻。 电池的内阻不是常数,在放电过程中随时间不断变化,因为 活性物质的组成、电解液浓度和温度都在不断地改变。
欧姆电阻遵守欧姆定律;极化电阻随电流密度增加而增大, 但不是线性关系,常随电流密度的对数增大而线性增大。
衰减
放
电
容
2
量
1
Cycle次数
急速衰减主要原因: 1 电解液量的不足 2 SEI保护膜的破坏 3 添加剂不足 4 由于水分造成电解液的分解、保护膜的破坏
LiPF6的分解-生成HF LiPF6 LiF + PF5 PF5 + H2O PF3O + HF
磷酸铁锂电池的基本知识

二 、 磷酸铁锂电池的一些基本知识
自放电
电池完全充电后,放置一个月。然后用 1C 放电至 3.0V ,其容量记为 C2 ;电池初始容量记为 C0 ; 1-C2/C0 即为该电池之月自放电率 行业标准锂离子电池月自放电率小于 12% ,电池自 放电与电池的放置性能有关,其大小和电池内阻结 构和材料性能有关
LHale Waihona Puke GO二 、 磷酸铁锂电池的一些基本知识
衰减
放
电
容 量
2 1
Cycl e 次数
急速衰减主要原因: 1 电解液量的不足 2 SEI 保护膜的破坏 3 添加剂不足 4 由于水分造成电解液的分解、保护膜的破坏
Li PF6 的分解-生成 HF Li PF6 Li F + PF5 PF5 + H2O PF3O + HF
LOGO
END !
让用户满意 为客户增值
LOGO
LOGO
二 、 磷酸铁锂电池的一些基本知识
电压
开路电压(静态电压) 电池在开路状态下的端电压称为开路电压。电池
的开路电压等于电池的正极的还原电极电势与负极 电极电势之差。
工作电压(动态电压) 工作电压指电池接通负载后在放电过程中显示的
电压,又称放电电压。在电池放电初始的工作电压 称为初始电压。
LOGO
二 、 磷酸铁锂电池的一些基本知识
内阻
电流通过电池内部时受到阻力,使电池的电压降低,此阻力 称为电池的内阻。 电池的内阻不是常数,在放电过程中随时间不断变化,因为 活性物质的组成、电解液浓度和温度都在不断地改变。
欧姆电阻遵守欧姆定律;极化电阻随电流密度增加而增大, 但不是线性关系,常随电流密度的对数增大而线性增大。
磷酸铁锂磷酸铁锂-概述说明以及解释

磷酸铁锂磷酸铁锂-概述说明以及解释1.引言1.1 概述磷酸铁锂(LiFePO4)是一种锂离子电池正极材料,具有优异的性能和广泛的应用领域。
随着气候变化和环境污染问题的日益严重,磷酸铁锂作为一种绿色、环保的能源储存材料备受关注。
作为一种磷酸盐,磷酸铁锂具有较高的化学稳定性和热稳定性,不会受到过充、过放等条件的影响,避免了安全隐患。
此外,磷酸铁锂还具有高电子传导性能、高放电电压平台、优异的循环寿命和较低的内阻等特点,使其在锂离子电池领域具有重要地位。
磷酸铁锂广泛应用于电动汽车、移动通信、储能等领域。
在电动汽车中,磷酸铁锂的高能量密度和较低的成本优势使其成为重要的动力电池材料。
同时,磷酸铁锂在移动通信基站备用电源和储能系统中也得到了广泛应用,其稳定性和循环寿命满足了长时间的需求。
此外,磷酸铁锂还具有可再生性和回收利用性的优势,对于环境保护和可持续发展具有重要意义。
相比于传统的镍镉电池或镍氢电池,磷酸铁锂电池拥有更绿色、环保的特性,减少了对罕见金属的需求,减轻了对环境的影响。
综上所述,磷酸铁锂作为一种绿色、环保的能源储存材料,在电动汽车、移动通信、储能等领域具有广泛的应用前景和市场潜力。
随着技术的进步和需求的增加,磷酸铁锂的性能将进一步优化和完善,未来的发展潜力将更加广阔。
1.2 文章结构文章结构部分的内容如下:文章结构:本文将按照以下结构展开对磷酸铁锂的探讨。
首先,我们将在引言部分介绍对磷酸铁锂的概述,包括其基本特性和应用领域。
其次,在正文部分,我们将详细探讨磷酸铁锂的基本特性,包括其结构、化学组成以及电化学性能等方面。
然后,我们将进一步探讨磷酸铁锂在各个领域的应用,包括电池领域、储能领域以及其他相关领域。
最后,在结论部分,我们将对磷酸铁锂的优势进行总结,并展望其未来的发展前景。
通过以上结构的展开,我们希望读者能够全面了解磷酸铁锂的基本特性和应用领域,并对其在能源领域中的重要性有一个较为深入的认识。
同时,我们也希望通过对磷酸铁锂优势的总结和对其未来发展前景的展望,能够引起读者对该领域的兴趣,促进相关研究的深入推进。
磷酸铁锂电池的重要成分

磷酸铁锂电池的重要成分摘要:1.磷酸铁锂电池的概述2.磷酸铁锂电池的组成部分3.磷酸铁锂电池的优点4.磷酸铁锂电池的缺点5.磷酸铁锂电池的应用领域正文:一、磷酸铁锂电池的概述磷酸铁锂电池是一种新型的锂电池,它的正极材料是磷酸铁。
这种电池在近年来得到了广泛关注,因为它具有许多优点,如超长寿命、使用安全、充电快速、耐高温、大容量、无记忆效应和绿色环保等。
二、磷酸铁锂电池的组成部分磷酸铁锂电池主要由正极、负极、电解液和隔膜组成。
正极是由磷酸铁制成的,负极通常是由石墨制成的,电解液主要成分包括碳酸乙烯酯和碳酸丙烯酯等,隔膜则起到防止电池短路的作用。
三、磷酸铁锂电池的优点1.超长寿命:磷酸铁锂电池的循环寿命可以达到2000 次以上,是铅酸电池的数倍。
2.使用安全:磷酸铁锂电池经过严格的安全测试,即使在交通事故中也不会发生爆炸。
3.充电快速:使用专用充电器,1.5c 充电40 分钟即可以使电池充满。
4.耐高温:磷酸铁锂电池热风值可以达到350 到500 摄氏度。
5.大容量:磷酸铁锂电池的容量较大,可以提供更多的电能。
6.无记忆效应:磷酸铁锂电池没有记忆效应,可以随时充电,不会影响电池寿命。
7.绿色环保:磷酸铁锂电池无毒、无污染,符合环保要求。
四、磷酸铁锂电池的缺点1.相对较重:磷酸铁锂电池相比其他锂电池较重,对于部分要求轻便的应用领域有一定的局限性。
2.温度适应性差:磷酸铁锂电池在低温环境下性能会受到影响,可能出现掉电快的现象。
五、磷酸铁锂电池的应用领域磷酸铁锂电池广泛应用于电动汽车、电动工具、太阳能储能系统、风能储能系统、移动电源等领域。
总之,磷酸铁锂电池作为一种新型的锂电池,具有很多优点,如超长寿命、使用安全、充电快速、耐高温、大容量、无记忆效应和绿色环保等,但也存在一定的缺点,如相对较重和温度适应性差。
磷酸铁锂电池工作原理

磷酸铁锂电池工作原理
磷酸铁锂电池是一种锂离子电池,其工作原理如下:
1. 正极材料:磷酸铁锂(LiFePO4)是正极材料,其中铁离子(Fe3+)固定在晶格中,锂离子(Li+)在充电时从正极材料
中脱出,放电时则被嵌入到正极材料中。
2. 负极材料:石墨是负极材料,其结构能够嵌入和释放锂离子。
在充电时,锂离子从正极脱出后,通过电解质移动到负极材料中,被嵌入到石墨结构中。
在放电时,锂离子从石墨中脱出,经电解质返回到正极。
3. 电解质:电池中的电解质通常是有机溶液或聚合物膜。
电解质具有良好的离子传导性能,能够使锂离子在充放电过程中在正负极之间移动。
4. 分离膜:电池中还配备了分离膜,其作用是防止正负极直接接触,避免电池短路。
5. 充放电过程:在充电过程中,通过外部电压连接电池,锂离子从正极脱出,经过电解质和分离膜,嵌入到负极材料中,储存能量。
在放电过程中,通过外部负载连接电池,锂离子从负极材料脱出,通过电解质和分离膜,嵌入到正极材料中,释放能量。
总而言之,磷酸铁锂电池的工作原理是通过锂离子在正负极材料之间的嵌入和释放,实现充放电过程,从而产生电能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷酸铁锂理论知识引言能源问题与环境问题日趋严重,现阶段使用的石化能源也会在未来中使用殆尽,寻找新的替代能源是现在的重点。
伴随人们节能意识的加强,电动车和混合电动车以及动力电源等也得到了迅猛的发展。
目前,电动车或混合电动车中主要使用的铅酸和镍氢电池使用寿命短,容易污染环境;而锂离子电池以其优良的性能,一经发现就受到广泛的关注,具有取代铅酸和镍氢电池做电动车或混合电动车电源的绝对优势。
锂离子电池锂离子电池作为一种高性能的二次绿色电池, 具有高电压、高能量密度(包括体积能量、质量比能量)、低的自放电率、宽的使用温度范围、长的循环寿命、环保、无记忆效应以及可以大电流充放电等优点,是未来几年最有潜力的电源电池,但是制约锂离子电池大量推广工业化的瓶颈之一就是正极材料,在要求锂离子电池上述优点稳定性的前提下,价格和资源问题也是不可忽视的重要因素。
目前研究最广泛的正极材料有LiCoO2、LiNiO2 以及LMin2O4等, 但由于钴有毒且资源有限, 镍酸锂制备困难, 锰酸锂的循环性能和高温性能差等因素, 制约了它们的应用和发展。
因此, 开发新型高能廉价的正极材料对锂离子电池的发展至关重要。
1997年,Goodenough等首次报道了具有橄榄石结构的磷酸铁锂可以用作锂电池以来,引起了广泛的关注和大量的研究,磷酸铁锂具有170mAh/g的理论比容量和3.5V的对锂充电平台,与上述传统的锂电池材料相比,具有原料来源广泛,成本低,无环境污染,循环性能好,热稳定性好,安全性能突出等优点,是动力型锂离子电池的理想正极材料。
一、LiFePO4的结构和性能LiFePO4具有橄榄石结构,正交晶系,其空间群是Pmnb型。
O原子以稍微扭曲的六方紧密堆积方式排列,只能为Li+提供有限的通道,使得室温下Li+在其中的迁移速率很小。
Li与Fe原子填充O原子八面体空隙中。
P占据了O原子四面体空隙。
一个FeO6八面体与两个LiO6八面体共棱;由于近乎六方堆积的氧原子的紧密排列, 使得锂离子只能在二维平面上进行脱嵌, 也因此具有了相对较高的理论密度( 3.6 g/ cm 3 )。
在此结构中, Fe 2+ /Fe 3+相对金属锂的电压为3. 4 V 。
1.高能量密度其理论比容量为170mAh/g ,产品实际比容量可超过140 mAh/g (0.2C ,25°C );2.安全性是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;3.寿命长在100%DOD 条件下,可以充放电2000次以上; (原因:磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。
存在的不足是电子离子传导率差,不适宜大电流的充放电,在应用方面受阻。
解决方法:在电极表面包覆导电材料、掺杂进行电极改性。
)4.无记忆效应5.充电性能磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快可在1小时内将电池充满。
具体的物理参数:松装密度:0.7g/cm振实密度:1.2g/cm中粒径:2-6um比表面积<30m/g涂片参数:LiFePO4:C:PVDF=90:3:7极片压实密度:2.1-2.4g/cm电化性能:克容量>155mAh/g 测试条件:半电池,0.2C,电压4.0-2.0V循环次数:2000次磷酸铁锂各项参数对电池的影响:1.粒径粒径对电池低温性能影响较大,粒径减小,锂离子在磷酸铁锂粒子内部扩散路径减小;材料活性比表面积增大,电化学反应活性增加。
粒径小的磷酸铁锂电池在-30℃低倍率放电时中值电压高于大粒径的磷酸铁锂电池。
但是当电池在低温高倍率放电时,颗粒之间的接触电阻会成为影响电池低温放点性能的主要因素,小粒径的磷酸铁锂材料颗粒间接触点增多,电阻也会增加,因此小粒径的磷酸铁锂电池的低温大倍率放点电压反而低于大粒径的磷酸铁锂电池。
从大量的制浆经验以及行业同行的交流反馈来看,粒度分布几乎决定了磷酸铁锂材料的加工性能,其关键指标是D50。
钴酸锂、锰酸锂10um ≤D50 ≤ 20um,匀浆涂布没有任何问题;磷酸铁锂根据厂家不同的工艺,基本分两种:A:1um ≤D50 ≤2.5um,(大多数厂商)B: 3.5um ≤D50 ≤8um,(少数厂商)以上两种材料,B的加工性能要好于A。
颗粒越小,同等质量的材料的颗粒数量越多,同样的工艺条件下分散越困难。
2.比表面积——电化学性能&加工性能通常情况下,对于大多数企业所采用的草酸亚铁+有机碳分解的工艺路线,LFP的比表面积与碳含量呈线性关系。
比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、放电平台低、容量发挥低、倍率性能不佳、循环性能不好。
比表面积过大,说明材料的碳包覆量过高或者粒度呈纳米级。
直接的体现是材料的电化学性能极好,但活性高、易团聚、难分散、极片加工困难。
经过材料企业与电池企业的长期磨合,目前比表面积控制在15±2 m2/g较为合适,能兼顾电化学性能和加工性能。
当然也有例外,对于其他的工艺路线而言,这一套标准未必适用。
如果材料加工性能特别好,比表面积可以更大一些;也有少数企业通过降低碳含量以减小比表面积,同时通过离子掺杂来弥补碳含量减少对倍率性能造成的负面影响。
3.振实密度——极片压实密度振实密度会对极片的压实密度产生一定影响,最终体现在电池的能量密度上。
振实密度只是材料形貌和粒度分布的外在表现,不是决定材料和电池性能的主因。
4.克容量克容量是决定电池成本的重要因素,因为所有的辅料都要根据正极材料的质量来配制。
通过长期的测试统计,发现大多数企业材料的首次充电克容量都能达到155~160mAh/g,但放电克容量则千差万别,这取决于材料本身的倍率性能。
换句话说,大多数材料的克容量都是足够的,只是看材料的倍率性能是否足够好,能否将容量都发挥出来。
5.倍率性能磷酸铁锂材料的倍率性能及其重要,决定了电池产品的内阻、平台、循环、低温、倍率。
如果扣试电池做得好,可以直接通过扣式电池评估材料的倍率性能。
6. 晶胞参数LiFeP04的导电性能与磷酸铁锂中的载流子迁移能力有较为密切的关系,而晶胞体积直接影响着载流子的移动能力。
晶胞体积大,材料的导电性能和循环稳定性都有提高。
下表是已公布的LiFeP04晶胞参数随着温度的升高,晶胞体积缩小,这是因为保温时间一定时,提高焙烧温度有效降低了材料的晶体缺陷和晶体畸变。
二、磷酸铁锂充放电原理下图是LiFePO 4充放电过程中的相变过程。
室温下,LiFePO 4的脱嵌Li 行为实际是形成FePO 4和LiFePO 4的两相界面的两相反应过程。
充电时,Li +从FeO 6层面间迁移出来,经过电解液进入负极,发生Fe 2+ 向Fe 3+ 转变的氧化反应,为保持电荷平衡,电子从外电路到达负极;放电时,发生还原反应,与上述过程相反,即充电:LiFePO4 - x Li + + x e → x FePO4 + (1 - x ) LiFePO4放电:FePO4 + x Li + + x e → x LiFePO4 + (1 - x ) FePO4目前, 在解释LiFePO4 中Li + 脱嵌机理的众多理论中, 最被接受的两种理论模型是:(1) 由A.K. Padhi 等人 提出的辐射状锂离子迁移模型, 如图1 所示。
其原理是Li + 脱离LiFePO 4 形成FePO 4时, LiFePO 4 和FePO 4 间存在一个Li x FePO 4 / Li 1 - x FePO 4 界面接口。
充电时, 随着Li + 脱嵌的不断进行, 该接口逐渐向内核推进, 接口的面积不断减少, 但要维持充电电流, Li + 和电子通过接口的速率就要不断上升。
而Li + 的扩散速度在一定条件下为常数, 这就意味着当界面面积小到所需的Li + 扩散速度达到其最大扩散速度时, 接口面积达到一个临界面积, 充电过程将中止, 位于接口内还未脱嵌的LiFePO 4 由于无法被利用而造成容量损失。
放电过程Li + 重新由外向内镶嵌时, 一个新的环状接口快速向内移动最后达到粒子中心, 未转换的FePO4与脱出相似, 于是在LiFePO4核周围留下一条FePO4带, 从而造成LiFePO4容量的衰减。
这主要是受扩散控制引起的, 降低电流密度可在一定程度上恢复这部分容量, 但又牺牲了快速充放电能力, 所以可行的办法是尽可能地缩短Li+扩散路径, 如制备纳米粉体或者多孔材料, 可以减少有效电流密度, 加快电化学反应的速度, 改善其高倍率性能。
(2) A. S. Andersson等人发现约20 %~25 %的LiFePO4在充放电过程中不参与反应, 但可以通过改变颗粒的尺寸大小和表面形态来降低这个数字。
发现容量随着温度的升高而增加, 支持了Li的扩散受到每个粒子限制的说法, 并提出了马赛克锂离子迁移模型, 如图2所示。
该模型同样认为脱嵌过程是Li+在两相LiFePO4 / FePO4接口的脱出、嵌入过程, 但充电过程不是如A. K. Padhi等人所认为的均匀地由表及里向内核推进的过程, 而是在LiFePO4颗粒的任一位置发生。
随着脱出的不断进行, Li +脱出生成的FePO4区域也不断增大,最后生成的FePO4区域接触交叉, 部分没有接触的残留LiFePO4被无定形物质包覆, 成为容量损失的来源, 放电过程与之类似。
当今一般认为Li + 的脱嵌过程中是以上两种模型并存的过程, 即在“呈辐射状”迁移的区域上具有“马赛克”特征。
另外, 王德宇认为充放电过程中LiFePO4颗粒的破裂也是其容量损失的一个主要原因。
在Li +的脱出/ 嵌入过程中两相界面上有很强的剪切应力, 而且是晶粒越大, 应力越大。
随着循环的进行, 某处应力最大的平面变成断面, 而且会出现多条相互平行裂纹。
多次循环后仍然能够引起颗粒的开裂, 使得电极材料的电接触变差、容量变差。
而当用碳包覆LiFePO4做成纳米小颗粒时, 并没有发现LiFePO4颗粒裂开的现象, 原因是碳包覆降低了颗粒尺寸, 减小了单个颗粒应力。
图1径向模型图2马赛克模型三、磷酸铁锂制备方法磷酸铁锂正极材料的性能在一定程度上取决于材料的形态、颗粒的尺寸以及原子排列,因此制备方法尤为重要,目前制备磷酸铁锂的方法主要有:固相法和液相法,固相法包括高温固相反应法、碳热还原法、微波合成法和脉冲激光沉淀法;液相法包括溶胶-凝胶法、模板合成法、乳液干燥法、水热合成法、喷雾干燥法、沉淀法以及溶剂热合成法等。
1. 固相法(1)高温固相反应法高温固相法是磷酸铁锂生产的主要方法,也是最成熟的方法,通常以铁盐(如草酸亚铁FeC2O4·2H2O)、磷酸盐(如磷酸二氢铵NH4H2PO4)和锂盐(如碳酸锂Li2CO3)为原料,按照化学计量比充分混合均匀后,在惰性气体氛围内先经过较低温预分解,再经高温焙烧,研磨粉碎制成。