通信系统中的数字上变频和下变频
数字下变频原理

数字下变频原理一、背景介绍数字下变频(Digital Down Conversion)是一种在通信系统中广泛应用的技术,用于将高频信号转换成低频信号以方便处理和分析。
本文将深入探讨数字下变频的原理及其在通信领域中的应用。
二、数字下变频原理数字下变频是指将高频信号转换成低频信号的过程,其原理基于采样定理和数字信号处理的技术。
下面将详细介绍数字下变频的原理。
2.1 采样定理采样定理指出,要完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
在数字下变频中,高频信号先经过抽样和量化,得到离散的信号样本。
2.2 数字信号处理在数字下变频过程中,采样的离散信号样本将通过数字信号处理算法进行处理,包括滤波、频率变换和解调等步骤。
其中,最重要的步骤是频率变换。
2.3 频率变换频率变换是将高频信号转换为低频信号的关键步骤。
常用的频率变换方法有离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。
这些变换方法可以将时域中的高频信号变换到频域中,进而实现频率降低的目的。
三、数字下变频在通信领域中的应用数字下变频技术在通信领域中有很多应用,包括无线通信、雷达系统和测量仪器等。
下面将介绍数字下变频在这些领域中的具体应用。
3.1 无线通信在无线通信系统中,数字下变频可以将接收到的高频信号转换成低频信号进行处理。
这样做的好处是可以减少硬件成本、节省功耗和提高通信质量。
数字下变频还可以实现频谱分析和信号识别等功能。
3.2 雷达系统雷达系统中使用数字下变频技术可以降低系统复杂度和功耗。
数字下变频可以将雷达接收到的高频信号转换成低频信号进行处理和分析,实现目标检测、跟踪和成像等功能。
3.3 测量仪器在测量仪器中,数字下变频可以将高频信号转换成低频信号进行处理和分析。
这样可以降低系统噪声、提高测量精度,并且方便对信号进行数字处理和存储。
四、总结通过对数字下变频原理的深入探讨,我们了解到数字下变频是将高频信号转换成低频信号的一种重要技术。
软件无线电无人机蜂群通信系统

技术协作信息
已逐渐受到国内外广泛关注,
图1软件平台系统架构
核心框架的功能模块由基础模块和
核心模块组成。
基础模块主要包括:描述
文件解析器、部署管理器和资源管理器,
分别提供波形应用的XML文件解析、波形
应用的动态加卸载管理以及系统资源的
配置与管理。
CORBA中间件用于屏蔽操作系统异
构性以及网络协议异构性,为分布式环境
技术协作信息
加强管理,防止滥用乱用资金的现象出现,要按照批复的额度和开支范围执行预机制,对建立的制度进行专项评估,发挥自身审计监督职能。
(作者单位:湖南智领通信科技有限公司)
cyDivisionMultiplexing,
以获得高效的频谱利用率;
图2宽带网络波形功能框图。
软件定义无线电与电子器件技术考核试卷

A. AM
B. FM
C. QAM
D. PSK
(答题括号:________)
16.电子器件技术中,以下哪种器件在数字电路中具有广泛的应用?
A.双极型晶体管
B.结型场效应晶体管
C.金属氧化物半导体场效应晶体管(MOSFET)
D.运算放大器
(答题括号:________)
20.以下哪些技术可以用于提高软件定义无线电系统的抗干扰能力?
A.信道编码
B.调制技术
C.信号同步
D.信道估计
(答题括号:________)
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.软件定义无线电(SDR)的核心思想是将尽可能多的无线电功能转移到______上实现。
B.提高系统灵活性
C.减少系统复杂度
D.提高频率使用效率
(答题括号:________)
3.以下哪些是电子器件技术中常见的场效应晶体管?
A.结型场效应晶体管(JFET)
B.金属半导体场效应晶体管(MESFET)
C.金属氧化物半导体场效应晶体管(MOSFET)
D.双极型晶体管
(答题括号:________)
8. AC
9. ABC
10. ABCD
11. ABC
12. BC
13. AB
14. ABCD
15. A
16. ABCD
17. ABCDቤተ መጻሕፍቲ ባይዱ
18. ABCD
19. CD
20. ABCD
三、填空题
1.软件
2. MOSFET
3. QAM
4.带宽
通信系统中数字上变频技术的研究与设计

通信系统中数字上变频技术的研究与设计铁奎;张慷;凌云志【摘要】为了将通信系统中数字基带信号调制到中频信号上,采用数字上变频技术,通过对数字I,Q两路基带信号进行FIR成形滤波、半带插值滤波、数字混频处理得到正交调制后的中频信号.最后经MATLAB仿真分析得到相应的时域和频域图,来验证电路设计的有效性。
%Baseband signal is modulated intermediate frequency signal by the technogy of digital up conversion in communication system.The I and Q digital baseband signals that are filtered by shaped FIR and half band interpolation, processed by digital mixer,turn into modulated intermediate frequency signal.At last,the circuit design is validated by the time and spectrum figures of MATLAB simulation and analysis.【期刊名称】《电子设计工程》【年(卷),期】2012(020)015【总页数】3页(P190-192)【关键词】数字上变频;半带滤波器;数字本振;数字正交混频器【作者】铁奎;张慷;凌云志【作者单位】中国电子科技集团公司第四十一研究所,安徽蚌埠233006;中国电信上海公司,上海200041;中国电子科技集团公司第四十一研究所,安徽蚌埠233006【正文语种】中文【中图分类】TN911.72通信系统中基带信号上变频的方式包括[1-2]模拟调制和数字调制,模拟调制中的基带和载波信号都是模拟信号。
随着软件无线电技术的发展以及大规模集成电路和DSP的广泛应用,对通信系统中基带到中频的变换采用数字化处理,就能通过可编程器件的可编程性对载波频率、信号带宽、调制格式、信道编码等进行控制,实现不同的通信功能要求。
数字下变频

Your company slogan
原理和结构
原理:数字下变频器(DDC)是接收机A/D变换后,首先要完成 数字下变频器(DDC)是接收机 是接收机A 变换后,
的处理工作,一般的DDC由本地振荡器(NCO)、混频器、 由本地振荡器(NCO)、混频器、 的处理工作,一般的DDC由本地振荡器 低通滤波器和抽取器组成.主要作用: 低通滤波器和抽取器组成.主要作用:其一是把中频信号 变为零中频信号;其二是降低采样率。从频谱上看, 变为零中频信号;其二是降低采样率。从频谱上看,数字 下变频将A/D采样后信号从中频变换到基带 采样后信号从中频变换到基带。 下变频将A/D采样后信号从中频变换到基带。这样的处 理由两步完成:首先是将输入信号与正交载波相乘, 理由两步完成:首先是将输入信号与正交载波相乘,然后 进行数字滤波滤除不需要的频率分量。NCO,混频器, 进行数字滤波滤除不需要的频率分量。NCO,混频器, 数字滤波器速率要等于采样率,采样率低于600MHz, 数字滤波器速率要等于采样率,采样率低于600MHz, 很难实时的在FPGA中进行处理 很难实时的在FPGA中进行处理
总结:离散信号的精确性与寄存器长度相关,寄存器长度越长,精确 总结:离散信号的精确性与寄存器长度相关,寄存器长度越长, 度越高,硬件实现却越复杂。多路相位合成滤波器在DDC并行 度越高,硬件实现却越复杂。多路相位合成滤波器在DDC并行 处理过程中不会产生其他噪声, 处理过程中不会产生其他噪声,因此在并行处理过程中信噪比 的分析等同于传统的DDC结构 结构。 的分析等同于传统的DDC结构。
FIR滤波器 FIR滤波器: 滤波器:
Your company slogan
论文主体
1.并行处理结构: 并行处理结构: 抽取滤波器模块通过多相滤波器结构降低采样率和实现低通滤波。 抽取滤波器模块通过多相滤波器结构降低采样率和实现低通滤波。
数字下变频 信道化

数字下变频信道化数字下变频是一种信号处理技术,常用于无线通信系统中,用于将数字信号转换成模拟信号,并通过信道传输。
在信道化过程中,数字信号经过调制、编码等处理,以适应信道的传输特性,从而有效地传输数据。
数字下变频的过程可以简单地分为两个步骤:调制和解调。
首先,在发送端,调制器将数字信号转换成模拟信号。
这是通过将数字信号与一个高频信号相乘来实现的,高频信号被称为载波信号。
调制过程中,需要选择合适的调制方式,如调幅(AM)、调频(FM)或者调相(PM),以便在信道中传输。
在信道中传输时,模拟信号会受到信道的影响,如衰落、多径效应、噪声等。
为了增强信号的可靠性,通常会对模拟信号进行编码和纠错处理。
编码是将模拟信号转换成一系列数字码字的过程,纠错处理则是在接收端对接收到的码字进行检测和纠正的过程。
通过编码和纠错处理,可以有效地提高信号的抗干扰性和可靠性。
在接收端,解调器将模拟信号转换回数字信号。
解调器会将接收到的模拟信号与一个局部振荡器产生的相同频率的信号相乘,从而得到原始的数字信号。
在解调过程中,需要选择与发送端相同的解调方式,以恢复出原始的数字信号。
数字下变频技术在无线通信中具有广泛的应用。
它可以将数字信号转换成模拟信号,以适应不同的信道传输特性。
通过调制、编码和解调等处理,数字下变频技术可以在信道中传输可靠的数据。
它为无线通信系统提供了高效、可靠的数据传输方式,促进了信息的交流和传播。
无论是手机通信、卫星通信还是无线局域网,数字下变频技术都扮演着重要的角色。
数字下变频技术的发展使得无线通信系统的性能不断提升。
随着技术的不断创新和进步,数字下变频技术将会在未来发挥更加重要的作用。
通过进一步研究和改进,数字下变频技术有望实现更高的传输速率、更低的误码率和更强的抗干扰能力。
这将极大地推动无线通信技术的发展,为人们的生活带来更多的便利和创新。
通信应用中的数字上变频和下变频

通信应用中的数字上变频和下变频数字上变频器(DUC)和数字下变频器(DDC)不仅仅是通信应用(如软件无线电)中的关键,而且在需要窄带信号高速流的应用中也是重要的。
另外,DDC结构容易控制所有取样速率下的混淆防止分样。
做为1个例子,让我们看看数字记录5MHz带宽(中心在50MHz)信号的问题。
此信号可以是来自RF-IF模拟下变频器的信号或者是直接从天线接收的信号。
为了满足尼奎斯特准则,我们需要以105ms/s取样率取样此信号。
然而,为了合理地捕获此信号,应该在较高的取样率(至少200ms/s)取样此信号。
假设ADC为16位,在该速率下被取样的信号会产生400MB/s数据。
也许更难办的是以这样高速率采集和存储数据缺乏商业可用的方案。
大多数可用的PC基数字器仅能在大约几分之几秒内存储此数据。
数字下变频DDC在持续时间期间可以数字记录RF信号。
在此实例中,我们仅需要记录5MHz信号(中心频率50MHz),而不是ADC的整个尼奎斯特带宽。
DDC允许除去其余数据,并降低数据率。
在现场可编程门阵列(FPGA)中实现时,简单的数字下变频分为3个性质不同的步:频率变换、滤波和分样(图1)。
频率变换和滤波第1步是频率变换。
5MHz频带需要降低变换到基带,靠乘或与载频(fc)正弦信号混频实现这种变换。
用数字控制振荡器(NCO)数字产生正弦波。
NCO通常也称之为本机振荡器(LO),它可以在精确频率和相位下产生取样波形。
随着信号从50MHz变频到基带,信号拷贝也从50 MHz变频到100 MHz。
基于此原因,新的基带信号必须滤波,去除较高频率的信号。
然而,到此我们的任务没有完成。
我们仍有1个在200ms/s取样的低频基带信号。
传输额外不必要数据时不希望PC总线过载,我们重新取样信号来降低有效取样率。
这靠分样实现,在规则的时间间隔内从数字化的信号中去除数据点。
在此例中,取样从200ms/s 下降到10ms/s,每20个取样去除19个取样。
1~18GHz超宽带接收下变频模块的设计研究

图1 接收下变频原理框图
侦查监测系统是电子战系统的重要组成部分,理想的侦查监测系统能够以较宽的带宽以及较高的动态和灵敏度信号,而且具有体积小、重量轻、成本低、功耗小、杂散小的特点。
本文设计的1~18GHz超宽带接收下变频模块就具有这些特点。
其设计的链路是接收信号分为1~6GHz、6~18GHz 2个频段,分别送入接收下变频模块对应端口,对于1~18GHz频段的截获信号,在每个通道内先进行限幅、滤波、低噪声放大、功率控制、自检选通后分别用开关滤波滤除谐波及带外信号,再与宽带本振20~40GHz变频至一中频22GHz±0.25GHz/0.5GHz 后再开关滤波、放大输出。
通过开关滤波可滤除谐波杂
20中国设备工程 2023.10(下)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信系统中的数字上变频和下变频
数字上变频器(DUC)和数字下变频器(DDC)不仅仅是通信应用(如软件无线电)中的关键,而且在需要窄带信号高速流的应用中也是重要的。
另外,DDC结构容易控制所有取样速率下的混淆防止分样。
让我们看看数字记录5MHz带宽(中心在50MHz)信号的问题。
此信号可以是来自RF-IF模拟下变频器的信号或者是直接从天线接收的信号。
为了满足尼奎斯特准则,我们需要以
105ms/s取样率取样此信号。
然而,为了合理地捕获此信号,应该在较高的取样率(至少200ms/s)取样此信号。
假设ADC为16位,在该速率下被取样的信号会产生400MB/s数据。
也许更难办的是以这样高速率采集和存储数据缺乏商业可用的方案。
大多数可用的PC基数字器仅能在大约几分之几秒内存储此数据。
数字下变频
DDC在持续时间期间可以数字记录RF信号。
在此实例中,我们仅需要记录5MHz信号(中心频率50MHz),而不是ADC的整个尼奎斯特带宽。
DDC允许除去其余数据,并降低数据率。
在现场可编程门阵列(FPGA)中实现时,简单的数字下变频分为3个性质不同的步:频率变换、滤波和分样(图1)。
频率变换和滤波
第1步是频率变换。
5MHz频带需要降低变换到基带,靠乘或与载频(fc)正弦信号混频实现这种变换。
用数字控制振荡器(NCO)数字产生正弦波。
NCO通常也称之为本机振荡器(LO),它可以在精确频率和相位下产生取样波形。
随着信号从50MHz变频到基带,信号拷贝也从50 MHz变频到100 MHz。
基于此原因,新的基带信号必须滤波,去除较高频率的信号。
然而,到此我们的任务没有完成。
我们仍有1个在200ms/s取样的低频基带信号。
传输额外不必要数据时不希望PC总线过载,我们重新取样信号来降低有效取样率。
这靠分样实现,在规则的时间间隔内从数字化的信号中去除数据点。
在此例中,取样从200ms/s下降到10ms/s,每20个取样去除19个取样。
防止混淆的分样
采用分样,数字化器的采集引擎继续以同样的最大速率进行取样。
然而,仅有少量的采集点被存储、被取出和传输到PC,这降低取样率到所希望的水平。
但是,此技术不是极简单的。
为便于说明,假定数字化器的最大取样率是100MS/s,使其尼奎斯特频率为50 MHz,而信号有两个分量:10 MHz基频和20MHz激励频率分量。
若数字化器分辨率为14位,则在100MS/S总数据率是200MB/s,这远远高于PCI总线理论极限132MB/s。
这是采用较低取样率(如25MS/s)的1个原因。
现在尼奎斯特频率应该是12.5MHz。
然而,20MHz频率分量混淆回到5MHz。
现在,不可能告知信号实际上是否是5MHz信号或混淆到5MHz的另外较高频率信号(20MHz,30MHz,45MHz)。
解决此问题的1种方案是称之为防止混淆分样的增强分样技术。
在此技术中,数字化器继续在100MS/s最高取样率下采集数据,但加1个低通数字滤波器,在分样前截止尼奎斯特频率(图2)。
正交数字下变频
图1所示DDC只适用于单维调制信号。
这种信号的1个实例是AM无线电的双边带幅度调制信号,它用比实际所需两倍的带宽。
这样的信号在低和高于载频是相同的。
很多新式通信信号是两维调制。
编码和调制这些复数信号为实数和虚数分量。
用正交DDC 适当地下变频复数信号。
正交DDC不仅仅变频、滤波和分样ADC采样的IF信号,而且它也分离IF信号为实数和虚数分量。
实数部分是同相(I)信号,虚数部分是90°相移(Q)信号。
在图3中,NCO产生两个载波信号:I载波和Q载波,它们相移90°。
独立地混频这些信号,变频输入IF信号为基带I和Q分量,像从前那样滤波和分样每个通路。
从此,可由FPGA 进一步处理I和Q信号或后面的处理记录它们。
正交数字上变频
在数字通信领域,信号像经常被采集那样需要产生。
很像DDC用于采集IF信号,DUC用于产生IF信号。
DUC处理是DDC处理的严格反处理。
代替下变频和分样,DUC采用内插和上变频。
内插或上取样转换低取样率调制信号为相当高取样率信号,以易于上变频。
该步往往用软件实现,可以用任何因数乘整个的波形大小。
例如,可以用2048内插因数内插16KB调制波形为32MB。
最后,调制内插数据与载波混频,上变频基带信号为所需的载波频率。
任意波形产生器可以下载整个的上取样、上变频信号到板上存储器。
然而,带DUC的产生器以硬件代替软件执行内插和上变频级导致明显更快速的波形计算和更小的波形大小。
高效率处理和更小的波形节省了下载时间并使得再现时间更长,这改善了很多通信测量和检验的统计性能(如误码率,格子结构图,星座图)。