有限元分析的基本术语与步骤
有限元分析基础教学课件

03
有限元方法
有限元方法的基本思想
划分网格
将连续的求解区域离散为有限个小的单元, 单元之间通过节点连接。
近似解法
用每个小单元上的近似函数来逼近原函数, 从而得到整个求解区域的近似解。
骤。
设定边界条件和载荷
讲述如何运行分析,包括选择求解器、设置 迭代次数、收敛判据等。
运行分析
说明如何为模型设定边界条件和施加载荷, 包括位移、力、温度等。
结果后处理
介绍如何查看和解析结果,包括位移、应力 、应变等。
有限元分析软件编程接口
软件支持的语言
介绍软件支持的编程语言,如 Fortran、C、Python等。
求解平衡方程
通过建立每个小单元上的平衡方程,结合边 界条件和初始条件,求解每个小单元的近似 解。
有限元方法的实现步骤
划分网格
将求解区域离散为有限个小的单 元,选择合适的网格划分方式, 如三角形、四边形等。
求解方程
通过求解刚度矩阵方程,得到每 个小单元的位移分布和应力分布 。
01
建立模型
根据实际问题的需求,建立合适 的数学模型,包括定义求解区域 、定义材料属性、施加边界条件 等。
变形体虚功原理
虚功原理
在变形体上引入虚位移,并计算 虚功,通过虚功等于零的条件, 求解平衡方程。
虚位移
在有限元分析中,将真实位移离 散为多个节点的位移,这些位移 称为虚位移。
最小势能原理与里茨方法
最小势能原理
在变形过程中,物体总势能的变化等 于零,即在平衡状态下,物体的总势 能达到最小值。
结构有限元分析 (2)

结构有限元分析1. 简介结构有限元分析是工程领域中一种常用的数值分析方法,用于解决结构载荷下的应力、变形和振动问题。
通过将复杂的结构分成有限个简单的单元,通过求解每个单元的应力和位移,再将它们组合得到整个结构的应力和位移场。
有限元方法广泛应用于各种工程领域,如土木工程、机械工程和航空航天工程等。
2. 有限元分析的基本原理有限元分析的基本原理是建立结构的有限元模型,然后通过求解有限元模型的力学方程,得到结构的应力和位移场。
有限元模型通常由节点和单元构成。
节点是结构中的关键点,单元是连接节点的构造单元,常用的单元包括三角形单元、四边形单元和六面体单元等。
通过对单元的弯曲、伸长等变形进行逼近,可以得到结构的位移场。
然后,根据位移场和材料的力学性质,可以计算结构的应力场。
3. 有限元分析的步骤有限元分析通常包括以下步骤:步骤1:离散化将结构分成有限个单元,并为每个单元选择合适的单元类型。
步骤2:建立单元刚度矩阵根据每个单元的几何形状、材料性质和节点位移,建立单元的刚度矩阵。
步骤3:建立全局刚度矩阵将所有单元的刚度矩阵组装成全局刚度矩阵。
步骤4:应用边界条件根据结构的边界条件,将边界节点的位移固定或施加给定的载荷。
步骤5:求解线性方程组根据边界条件将全局刚度矩阵和载荷向量进行约束,然后通过求解线性方程组得到结构的位移。
步骤6:计算应力和应变根据得到的位移场和材料的力学性质,计算结构的应力和应变场。
4. 有限元分析的应用领域有限元分析是一种非常灵活和广泛应用的方法,可以用于解决各种结构工程中的力学问题,包括:•结构静力学分析:用于计算结构的应力和变形。
•结构动力学分析:用于计算结构的振动频率和模态形状。
•结构优化设计:通过调整结构的几何形状、材料和边界条件,实现结构的最佳设计。
•结构疲劳分析:用于评估结构在长期应力加载下的疲劳寿命。
有限元分析在工程实践中得到了广泛应用,可以帮助工程师在设计和优化结构时做出准确的决策。
有限元分析理论基础

有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
有限元分析方法简介

载荷
2001年10月1日
有限元模型由一些简单形状的单元组成,单元之间通过节点连 接,并承受一定载荷。
ANSYS培训教程 – 版本 5.5 – XJTU MSSV(001128)
La-7
节点和单元 (续)
每个单元的特性是通过一些线性方程式来描述的。 作为一个整体,单元形成了整体结构的数学模型。 尽管梯子的有限元模型低于100个方程(即“自由度”
Definition
• 可利用最小势能原理建立结构的节点载荷和节点位移之间的关系 式,即结构的平衡方程
[k][ ] [ p]
2001年10月1日
ANSYS培训教程 – 版本 5.5 – XJTU MSSV(001128)
La-27
求解结点位移
Definition
• 将线性代数方程组 [k][ ] [ p] 代入边界条件后,经
有限单元法(续)
• 将连续的结构离散成有限个单元,并在每一单元中设定有限个节 点,将连续体看作只在节点处相连接的一组单元的集合体。
• 选定场函数的节点值作为基本未知量,并在每一单元中假设一近 似差值函数已表示单元中场函数的分布规律。
• 利用力学中的某种变分原理去建立用以求节点未知量的有限单元 法方程,将一个连续域中有限自由度问题化为离散域中有限自由 度问题。
ANSYS培训教程 – 版本 5.5 – XJTU MSSV(001128)
La-21
有限单元法解题的一般步骤
Lesson Objectives
2001年10月1日
ANSYS培训教程 – 版本 5.5 – XJTU MSSV(001128)
La-22
1. ..... 2. ..... 3. .....
有限元分析计算的流程

有限元分析计算的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!有限元分析计算是一种用于求解复杂工程问题的数值方法。
它将连续的物体或结构离散化为有限个单元,并通过求解这些单元的节点位移和应力来近似计算整个物体或结构的响应。
有限元分析——_课件

1.2.2 ANSYS10.0 创新之处 1.2.3 ANSYS 10.0 使用环境
ANSYS及ANSYS/LS-DYNA程序可运行与PC机、 NT工作站、UNIX工作站及巨型计算机等各类计算机 及操作系统中,其数据文件在其所有的产品系列和工 作平台上均兼容。并与多种CAD软件共享数据。
2. ANSYS/Structural:通过利用其先进的非线性功能, 该模块可进行高目标的结构分析,具体包括:几何非 线性、材料非线性、单元非线性及屈曲分析。该模块 可以使用户精确模拟大型复杂结构的性能。
3. ANSYS/Linear plus:该模块是从ANSYS/Structural派 生出来的,一个线性结构分析选项,可用于线性的静 态、动态及屈曲分析,非线性分析仅包括间隙元和板/ 梁大变形分析。
4. ANSYS/Thermal:该模块同样是从ANSYS/Mechanical 中派生出来的,是一个可单独运行的热分析程序,可 用于稳态及瞬态热分析。
5. ANSYS/Flotran:该程序是个灵活的CFD软件,可求解 各种流体流动问题,具体包括:层流、紊流、可压缩 流及不可压缩流等。通过与ANSYS/Mechanical耦合, ANSYS/FLOTRAN 是 唯 一 一 个 具 有 设 计 优 化 能 力 的 CFD软件,并且能提供复杂的多物理场功能。
8. ANSYS/ED:该模块是一个功能完整的设计模拟程序, 它拥有ANSYS隐式产品的全部功能,只是解题规模受 到了限制(目前节点数1000)。该软件可独立运行, 是理想的培训教学软件。
9. ANSYS/LS-DYNA:该程序是一个显示求解软件,可 解决高度非线性结构动力问题。该程序可模拟板料成 形、碰撞分析、涉及大变形的冲击、非线性材料性能 以及多物体接触分析,它可以加入第一类软件包中运 行,也可以单独运行。
有限元分析基础讲义

第一章 概述
1.1 有限单元法的概念
基本思想:借助于数学和力学知识,利用计算机技术而
解决工程技术问题。
Finite Element Method -_FEM Finite Element Analysis
4
第一章 概述
三大类型(按其推导方法分):
(1) 直接刚度法(简称直接法): 根据单元的物理意义,建立有关场变量表示的单元
(a) 刚架结构示意图
(b) 结点位移和结点力分向量
图3-4 平面刚架分析示意图
30
第三章 杆系结构静力分析的有限单元法
结点位移列向量为
i ui vi i T
单元e结点位移列向量为
j u j vj j T
e
i j
ui
i
i
uj
j
j T
结点力向量为
Fi e Ui V i Mi eT Fj e U j V j M j eT
13
第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构
14
第二章 结构几何构造分析
2.2 结构计算基本知识
2.2.1 结构计算简图
实际结构总是很复杂的,完全按照结构的实际情况 进行力学分析是不可能的,也是不必要的,因此在对实 际结构进行力学计算之前,必须将其作合理的简化,使 之成为既反映实际结构的受力状态与特点,又便于计算 的几何图形。这种被抽象化了的简单的理想图形称之为 结构的计算简图,有时也称为结构的力学模型。 结构计算所常用的结点和支座的简化形式:
16
第二章 结构几何构造分析
(3) 按结构自由度分 ①静定结构——自由度为零的几何不变结构。其特征: a. 静定结构的内力及支座反力可全部由平衡方程式
有限元分析理论基础大全超详细

有限元分析理论基础大全超详细有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
有限元分析常用术语
2
有限元分析步骤
7
2.有限元分析基本术语与步骤
单元形函数(续)
二次曲线的线性近似 (不理想结果)
DOF值二次分布
.
1
节点 单元
.
2
线性近似(更理想的 结果) 真实的二次曲线
.
节点 单元
真实的二次曲线
.
二次近似 (接近于真实的二次近 似拟合) (最理想结果)
.. . . .
3
1
载荷
有限元模型由一些简单形状的单元组成,单元之 间通过节点连接,并承受一定载荷。
1
有限元分析常用术语
2
有限元分析步骤
2
2.有限元分析基本术语与步骤
自由度(DOFs)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
方向
自由度
ROTZ
UZ
UX ROTX
结构 DOFs
结构 热 电 流体 磁
离散化(划分网格或网络化):是将所求解的对象划 分为有限个具有规则形状的微小块体,把每个微小块体称 为单元,相邻两个单元之间只通过若干点互相连接,每个 连接点称为节点。 相邻单元只在节点处连接,载荷也只通过节点在各单 元之间传递,这些有限个单元的集合体,即原来的连续体。 单元划分后,给每个单元及节点进行编号;
2.有限元分析基本术语与步骤
节点和单元 (续)
节点自由度是随连接该节点 单元类型 变化的。
J J
三维杆单元 (铰接) UX, UY, UZ
I L K I
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
二维或轴对称实体单元 UX, UY
I I P M L I J O
L
K
J
P
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
2. 有限元分析的基本术语与步骤
2016/7/17
0
2.有限元分析基本术语与步骤
有限元常用术语
单元:有限元模型中每一个小的块体;
线、三角形、四边形、四面体、六面体。。。
节点:确定单元形状、表述单元特征、连接相邻单 元的点; 载荷:外在施加的力或力矩;不同的学科有所区别;
集中力、分布力、力矩、温度、磁场。。。
2
有限元分析步骤
4
2.有限元分析基本术语与步骤
节点和单元 (续)
信息是通过单元之间的公共节点传递的。
2 nodes
.
.
1
.
A
. .
B
. .
2
.
.
A
1 node
.
.
B
.
.
.
5
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
具有公共节点的单元 之间存在信息传递
有限元分析常用术语
有限元分析步骤
1
有限元分析常用术语
2
有限元分析步骤
9
2.有限元分析基本术语与步骤
有限元法的分析过程
连续体离散化 单元分析 整体分析 确定约束条件 有限元方程求解 结果分析与讨论
1
有限元分析常用术语
2
有限元分析步骤
2.有限元分析基本术语与步骤
1. 连续体离散化
连续体:是指所求解的对象(如物体或结构)。
2
有限元分析步骤
2.有限元分析基本术语与步骤
2. 单元分析
连续体离散化后,即可对单元体进行特性分析,简称为单元分析。 单元分析工作主要有两项: (1)选择单元位移模式(位移函数)
用节点位移来表示单元体内任一点的位移、应变和应力,就需 搞清各单元中的位移分布。
一般是假定单元位移是坐标的某种简单函数,用其模拟内位移 的分布规律,这种函数就称为位移模式或位移函数。通常采用的函数 形式多为多项式。 根据所选定的位移模式,就可以导出用节点位移来表示单元体 内任一点位移的关系式。
1
有限元分析常用术语
2
有限元分析步骤
2.有限元分析基本术语与步骤
2. 单元分析
(2) 分析单元的特性,建立单元刚度矩阵 进行单元力学特性分析,将作用在单元上的所有力(表面 力、体积力、集中力)等效地移置为节点载荷; 采用有关的力学原理建立单元的平衡方程,求得单元内节 点位移与节点力之间的关系矩阵单元刚度矩阵。
O
N
K J
三维实体结构单元 UX, UY, UZ
M L I
N
K J
三维实体热单元 TEMP
1
有限元分析常用术语
2
有限元分析步骤
6
2.有限元分析基本术语与步骤
单元形函数
FEA仅仅求解节点处的DOF值。 单元形函数是一种数学函数,规定了从节点 DOF值到单元内所有点处DOF值的计算方法。 因此,单元形函数提供出一种描述单元内部 结果的“形状”。 单元形函数描述的是给定单元的一种假定的 特性。 单元形函数与真实工作特性吻合好坏程度直 接影响求解精度。
位移 温度 电位 压力 磁位
1
有限元分析常用术语
2
有限元分析步骤
3
2.有限元分析基本术语与步骤
节点和单元 (续)
每个单元的特性是通过一些线性方程式来描述的。
作为一个整体,单元形成了整体结构的数学模型。 尽管梯子的有限元模型低于100个方程(即“自由度”), 然而在今天一个小的 ANSYS分析就可能有5000个未知量,矩 阵可能有25,000,000个刚度系数。
边界条件:结构在边界上受到的外加约束; 初始条件:结构响应前所施加的初始速度、初始温 度、预应力。。。
1
有限元分析常用术语
2
有限元分析步骤
1
2.有限元分析基本术语与步骤
节点和单元
载荷 节点: 空间中的坐标位置,具有一定 自由度和存在相互物理作用。
单元: 一组节点自由度间相互作用的数 值、矩阵描述(称为刚度或系数矩阵)。 单元有线、面或实体以及二维或三维的单 元等种类。
历史典故
早期 ANSYS是随计算机硬件而发展壮大的。ANSYS最早是在1970 年发布的,运行在价格为$1,000,000的CDC、由Univac和IBM 生产的计算机上,它们的处理能力远远落后于今天的PC机。一台 奔腾PC机在几分钟内可求解5000×5000的矩阵系统,而过去则需 要几天时间。
1
有限元分析常用术语
选定坐标系,计算各个节点坐标;
确定各个单元的形态和性态参数以及边界条件等。
1
有限元分析常用术语
2
有限元分析步骤
2.有限元分析基本术语与步骤
1. 连续体离散化
所示为将一悬臂梁建立有限元分析模型的例子。 该悬臂梁划分为许多三角形单元;三角形单元的三个顶 点都是节点。
悬臂梁及其有限元模型
1
有限元分析常用术语
.
4
2 节点 单元 有限元分析步骤
.
8
节点
单元
有限元分析常用术语
2.有限元分析基本术语与步骤
单元形函数(续)
遵循原则:
当选择了某种单元类型时,也就十分确定地选择 并接受该种单元类型所假定的单元形函数。 在选定单元类型并随之确定了形函数的情况下, 必须确保分析时有足够数量的单元和节点来精确描 述所要求解的问题。