平面向量的数量积与坐标
平面向量数量积的坐标表示

VS
计算力的合成与分解
利用向量的坐标表示,可以将多个力进行 合成与分解,方便对物体进行受力分析。
在工程中的应用
描述物体的运动
在工程中,物体的运动可以看作是向量的 变化过程,通过引入向量的坐标表示,可 以更精确地描述物体的运动轨迹。
向量场的旋度和散度
• 旋度的性质:旋度具有方向性,其方向与向量场在该点的旋转方向一致;旋度的模长等于向量场在该点的 旋转强度。
• 散度的定义:散度是一个标量,表示向量场中某点处的发散程度。对于一个向量场$\mathbf{F} = (u, v, w)$,其在某点$(x, y, z)$处的散度为$
• abla \cdot \mathbf{F} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$。
坐标表示的意义
通过坐标系来表示向量的位置和方向,进而可以直观地理解数量积的几计算
通过坐标表示可以方便地计算向量的长度,即向量的模。
向量夹角的计算
通过坐标表示可以求出两个向量的夹角,进而可以计算出它们 的数量积。
向量投影的计算
通过坐标表示可以求出一个向量在另一个向量上的投影,进而 可以计算出它们的数量积。
曲线和曲面的切线方向
• 切线方向的确定:切线方向是指曲线或曲面上某一点处的最速上升方向或最速下降方向。在二维平面上, 曲线在某一点的切线方向是该点函数值变化最快的方向。
• 切线方向的计算:对于曲线$y = f(x)$,在某一点$(x_0, y_0)$处的切线方向向量为$(1, f'(x_0))$;对于曲面 $z = f(x,y)$,在某一点$(x_0, y_0, z_0)$处的切线方向向量为$(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), 1)$。
平面向量数量积的坐标表示

求两向
平面向量数量积的坐标表示
平面向量数量积的坐标表示
已知向量a,b的夹角θ的范围,求参数的取值范围时,可利用性质:①0°≤θ<90°⇔ a·b>0;②90°<θ≤180°⇔a·b<0.
3.解决投影向量问题的方法 已知非零向量a=(x1,y1),b=(x2,y2),则a在b方向上的投影向量为 · =
. ,
.
平面向量数量积的坐标表示
判断正误,正确的画“√” ,错误的画“ ✕” .
1.向量a=(x1,y1),b=(x2,y2)的数量积仍是向量,其坐标为(x1x2,y1y2). ( ✕ ) 2.| |的计算公式与A,B两点间的距离公式是一致的. ( √ )
3.若非零向量a=(x1,y1),b=(x2,y2)的夹角为锐角,则x1x2+y1y2>0;反之,若非零向量a=(x1, y1),b=(x2,y2)满足x1x2+y1y2>0,则它们的夹角为锐角. ( ✕ )
.
其中的真命题为 ②③ .(填序号)
思路点拨 根据平面向量的夹角、模及投影向量公式求解.
平面向量数量积的坐标表示
平面向量数量积的坐标表示
解析 对于①,∵a=(1,2),b=(1,1), ∴a+λb=(1+λ,2+λ). ∵a与a+λb的夹角为锐角,
∴
解得
∴λ的取值范围为
∪(0,+∞),故①错误.
对于②,∵a⊥c,∴2x-4=0,解得x=2.
6.3.5 平面向量数量积的坐标表示
1.能用坐标表示平面向量的数量积,会求两个平面向量的夹角. 2.会用两个向量的坐标判断它们是否垂直. 3.会利用平面向量的数量积解决判断图形形状的问题,进一步体会数形结合的 思想方法.
平面向量数量积及坐标表示

a b 13 20 7
练习:课本P1071、2、3.
例2 已知A(1,2),B(2,3),C(-2,5),
试判断ABC的形状,并给出证明.
y B(2,3) A(1,2) x
0
C(-2,5) 证明 :AB (2 1,3 2) (1,1)
AC (2 1,5 2) (3,3)
2.4 平面向量的数量积 及运算律
一、平面向量数量积的定义: 已知两个非零向量 a 和 b ,我们把数量 | a || b | cos q 叫做a与 b的数量积 ( 或内积 ) ( 或点积 )
a a
A
记作 a b , 即 a b a b cos q . 其中,q 是 a与b 的夹角
的夹角为 600, 例3 已知 a 6, 4,a与b b 求( 2b ) (a - 3b ) a . 2 2 解:( 2b ) ( - 3b ) a a b 6b a a 2 2 | a | a b 6 | b |
4、两向量夹角公式的坐标运算
设a与b 的夹角为q(0 q
a b ab
设a x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为q, ( (0 q 180 )则 cos q
2 1 2 1 2 2
x1 x2 y1 y2 x y x y
提高练习
1、已知OA (3,1), (0,5),且 AC // OB, OB BC AB ,则点C的坐标为
29 C (3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、 D(5,8),则四边形ABCD的形状是矩形 .
平面向量数量积的坐标

平面向量数量积的坐标表示教学目标:掌握两个向量数量积的坐标表示方法,掌握两个向量垂直的坐标条件,能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.教学过程:首先我们推导平面向量的数量积坐标表示:记a =(x 1,y 1),b =(x 2,y 2),∴a =x 1i +y 1j ,b =x 2i +y 2j∴a ·b =(x 1i +y 1j )(x 2i +y 2j )=x 1x 2i 2+(x 1y 2+x 2y 1)i ·j +y 1y 1j 2=x 1x 2+y 1y 21.平面向量数量积的坐标表示:已知a =(x 1,y 1),b =(x 2,y 2),∴a ·b =x 1x 2+y 1y 22.两向量垂直的坐标表示:设a =(x 1,y 1),b =(x 2,y 2)则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0[例1]已知a =(1, 3 ),b =( 3 +1, 3 -1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求a ·b 及|a ||b |,再结合夹角θ的范围确定其值. 解:由a =(1, 3 ),b =( 3 +1, 3 -1)有a ·b = 3 +1+ 3 ( 3 -1)=4,|a |=2,|b |=2 2 .记a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=22 又∵0≤θ≤π, ∴θ=π4评述:已知三角形函数值求角时,应注重角的范围的确定.[例2]已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1. 分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有x a +y b =(3x +4y ,4x +3y )又(x a +y b )⊥a ⇔(x a +y b )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ① 又|x a +y b |=1⇔|x a +y b |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ② 由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±57再代入①得:x =2435∴⎪⎪⎩⎪⎪⎨⎧-==753524y x 或⎪⎪⎩⎪⎪⎨⎧=-=753524y x[例3]在△ABC 中,AB →=(1,1),AC →=(2,k ),若△ABC 中有一个角为直角,求实数k 的值.解:若A =90°,则AB →·AC →=0,∴1×2+1×k =0,即k =-2若B =90°,则AB →·BC →=0,又BC →=AC →-AB →=(2,k )-(1,1)=(1,k -1)即得:1+(k -1)=0,∴k =0若C =90°,则AC →·BC →=0,即2+k (k -1)=0,而k 2-k +2=0无实根,所以不存在实数k 使C =90°综上所述,k =-2或k =0时,△ABC 内有一内角是直角.评述:本题条件中无明确指出哪个角是直角,所以需分情况讨论.讨论要注意分类的全面性,同时要注意坐标运算的准确性.[例4]已知:O 为原点,A (a ,0),B (0,a ),a 为正常数,点P 在线段AB 上,且AP →=tAB → (0≤t ≤1),则OA →·OP →的最大值是多少?解:设P (x ,y ),则AP →=(x -a ,y ),AB →=(-a ,a ),由AP →=tAB →可有:⎩⎨⎧=-=-at y at a x ,解得⎩⎨⎧=-=at y at a x ∴OP →=(a -at ,at ),又OA →=(a ,0),∴OA →·OP →=a 2-a 2t∵a >0,可得-a 2<0,又0≤t ≤1,∴当t =0时,OA ·OP →=a 2-a 2t ,有最大值a 2.[例5]已知|a |=3,|b |=2,a ,b 夹角为60°,m 为何值时两向量3a +5b 与m a -3b 互相垂直?解法:(3a +5b )·(m a -3b )=3m |a |2-9a ·b +5m a ·b -15|b |2=27m +(5m -9)×3×2cos60°-15×4=42m -87=0∴m =8742 =2914时,(3a +5b )⊥(m a -3b ).1.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x =__________.解析:∵a =(1,1),b =(2,5),∴8a -b =(8,8)-(2,5)=(6,3).又∵(8a -b )·c =30,∴(6,3)·(3,x )=18+3x =30.∴x =4.答案:42.已知a =(-5,5),b =(0,-3),则a 与b 的夹角为________.解析:∵cos θ=a ·b |a ||b |=-1552×3=-22.∴θ=3π4. 答案:3π43.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是__________. 解析:b ·(a +λb )=b ·a +λb ·b =2×1+4×1+2λ=0⇒λ=-3.答案:-34.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于__________. 解析:2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,∴n 2=3,|a |=2.答案:2一、填空题1.已知向量a =(4,-3),|b |=1,且a ·b =5,则向量b =______.解析:设b =(m ,n ),则由a ·b =5得4m -3n =5, ①又因为|b |=1,所以m 2+n 2=1, ②由①②可得(5n +3)2=0,∴n =-35, ∴⎩⎨⎧m =45,n =-35. ∴b =⎝⎛⎭⎫45,-35. 答案:⎝⎛⎭⎫45,-35 2.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确命题的序号为__________.(把所有正确命题的序号全填上)答案:②③3.设向量a =(1,2),b =(x, 1),当向量a +2b 与2a -b 平行时,a ·b 等于__________. 解析:a +2b =(1+2x,4),2a -b =(2-x,3),∵a +2b 与2a -b 平行,∴(1+2x )×3-4×(2-x )=0,∴x =12,a ·b =(1,2)·⎝⎛⎭⎫12,1=1×12+2×1=52. 答案:524.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角是__________.解析:设c =(x ,y ),则(a +b )·c =(-1,-2)·(x ,y )=-x -2y =52,又|c |=5,且a ·c =x +2y =|a ||c |·cos α,故cos α=-12,α=120°. 答案:120°5.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b =__________. 解析:a 与b 共线且方向相反,∴b =λa (λ<0),设b =(x ,y ),则(x ,y )=λ(1,-2),得⎩⎪⎨⎪⎧x =λ,y =-2λ.由|b |=35,得x 2+y 2=45,即λ2+4λ2=45,解得λ=-3,∴b =(-3,6). 答案:(-3,6)6.以原点O 及点A (5,2)为顶点作等腰直角三角形OAB ,使∠A =90°,则AB →的坐标为__________.解析:设AB →=(x ,y ),则有|OA →|=|AB →|=52+22=x 2+y 2,①又由OA →⊥AB →,得5x +2y =0,②由①②联立方程组,解得x =2,y =-5或x =-2,y =5.答案:(-2,5)或(2,-5)7.已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使AP →·BP →有最小值,则点P 的坐标是__________.解析:设点P 的坐标为(x,0),则AP →=(x -2,-2),BP →=(x -4,-1).AP →·BP →=(x -2)(x-4)+(-2)(-1)=x 2-6x +10=(x -3)2+1.当x =3时,AP →·BP →有最小值1,∴点P 的坐标为(3,0).答案:(3,0)8.直角坐标平面内有三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则AE →·AF →=__________.解析:∵BC →=(6,9),∴BE →=13BC →=(2,3),BF →=23BC →=(4,6). 又AB →=(2,-4),∴AE →=AB →+BE →=(4,-1),AF →=AB →+BF →=(6,2),∴AE →·AF →=4×6+(-1)×2=22.答案:22二、解答题9.平面内三个点A ,B ,C 在一条直线上,且OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),且OA →⊥OB →,求实数m ,n 的值.解:∵A ,B ,C 三点在同一直线上,∴AC →∥AB →.∵OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),∴AC →=OC →-OA →=(7,-1-m ),AB →=OB →-OA →=(n +2,1-m ),∴7(1-m )-(n +2)·(-1-m )=0,即mn -5m +n +9=0.①∵OA →⊥OB →,∴(-2)×n +m ×1=0,即m -2n =0.②联立①②解得⎩⎪⎨⎪⎧ m =6n =3或⎩⎪⎨⎪⎧ m =3,n =32.10.已知a =(1,2),b =(-3,2),当k 为何值时:(1)k a +b 与a -3b 垂直?(2)k a +b 与a -3b 平行?平行时它们同向还是反向?解:(1)k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).当(k a +b )·(a -3b )=0时,这两个向量垂直.由(k -3)×10+(2k +2)×(-4)=0.解得k =19,即当k =19时,k a +b 与a -3b 垂直.(2)当k a +b 与a -3b 平行时,存在惟一的实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),得:⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得⎩⎨⎧k =-13,λ=-13. 所以当k =-13时,k a +b 与a -3b 平行, 因为λ<0,所以-13a +b 与a -3b 反向. 11.已知c =m a +n b =(-23,2),a 与c 垂直,b 与c 的夹角为120°,且b ·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.解:∵a 与c 垂直,∴a ·c =0.又∵c =m a +n b ,∴c ·c =m a ·c +n b ·c ,∴12+4=-4n ,∴n =-4.∵b ·c =|b ||c |cos120°,∴-4=|b |×4×⎝⎛⎭⎫-12,∴|b |=2. ∴a ·c =m a 2-4a ·b ,|a |=22,∴a ·b =2m .又b ·c =m (a ·b )-4b 2,∴-4=2m 2-16,∴m 2=6,∴m =±6.当m =6时,a ·b =2 6.∴cos θ=a ·b |a ||b |=2622×2=32,∴θ=π6. 当m =-6时,a ·b =-2 6.∴cos θ=-32,∴θ=5π6. 因此m =6,n =-4时,θ=π6; m =-6,n =-4时,θ=5π6.平面向量数量积的坐标表示1.在已知a =(x ,y ),b =(-y ,x ),则a ,b 之间的关系为2.已知a =(-4,3),b =(5,6),则3|a |2-4a ·b 为 ( )3.若a =(-3,4),b =(2,-1),若(a -x b )⊥(a -b ),则x 等于 ( )4.若a =(λ,2),b =(-3,5),a 与b 的夹角为钝角,则λ的取值范围为 ( )5.已知a =(-2,1),b =(-2,-3),则a 在b 方向上的投影为 ( )6.已知向量c 与向量a =( 3 ,-1)和b =(1, 3 )的夹角相等,c 的模为 2 ,则 c = .7.若a =(3,4),b =(1,2)且a ·b =10,则b 在a 上的投影为 .8.设a =(x 1,y 1),b =(x `2,y `2)有以下命题:①|a |=x 12+y 12 ②b 2=x 22+y 22 ③a ·b =x 1x `2+y 1y `2 ④a ⊥b x 1x `2+y 1y `2=0,其中假命题的序号为 .9.已知A (2,1),B (3,2),D (-1,4),(1)求证:AB →⊥AD → ;(2)若四边形ABCD 为矩形,求点C 的坐标.10.已知a =(3,-2),b =(k ,k )(k ∈R),t =|a -b |,当k 取何值时,t 有最小值?最小值为多少?11.设向量a ,b 满足|a |=|b |=1及|3a -2b |=3,求|3a +b |的值.。
平面向量的数量积与坐标

平面向量的数量积与坐标平面向量是我们在平面上研究问题时经常使用的工具。
在平面向量中,有一个重要的运算叫做数量积,也称为点积或内积。
数量积可以帮助我们计算向量的长度,夹角以及方向等信息。
在本文中,我们将详细介绍平面向量的数量积以及与坐标之间的关系。
1. 数量积的定义数量积(点积)是指两个向量相乘后对应分量相加的运算。
设有两个平面向量A和B,它们的数量积(记作A·B或AB)定义为:A·B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角。
2. 数量积的坐标表示通常情况下,我们用坐标来表示平面向量。
设有向量A = (x₁, y₁)和向量B = (x₂, y₂),那么A·B的计算可以通过坐标之间的运算得到。
根据数量积的定义,我们有:A·B = x₁x₂ + y₁y₂。
这个式子就是平面向量的数量积的坐标表示。
3. 数量积的性质数量积具有以下几个性质:- 交换律:A·B = B·A,即数量积的结果与顺序无关。
- 分配律:(A + B)·C = A·C + B·C,即对一个向量的和进行数量积的结果等于对每个向量进行数量积后再相加。
- 数量积的零向量:A·0 = 0,即任何向量与零向量的数量积都等于零。
- 向量与自身的数量积:A·A = |A|²,即向量与自身的数量积等于该向量的模长的平方。
4. 数量积与夹角通过数量积的定义,我们可以得到向量A·B的形式为:A·B = |A| |B| cosθ。
根据三角函数的定义,我们可以得到cosθ = A·B / (|A| |B|)。
由此可见,向量的数量积与其夹角是密切相关的。
通过求解数量积,我们可以计算向量的夹角。
如果两个向量的数量积为正,则夹角为锐角;如果数量积为负,则夹角为钝角;如果数量积为零,则夹角为直角。
平面向量数量积的坐标运算公式

平面向量数量积的坐标运算公式在咱们的数学世界里,平面向量数量积的坐标运算公式可是个相当重要的家伙!咱先来说说啥是平面向量。
想象一下,在一个平面上,有两个箭头,它们有自己的长度和方向,这就是平面向量啦。
那平面向量数量积又是个啥呢?简单说,就是两个向量之间的一种“亲密程度”的度量。
而平面向量数量积的坐标运算公式,就像是一把神奇的钥匙,能帮咱们轻松算出这种“亲密程度”。
假设两个向量 a = (x₁, y₁),b = (x₂, y₂),那它们的数量积 a·b 就等于 x₁x₂ + y₁y₂。
我给您举个例子哈。
比如说有个向量 a = (3, 4),另一个向量 b = (1, 2),那它们的数量积 a·b 就是 3×1 + 4×2 = 3 + 8 = 11 。
是不是一下子就清楚多啦?前几天我在给学生们讲这部分内容的时候,有个学生一脸懵地问我:“老师,这公式到底有啥用啊?”我就跟他们说:“同学们,你们想想,如果要计算两个力在某个方向上做的功,是不是就可以用这个公式?还有在物理学中,计算电场力做功,也能派上大用场呢!”这公式在解决实际问题的时候可厉害啦!比如说,在一个平面直角坐标系中,有两个物体沿着不同的方向运动,要计算它们相互作用的力的大小,用这个公式就能轻松搞定。
而且啊,这公式在解析几何里也经常出现。
比如判断两条直线是垂直还是平行,都可能用到它。
再想想,如果要设计一个机器人的运动轨迹,或者规划无人机的飞行路线,也得靠它来帮忙算出相关的数据。
总之,平面向量数量积的坐标运算公式虽然看起来可能有点复杂,但只要咱们好好理解,多做几道题练练手,就能发现它的妙处,用它解决好多难题,就像拥有了一件超级厉害的武器!希望大家都能把这个公式掌握得牢牢的,在数学的海洋里畅游无阻!。
平面向量的坐标表示与向量的数量积

平面向量的坐标表示与向量的数量积平面向量是二维向量,可以用坐标表示。
在笛卡尔坐标系中,一个平面向量可以表示为一个有序数对,即两个实数构成的向量。
平面向量的数量积是向量运算中的一种,用于计算两个向量之间的夹角。
下面将详细介绍平面向量的坐标表示和向量的数量积。
一、平面向量的坐标表示平面向量可以用有序数对来表示,常用的表示形式有点表示法、分量表示法和单位向量表示法。
1. 点表示法在平面上给定两个点A(x₁, y₁)和B(x₂, y₂),以点A为起点,点B为终点的向量可以用点表示法表示为AB。
例如,向量AB表示为展示向量的箭头上方带上一条小线,表示从A指向B的方向。
2. 分量表示法平面向量也可以用坐标表示,即用向量的水平和垂直分量表示。
假设有向量v,v的水平分量为x,垂直分量为y,那么向量v可以表示为v = (x, y),其中x和y分别为v在x轴和y轴上的投影长度。
3. 单位向量表示法单位向量是长度为1的向量,可以用坐标表示。
例如,单位向量i 指向x轴的正方向,单位向量j指向y轴的正方向,那么向量v可以表示为v = xi + yj,其中x和y为v的水平和垂直分量。
二、向量的数量积向量的数量积(也称为点积或内积)是一种运算,用于计算两个向量之间的夹角。
向量的数量积可以表示为以下公式:A ·B = |A| |B| cosθ其中A和B为两个向量,|A|和|B|分别为它们的模,θ为两个向量的夹角。
数量积的计算方法如下:A ·B = x₁x₂ + y₁y₂其中(x₁, y₁)和(x₂, y₂)分别是向量A和向量B的坐标。
数量积还有一些性质:1. A · B = B · A(数量积的交换律)2. A · A = |A|²(向量的模的平方等于向量的数量积)3. 若A与B垂直,则A · B = 0,即夹角为90°4. 若A与B平行,则A · B = |A| |B|,即夹角为0°三、结论平面向量可以通过坐标表示法来表示,在笛卡尔坐标系中,一个平面向量可以表示为一个有序数对。
6-3-5 平面向量数量积的坐标表示(教学课件)-高中数学人教A版 (2019)必修第二册

我们发现是∆直角三角形.证明如下:
因为 = − , − = (, ),
= − − , − = (−, )
所以 ∙ = × − + × =
于是 ⊥
因此, ∆直角三角形
6.3.5 平面向量数量
积的坐标表示
引入
①
③
i i =
ij=
1
②
0
④
j j =
j i =
1
0
数量积坐标表示
因为a x1 i y1 j, b x2 i y2 j,
所以a b ( x1 i y1 j ) ( x2 i y2 j )
2
方法一:AM·AN=AD+ AB·AB+ AD
3
2
1 2 1 2
=0+ ×2 + ×3 +0=5.
2
3
→
→
方法二:以 A 为原点,AB,AD的方向分别为 x,y 轴的
正方向建立平面直角坐标系,则 A(0,0),M(1,2),N(3,1),
→
→
→ →
于是AM=(1,2),AN=(3,1),故AM·AN=5.
例1
(1)已知向量a=(-1,2),b=(3,2).
①求a·(a-b);
②求(a+b)·(2a-b);
③若c=(2,1),求(a·b)c.
①方法一:∵a=(-1,2),b=(3,2),∴a-b=(-4,0).
∴a·(a-b)=(-1,2)·(-4,0)=(-1)×(-4)+2×0=4.
方法二:a·(a-b)=a2-a·b=(-1)2+22-[(-1)×3+2×2]=4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数量积与坐标
平面向量的数量积(也称为点积或内积)是向量运算中的一种重要
概念,用于描述向量之间的关系和相互作用。
在平面坐标系中,向量
可以由其坐标表示,因此数量积的计算也可以通过坐标来进行。
本文
将介绍平面向量的数量积的概念、性质和计算方法,以及与坐标的关系。
一、平面向量的数量积概念
在平面向量中,数量积表示两个向量之间的相似度或夹角的余弦值。
数量积的定义如下:
设有两个向量
A = (A1, A2)
B = (B1, B2)
则向量A与向量B的数量积为:
A ·
B = A1*B1 + A2*B2
其中,A · B表示A与B的数量积,A1、A2、B1、B2是向量A和
B的坐标。
二、平面向量数量积的性质
1. 交换律:A · B = B · A
2. 分配律:(A + B) · C = A · C + B · C,其中A、B、C为向量
3. 数量积与数量积的夹角:设夹角为θ,则A · B = |A| * |B| * cos(θ),其中|A|和|B|表示向量A和B的模长,θ为夹角的大小
三、平面向量数量积的计算方法
根据数量积的定义,计算平面向量的数量积可以通过坐标的乘积之
和来实现。
例如,给定向量A = (2,3)和向量B = (4,1),它们的数量积为:
A ·
B = (2*4) + (3*1) = 8 + 3 = 11
四、平面向量数量积与坐标的关系
在平面坐标系中,向量的坐标表示了向量在x轴和y轴上的投影长度。
通过坐标计算向量的数量积也可以获得有关向量之间的信息。
1. 向量的模长计算:设有向量A = (A1, A2),则向量A的模长|A|可
以通过坐标的平方和再开方来计算:
|A| = √(A1^2 + A2^2)
2. 向量的单位向量计算:设有向量A = (A1, A2),则向量A的单位
向量u可以通过向量A的坐标除以向量A的模长得到:
u = (A1/|A|, A2/|A|)
3. 夹角的计算:设有两个向量A = (A1, A2)和B = (B1, B2),它们的
夹角θ可以通过向量的坐标和数量积的关系计算:
cos(θ) = (A · B) / (|A| * |B|)
以上是平面向量数量积与坐标的基本关系和计算方法的介绍。
数量
积的概念和性质的理解能够帮助我们更好地应用向量运算和解决相关
问题,在数学和物理等领域具有广泛的应用价值。
通过坐标的运算,我们可以更直观地理解和计算向量之间的关系,为问题的解决提供有效的工具。
总结:平面向量的数量积是向量运算中的重要概念,用于描述向量之间的关系和相互作用。
数量积的计算可以通过向量的坐标乘积之和来实现,同时可以利用坐标计算向量的模长、单位向量和夹角。
理解和掌握平面向量数量积与坐标的关系,可以帮助我们更好地理解和应用向量运算,解决相关问题。