bessely函数

合集下载

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

y x 1J m (x) x J m (x)
y 1x 2 Jm (x) x 1Jm (x) x 1Jm (x) x 2 Jm(x)
x 2 Jm(x) 2x 1Jm (x) 1 x 2 Jm (x)
x 2 Jm(x) 2x 1Jm (x) 1x 2 Jm (x)
xnYn1(x)
d
dx
xnYn (x)
x
Y n n1
(
x)
Yn1 ( x)
Yn1 ( x)
2n x
Yn
(x)
Yn1(x) Yn1(x) 2Yn(x)
例1 求下列微积分
(1)
d dx
J0
(
x)
J 0
(x)
J1(x)
(2)
J0(x)
1 x
J0(x)
J1(x)
1 x
J1(x)
1 2
J
0
(x)
1 2 x
x 1Jm (x) x Jm (x)
2
2
m2 x2
x
J
m
(x)
x 2 Jm(x) x 1Jm (x) x2 2 m2 x 2 Jm (x)
x 2 x2 2 Jm(x) xJm (x) x2 2 m2 Jm (x)
x2 t 2Jm(t) tJm (t) t 2 m2 Jm (t)
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n

贝塞尔函数

贝塞尔函数

贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。

一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。

这类方程的解无法用初等函数系统地表示。

但是可以运用自动控制理论中的相平面法对其进行定性分析。

这里,α被称为其对应贝塞尔函数的阶数。

实际应用中最常见的情形为n 是整数,对应解称为n阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和-α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0点的不光滑性)。

定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。

针对各种具体情况,人们提出了这些解的不同形式。

下面分别介绍不同类型的贝塞尔函数。

历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。

雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。

1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。

现实背景和应用范围贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,最典型的问题有:* 在圆柱形波导中的电磁波传播问题;* 圆柱体中的热传导定律|热传导问题;* 圆形(或环形)薄膜的振动模态分析问题;贝塞尔函数的实例:一个紧绷鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。

实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加。

Excel公式和函数 贝赛耳函数

Excel公式和函数  贝赛耳函数

Excel 公式和函数 贝赛耳函数贝赛尔(Bessel )函数是数学上一种特殊的函数。

1817年,德国数学家贝塞尔在研究开普勒提出的三体引力系统的运动问题时,第一次系统地提出了贝塞尔函数的总体理论框架 该函数用于理论物理研究、应用数学、大气科学以及无线电等工程领域。

在Excel 中一共提供了4个贝赛耳函数,下面以BESSELI 函数为例进行介绍。

该函数返回修正Bessel 函数值,它与用纯虚数参数运算时的Bessel 函数值相等。

其中,变量x 与n 阶修正Bessel 函数公式为:In (x )=(i )-nJn (ix )。

语法:BESSELI(x,n)在BESSELI 函数中,主要包含两个参数,其中,x 为参数值。

N 为函数的阶数,如果n 不是整数,则截尾取整。

例如,在Excel 中,A 列显示了运算公式,C 列为函数的计算说明。

然后,在B2中,输入“=BESSELI(3,0)”公式,即可求出相应的结果,并运用相同的方法,输入不同的公式,即可得到如图15-1所示的效果。

图15-1 BESSELI 函数提 示从上述的实例中,用户可以发现参数x 与参数n 之间的成反比例关系,当x 固定时,n 的取值越大,则得出的计算结果越小;反之,则计算结果越大。

在该函数的计算过程中,需注意以下几点说明:●如果参数x 为非数值型,则BESSELI 函数返回错误值#V ALUE!。

●如果参数n 为非数值型,则BESSELI 函数返回错误值#V ALUE!。

● 如果参数n<0,则BESSELI 函数返回错误值#NUM!。

另外,在Excel 中还为用户提供3种有关贝赛尔函数的用法,其功能如表15-1所示。

表15-1 贝赛尔函数功能表输入。

Bessel 函数

Bessel 函数

第一部分 Bessel 函数(阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。

)一、Bessel 方程及其通解0)(22222=-++y n x dx dy x dxy d x (1) 上式称为以x 为宗量的n 阶Bessel 方程。

●当n 为整数时,(1)式的通解为)()(x BY x AJ y n n += (2)其中,A 、B 为任意实数;)(x J n 为n 阶第一类Bessel 函数;)(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann)函数”)。

●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式)()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4)其中,A 、B 为任意实数;)(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。

另外,Bessel 方程的通解还可以表示为)()()2()1(x BH x AH y v v +=其中,)()()()1(x iY x J x H v v v +=,)()()()2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel )函数,或统称为第三类Bessel 函数。

●值得注意的是, ∞=-→)(lim 0x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0x Y n x ,当所研究的问题的区域包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。

此条件称为“Bessel 方程的自然边界条件”。

例1:022=+'+''y x y x y x λ (10<≤x )此式为以x λ为宗量的0阶Bessel 方程,其通解为)()(00x BY x AJ y λλ+=另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为)(0x AJ y λ=例2:0)413(22=-+'+''y x y x y x 为以x 3为宗量的21阶Bessel 方程,其通解为)3()3(2121x BJ x AJ y -+= 或 )3()3(2121x BY x AJ y +=例3:0)(1222=-+'+''y xm k y x y上式两边同乘以2x ,可将其化为如下的以kx 为宗量的m 阶Bessel 方程0)(2222=-+'+''y m k x y x y x (0≠x )例4:012=+'+''y k y xy 上式两边同乘以2x ,可将其化为如下的以kx 为宗量的0阶Bessel 方程0222=+'+''y k x y x y x (0≠x )即:0)0(2222=-+'+''y k x y x y x (0≠x )例5:0)]1([222222=+-++R l l r k rd R d r r d R d r 令r k x =,xx y r R 2)()(π=,则可以将上式化为如下的21+l 阶Bessel 方程0])21([22222=+-++y l x xd yd x x d y d x 二、虚宗量Bessel 方程及其通解0)(22222=+-+y n x dx dy x dxy d x (5) 上式称为“n 阶虚宗量的Bessel 方程”或“n 阶修正的Bessel 方程”,其通解为)()(x BK x AI y n n += (6)其中,A 、B 为任意实数;)(x I n 为“n 阶第一类修正的Bessel 函数”,或称为“n 阶第一类虚宗量Bessel 函数”; )(x K n 为“n 阶第二类修正的Bessel 函数”,或称为“n 阶第二类虚宗量Bessel 函数”。

7贝塞尔函数

7贝塞尔函数

贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。

除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。

中文名贝塞尔函数外文名Bessel Function意义一类特殊函数的总称方程的解无法用初等函数系统地表示命名F.W.贝塞尔的姓氏分类数学目录1 基本概念2 基本内容3 分类4 应用范围基本概念编辑是数学上的一类特殊函数的总称。

一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。

贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。

实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。

基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。

一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。

这类方程的解无法用初等函数系统地表示。

但是可以运用自动控制理论中的相平面法对其进行定性分析。

这里,被称为其对应贝塞尔函数的阶数。

实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。

定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。

针对各种具体情况,人们提出了这些解的不同形式。

下面分别介绍不同类型的贝塞尔函数。

历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

(−1) m x 2 n + 2 m −1 = x n J ( x) = x n ∑ n + 2 m−1 n −1 2 m!⋅Γ(n + m) m =0

d x n J n ( x ) = x n J n −1 ( x ) dx d −n x J n ( x) = − x − n J n +1 ( x) dx
y = AJ n ( x) + BYn ( x)
A、B为任意常数, n为任意实数
数学物理方程与特殊函数
第5章贝塞尔函数
三 贝塞尔函数的性质
(−1) m x J n ( x) = ∑ ⋅ m = 0 m! Γ ( n + m + 1) 2
∞ n+2m
J α ( x) cos απ − J −α ( x) Yn ( x) = lim α →n sin απ
= −3J1 ( x) + 2 J1 ( x) + J1 ( x) − J 3 ( x) = − J 3 ( x)
数学物理方程与特殊函数
第5章贝塞尔函数
(4)
d n x J n ( x) = x n J n −1 ( x) dx = − xJ1 ( x ) + ∫ x −1 J1 ( x )dx 2 = − xJ1 ( x) + 2 ∫ J1 ( x)dx d −n x J n ( x) = − x − n J n +1 ( x) = − xJ1 ( x ) − 2 ∫ dJ 0 ( x) = − xJ1 ( x) − 2 J 0 ( x ) + C dx ′ (5) ∫ x 3 J 0 ( x )dx = ∫ x 2 dxJ1 ( x ) = x 3 J 1 ( x ) − 2 ∫ x 2 J1 ( x)dx J n −1 ( x) − J n +1 ( x) = 2 J n ( x) 2n J n −1 ( x) + J n +1 ( x) = J n ( x) 3 2 3 2 = x J 1 ( x ) − 2 ∫ dx J 2 ( x ) = x J 1 ( x ) − 2 x J 2 ( x ) + C x

贝塞尔函数

贝塞尔函数

贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。

贝塞尔函数和初等函数是在物理和工程中最常用的函数。

贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。

贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。

一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。

贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。

针对各种具体情况,人们提出了这些解的不同形式。

下面分别介绍不同类型的贝塞尔函数。

这类方程的解无法用初等函数系统地表示。

但是可以运用自动控制理论中的相平面法对其进行定性分析。

这里被称为其对应贝塞尔函数的阶数。

实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。

这样做能带来好处,比如消除了函数在=0点的不光滑性。

几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。

雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。

1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。

贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。

因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。

最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。

2.2贝塞尔函数的性质

2.2贝塞尔函数的性质
第二章 贝塞尔函数
Bessel Function §1.2 贝塞尔函数的性质 Properties of Bessel Function
Wuhan University
一、母函数关系式
e
x 1 (t − ) 2 t
1.2 Bessel函数的性质
=
n = −∞
x t 2
∑J

n
( x)t
n
(1)
1 x l Q 证明: e = ∑ ( t ) , t < ∞ l = 0 l! 2 x ∞ − 1 x m 2t e = ∑ (− ) , t > 0 2t m = 0 m! e
一、母函数关系式
e
x 1 (t − ) 2 t
1.2 Bessel函数的性质
(−1) x l + m l − m = ∑∑ ( ) t l =0 m =0 l !m ! 2
∞ ∞ m
令 l − m = n, 则 l = m + n
→ ∑→
l =0

m + n =0





n=− m
∑→∑


n = −∞
0 m
cm =
Wuhan University
∫0 a 2 0 0 J1 (k m a ) sinh( k m h) 2
2
1
a
0 u0 ρJ 0 (k m ρ )dρ
四、广义傅氏展开
解:4. 叠加,定系数:
0 令 x = km ρ
1.2 Bessel函数的性
∫ ρJ
0
a
0
( k ρ ) dρ =
0 m
∞ 0 m 0 m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bessely函数
贝塞尔函数(Bessel function)是数学中的一类特殊函数,由德国
数学家弗里德里希·贝塞尔(Friedrich Bessel)在19世纪初引入和研
究的。

贝塞尔函数在物理学、工程学和数学中有广泛的应用。

贝塞尔函数可以分为第一类贝塞尔函数和第二类贝塞尔函数两类。


一类贝塞尔函数一般记作Jn(z),其中n为阶数,z为自变量。

第二类贝
塞尔函数一般记作Yn(z)。

贝塞尔函数满足贝塞尔方程,即二阶常微分方程:
z^2 * d^2y/dz^2 + z * dy/dz + (z^2 - n^2) * y = 0
贝塞尔函数的性质和特点使其在科学和工程领域中拥有广泛的应用,
特别是在波动理论、电磁学、热力学和量子力学中。

以下是贝塞尔函数的
一些重要应用:
1.振动问题:贝塞尔函数可以描述弦、鼓膜、声音等的振动情况。


过解贝塞尔方程,可以得到这些系统的振动模式和频率。

2.圆柱波:贝塞尔函数是描述无限长圆柱体中的波动现象的基本工具。

例如,电磁波在圆柱体中的传播可以用贝塞尔函数来描述。

3.散射和辐射问题:贝塞尔函数的特殊性质使其在散射和辐射问题中
有重要应用。

例如,电磁波在球体上的散射和辐射问题可以通过贝塞尔函
数来求解。

4.热传导问题:贝塞尔函数可以描述热传导问题中的温度分布。

例如,考虑一个半径为R的无限长圆柱体,在柱体表面施加边界条件后,可以通
过贝塞尔函数来求解圆柱体内部的温度分布。

5.量子力学:贝塞尔函数在量子力学中有重要的应用,特别是在氢原子问题中。

贝塞尔函数可以用来描述氢原子中电子的径向波函数。

除了上述的应用,贝塞尔函数还在其他领域中发挥着重要的作用,如电磁场分析、激光传输、声学等。

贝塞尔函数的定义和性质可以通过级数展开、递归关系或微分方程等多种方法来推导和求解。

总结起来,贝塞尔函数是一类特殊函数,具有广泛的应用领域。

它可以用来描述振动问题、圆柱波、散射和辐射问题、热传导问题以及量子力学中的一些问题。

贝塞尔函数在科学和工程中的应用使其成为一类重要的数学工具。

相关文档
最新文档