工程光学习题解答第九章_光的电磁理论基础
郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。
(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。
解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。
3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。
工程光学练习题与解答

工程光学练习题与解答工程光学练习题与解答光学作为一门应用广泛的工程学科,对于工程师们来说是非常重要的一门课程。
理解光学原理和应用是工程师在设计和制造光学器件和系统时必备的技能。
为了帮助读者更好地理解和掌握工程光学知识,本文将提供一些光学练习题和详细的解答。
1. 一个平行光束垂直入射到一个半径为R的球面透镜上,透镜的焦距为f。
求出该透镜的曲率半径和球面上的光焦点位置。
解答:根据透镜公式,1/f = (n-1)(1/R1 - 1/R2),其中n为透镜的折射率,R1和R2分别为透镜两个球面的曲率半径。
由于球面透镜是对称的,所以R1 = R2 = R。
将入射光束的方向与透镜法线方向垂直,可以得到R = 2f。
由于光线垂直入射到球面透镜上,入射角为0,根据球面折射定律,折射角为0。
因此,光线通过透镜后仍然是平行光束,光焦点位置在无穷远处。
2. 一个凸透镜的焦距为20cm,物距为30cm。
求出像的位置和放大倍数。
解答:根据薄透镜公式,1/f = 1/v - 1/u,其中f为透镜焦距,v为像距,u为物距。
代入已知数据,得到1/20 = 1/v - 1/30。
解方程得到v = 60cm。
根据放大倍数公式,放大倍数为m = -v/u。
代入已知数据,得到m = -60/30 = -2。
由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为2。
3. 一个凹透镜的焦距为-15cm,物距为30cm。
求出像的位置和放大倍数。
解答:由于凹透镜的焦距为负值,所以可以根据薄透镜公式得到1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
代入已知数据,得到1/-15 = 1/v - 1/30。
解方程得到v = -10cm。
根据放大倍数公式,放大倍数为m = -v/u。
代入已知数据,得到m = -(-10)/30 = 1/3。
由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为1/3。
4. 一个平行光束垂直入射到一个半径为R的球面镜上,镜的焦距为f。
工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用.答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。
应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量.(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。
说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。
2.已知真空中的光速c ≈3×108m/s,求光在水(n=1。
333)、冕牌玻璃(n=1。
51)、火石玻璃(n=1。
65)、加拿大树胶(n=1。
526)、金刚石(n=2。
417)等介质中的光速. 解:v=c/n(1) 光在水中的速度:v=3×108/1.333=2。
25×108 m/s(2) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s(3) 光在火石玻璃中的速度:v=3×108/1。
65=1。
82×108 m/s(4) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s(5) 光在金刚石中的速度:v=3×108/2.417=1。
24×108m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来.那时候的玻璃极不均匀,多泡沫。
除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。
3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。
解:706050=+l l ⇒l =300mm 4.一厚度为200mm 的平行平板玻璃(设n=1。
5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。
工程光学基础 习题参考答案

1.β = 0, l' = 0, l = −50 2.β = −0.1, l' = −550, l = −55 3.β = −0.2, l' = −60, l = −300 4.β = −1, l'= −100, l = −100 5.β = 1, l' = 0, l = 0 6.β = 5, l' = −200, l = −40 7.β = 10, l' = −450, l = 45 8.β = ∞, l' = +∞, l = −50
n
1.5 10 15
Q L = −∞,∴U = 0
∴U'= I − I'
L'
=
r
1
+
sin I' sin U '
=
100
1
+
1 / 15 sin(1.9166)
=
299.332
则 实 际 光 线 的 像 方 截 距 为 299.332 , 与 高 斯 像 面 的 距 离 为 :
根据公式 n' − n = n'−n (1-20)有: n' − 1 = n'−1 ,可以看出此种情况不存在。
l' l r
r −∞ r
计算第②种情况:易知入射光线经第一面折射后过光轴与反射面的交点。
其余参考题 14。
21、一物体位于半径为 r 的凹面镜前什么位置时,可分别得到:放大 4 倍的实 像,放大 4 倍的虚像、缩小 4 倍的实像和缩小 4 倍的虚像? 解: (1)放大 4 倍的实像
(2)放大四倍虚像 (3)缩小四倍实像 (4)缩小四倍虚像
物理光学1章 光的电磁理论及课后习题答案

时间无限延续,空间无限延伸的波动
平面电磁波的时间周期性和空间周期性 v T
参量 周期 频率 角频率
时间 T
1
T
2
空间
1
k 2
平面波传播速度随介质而异;时间频率与介质无关; 而空间频率波长随介质而异
平面简谐波 = 单色波
最显著的特点是:时间周期性和空间周期性: 1、单色光波是一种时间无限延续、空间无限延伸 的波动。 2、从光与物质的作用来看,磁场远比电场为弱。 所以通常把电矢量E称为光矢量,把E的振动称为 光振动。
x0 x y0 y z0 z
散度:矢量函数
F
(M)在坐标轴上的投影为P、Q、R,它的
散度是一个标量函数,定义为微分算符与矢量F的数量
积, 记作:
F (x0 x y0 y z0 z ) (Px0 Qy0 Rz0 )
(P Q R ) x y z
E~2*
Aeik r
波函数互为共轭复数
六、平面电磁波的性质
❖ 1、电磁波是横波
k • E 0 k •B 0
❖ 2、E、H 相互垂直
B k0 E
❖ 3、E、B 同相
E
1
v
B
1.3 球面波和柱面波
一、球面波 1、波函数:
1 2E 1 2E 0
r r 2 2 t 2
点光源,发出以0点为中心的球面,即波阵面是球面,这种
五、平面简谐波的复振幅
E Aexp(ik r ) exp(it)
~
波函数 =
空间位相
时间位相
复振幅:E Aexp(ik r ) 场振动的振幅和位相随空
间的变化。
时间位相:场振幅随时间变化。由于在空间各处随时
工程光学第9章光的电磁理论基础

1:电场与磁场之间的麦克斯韦方程组:S d t B l d E ∙∂∂-=∙⎰⎰⎰ t B E∂∂-=⨯▽ S d t D J l d H ∙∂∂+=∙⎰⎰⎰)( tD J H∂∂+=⨯▽ ⎰⎰⎰⎰⎰=∙V d S d Dρ ρ=∙D ▽ 0=∙⎰⎰S d B=∙B ▽ 其中,电场强度矢量E 、电位移矢量D 、磁感应强度矢量B 、磁场强度矢量H 。
传导电流密度J 、自由电荷密度ρ2:E 、B 满足的波动微分方程:01-2222=∂∂t E v E ▽ 01-2222=∂∂t B v B ▽ 3:一些公式:在介质中:E D r εε0=(真空中1=r ε) H B rμμ0=(真空中1=r μ)εμ1=v (με和分别为介质的介电常数和磁导率) 真空中:001με=c则:rr Cv με=,n 为介质对电磁波的折射率:n=r r VCμε= Tw ππν22== vT =λ(介质中) ν是振动频率;T 是振动周期;λ是光波波长。
cT =0λ(真空中) νλc o =n 0λλ=Vwk ==λπ2 k 是波失量;大小如前式,称为波数或者空间角频 率由波动微分方程可以得出平面简谐电磁波的波动方程:即平面波波动公式:)cos(wt r k A E -∙=(A 为电场和磁场的振幅矢量)或者:)(wt r k i e A E -∙= ;)](cos[t Vz w A E -= 其中复振幅(表示某一时刻光波在空间的分布))(~r k i e A E ∙=4:平面电磁波的性质:①平面电磁波是横波,电矢量与磁矢量的方向均垂直于波传播方向。
平面电磁波的波动公式为)('wt r k i e A B -∙= )(wt r k i e A E -∙=②0k、、B E 互成右手螺旋系:)()(100E k E k VB ⨯=⨯=εμ0k 是波失量k的单位矢量。
③同相位和B E:εμ1==V B E 。
5:辐射能:辐射强度矢量或坡印亭矢量S用来描述电场能量的传播。
工程光学基础课程复习

A’
光 学
2’ B’
系
3’ C’
统
p1
Malus定律的解释图
p2
(1)内容 垂直于入射波面的入射光束,经过任意次的反射
和折射后,出射光束仍然垂直于出射波面,并且在入射波面 和出射波面间所有光路的光程相等。
(2)数学表示
A'
nds
B'
nds
C'
nds c
A
B
C
第二节 成像的基本概念
与完善成像条件
称为近轴区),光线称为近轴光线。
此时,相应的 I、 I、' U等' 都比较小
sin x x ,( x为弧度值)
用弧度值替换正弦值:
u ~ sinU i ~ sin I l~L
u'~ sinU ' i ~ sin I l'~ L'
每面折射前后的Q 不变,称为阿贝不变量
n(1 1) n(1 1) Q r l r l
tgu' yn n 1 tgu y' n' n'
f ' n' fn
放大率之间的关系
§2.5 理想光学系统的组合
反向棱镜的等效作用与展开:
掌握方法
折射棱镜中光楔的偏向角公式 (课P53)及其测微应用
第四章 光学系统中的光阑和光束限制
光阑定义、作用、分类。
z或 t
2p :在空间域上 km
在真空中传播时,波速相同,相速度和群速度相等。
在色散介质中传播时,不同频率的光波传播速度不同,合成
波形在传播过程中会不断地变化,相速度和群速度便不同了。
第十章 光的干涉
§10-1 光波的干涉条件 §10-2 杨氏干涉实验 §10-3 干涉条纹的可见度 §10-4 平板的双光束干涉 §10-5 典型的双光束干涉系统及其应用 §10-6 平行平板的多光束干涉及其应 用
工程光学习题解答第九章_光的电磁理论基础

第九 章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。
(2)波传播方向沿z 轴,电矢量振动方向为y 轴。
(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。
解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。
解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。
假设太阳光发出波长为600nm λ=的单色光。
解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九 章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。
(2)波传播方向沿z 轴,电矢量振动方向为y 轴。
(3)B E →→与垂直,传播方向相同,∴0By Bz ==2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。
解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯(2)8714310 1.543.910510n c c n vλν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。
解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。
假设太阳光发出波长为600nm λ=的单色光。
解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。
解:∵exp[()]E A i k r t ω=-6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试求反射系数和透射系数。
设玻璃折射率为1.5。
解:由折射定律7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。
解:8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反射和折射(折射角为2θ,见图10-39),s 波和p 波的振幅反射系数和投射系数分别为s r 、p r 和s t 、p t 。
若光波从2n 介质入射到1n 介质(见图10-39b )中,入射角为2θ,折射角为1θ,s 波和p 波的反射系数和透射系数分别为's r 、'p r 和's t 、'p t 。
试利用菲涅耳公式证明(1)'s s r r =-;(2)'p p r r =-;(3)'s s s t t τ=;(4)'p p p t t τ=(p τ为p 波的透射比,s τ为s波的透射比)。
解:9.分别为1n解:10. 第一次反射时,11312,,B n n tg n θ︒==玻空n 第二次反射时,212',''90,''B n n n θθθθθ=+=︒=空B 玻,tg =n 得证。
亦可由,s p r r 求证.11. 光束垂直入射到45度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图10-40),若入射光强为0I ,求从棱镜透过的出射光强I ?设棱镜的折射率为1.52,且不考虑棱镜的吸收。
1.5和1.7,求此系统的反0.01,问此系统的光能损失又为 解),管芯AB 为发光区,其直径3d mm ≈。
为了避要使发光(已知对发射的0.9nmλ=图10-39 习题8图 图10-40 习题11图的光,砷化镓的折射率为3.4) 。
解:14. 线偏振光的方位角45α=度,问线偏振光以p 波的相位差等于45度,设玻璃折射率 1.5n =。
解:15. ,线偏振光的方位角45α=度,证明当cos = 时(θ是入射角),反射光波和波的相位差有最大植。
式中21/n n n =。
证明:16. 圆柱形光纤(图10-42)其纤芯和包层的折射率分别为1n 和2n ,且1n >2n 。
(1)证明入 射光的最大孔径角2u 满足关系式sin u =2)若121.62, 1.52,n n ==求孔径角?解:17. 910HZ ν<时,硅试样具有良导体作用。
计算时电磁波对这种试样的穿透深度。
解: 18. 铝在50nm λ=时,有 1.5n =, 3.2nk =,试求正入射时的反射比和相位变化。
解:19. 两束振动方向相同的单色光波在空间某一点产生的光振动分别表示为111cos()E a t αω=-和222cos()E a t αω=-,若15210HZ ωπ=⨯,16/a v m =,28/a v m =,10a =,2/2a π=,求合振动的表示式。
解:20. 利用波的复数表达式求两个波1cos()E a kx t ω=+和2cos()E a kx t ω=--的合成波。
解:21. 一束沿z 方向传播的椭圆偏振光表00(,)cos()cos()4E z t x A kz t y A kz t πωω=-+--,试求偏振椭圆的方位角和椭圆长半轴及短半轴大小。
解:22. 有一菲涅耳棱体(见图10-21),其折射率为1.5,入射线偏振光的电矢量与入射面(即图面)成45度角,求(1)棱体的顶角α取多大时,能使从棱体射出圆偏振光?(2)若棱体的折射率为1.49,能否产生圆偏振光?图10-42 习题16图解:23. 又旋圆偏振光以50度角入射到空气-玻璃界面(玻璃折射率为1.5),试决定放射波和透射波的偏振状态。
解:入射为右旋圆偏振光,如图,可写为若设 1.5n =波,则布儒斯特角56B θ=︒,所以反射光中S 波与P 波均存在。
有 ∴'Es 比'Ep 落后2π相位,且有s p r r ≠ ∴反射光为左旋椭圆偏振光 对于透射光∵s p t t ≠ ∴投射光为右旋椭圆偏振光。
24. 确定其正交分量由下面两式表示的光波的偏振态:005(,)cos(),(,)cos[()]4x y z z E z t x A t E z t y A t c c πω=-=-+解:对于合成波有121255,0,,44a a A ααπδπ=====∴方位角122212232cos ,4a a tg a a ϕδϕπ==-∞∴=-又∵sin 2sin 2sin 1,(1tg εβδδ==⇒=略) ∵0tg ε< ∴为右旋 又设长短轴为12,A A∴211A A = (1) 且有 222122A A A += (2)∴121.71,0.29A A A A == 25.真空中沿z方向传播的两个单色光波为12cos 2(),cos[2()]()zzE a vt E a v v t ππλλλ=-=--∆+∆,若14100/,61a vmH Z Hνν==⨯∆=试求合成波在0,1z z m ==和 1.5z m =各处的强度随时间的变化关系。
若两波频率差8310HZ ν∆=⨯,试求合成波振幅变化和强度变化的空间周期。
解:令()()1212222,2,,k k ππωπνωπννλλλ==-∆==+∆则 ()111cos E a k z t ω=-则合成波强度()224cos m m I a t k z ω=-其中 ()812121022m rad ωωωπνπ-==⋅⋅∆=⋅ ∴I ∝428410cos 103t z ππ⎡⎤⨯-⎢⎥⎣⎦0z =时 I ∝428410cos [10]3t ππ⨯-1z =时 I ∝428410cos 10t π⨯ 1.5z =时 I ∝428410cos [10]2t ππ⨯-若8310Hz ν∆=⨯ 8310m rad ωπ=⨯∴ ()()2cos cos m m E a k z t kz t ωω=-- ()()86142cos310cos 4101210a z t z z πππ=-⨯⨯-⨯ 空间周期为2m()428410cos310z t ππ=⨯-⨯ 空间周期为1m26. 试计算下列各情况的群速度:(1)ν=g 为重力加速度);(2)ν=(浅水波,T 为表面张力,ρ为质量密度)。
解:群速度g dvv v d λλ=-(1)122g dv v v v d λλ=⇒=⇒=(2)132232g dv v v v d λ--=⇒=⇒= 27. 试求图10-43所示的周期性矩形波的傅里叶级数表达式,并绘出其频谱图。
即123422,0,,0A A A A ππ===-=…………………图略28. 求图10-44所示周期性三角波的傅里叶分析表达式,并绘出其频谱图。
解:()A k -∞=⎰31. 氪同位素度约为700mm 解:22L λλ∆==32.M1、M2是两块平行放置的玻璃片(n=1.50),背面涂黑。
一束自然光以 角入射到M1上的A 点,反射至M2上的B 点,再出射。
试确定M2以AB 为轴旋转一周时,出射光强的变化规律。
解 由题设条件知,两镜的入射角 均为 ,且有 对于M1,有由于是自然光入射,p 、s 分量无固定相位关系,光强相等,故式中,I 0是入射自然光强;I 1是沿AB 的反射光强,反射光是垂直于图面振动的线偏振光。
对于M2,假设在绕AB 轴旋转的任一位置上,入射面与图面的夹角为 ,则沿AB 的入射光可以分解为p 分量和s 分量,它们之间有一定位相差,其振幅为 由于此时的入射角也为 ,所以:因此,自M2出射光的振幅为即自M2出射光的强度为: 结论:出射光强依M2相对于M1的方位变化,符合马吕斯(Malus )定律。
ZZ-L L 0 图10-46习题30图B θθB θθ202'2cos 011.0)(I E I s ==B θ。