【解析版】2020—2021年石家庄市栾城县初二下期末数学试卷
2023-2024学年河北省石家庄市栾城区八年级(下)期末数学试卷(含答案)

2023-2024学年河北省石家庄市栾城区八年级(下)期末数学试卷一、选择题:本题共12小题,每小题2分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.函数中y=x+1x−2自变量x的取值范围是( )A. x≠1B. x≥2C. x>0D. x>22.某公司10名职工3月份的工资如表所示,则这10名职工3月份工资的中位数是( )工资/元5000520054005600人数/人1342A. 5200元B. 5300元C. 5400元D. 5500元3.已知四边形ABCD是平行四边形,下列结论中不正确的是( )A. 当AD=BC时,它是菱形B. 当AC=BD时,它是矩形C. 当∠ABC=90°时,它是矩形D. 当AC⊥BD时,它是菱形4.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是( )A. 8B. 9C. 10D. 125.直线y=−x+1经过的象限是( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限6.用配方法解一元二次方程x2−8x+10=0配方后得到的方程是( )A. (x+8)2=54B. (x−8)2=54C. (x+4)2=6D. (x−4)2=67.一个多边形的内角和是900°,则这个多边形的边数是( )A. 4B. 5C. 6D. 78.某校诵读社招新时,设置应变能力、知识储备、朗读水平三个考核项目,综合成绩按照如图所示的比例确定.若小华三个项目的得分分别为90分,86分,92分,则小华的综合成绩为( )A. 89.4分B. 88.4分C. 91分D. 88分9.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为32米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A. y =2x−32B. y =−2x +32C. y =−12x +16D. y =12x−1610.小明用四根长度相等的木条制作了能够活动的菱形学具,他先活动学具成为图(1)所示的菱形,并测得∠B =60°,接着活动学具成为图(2)所示的正方形,并测得对角线AC =10 2,则图(1)中菱形的对角线BD 长为( )A. 10B. 20C. 10 2D. 10 311.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( )A. B. C. D.12.如图,一次函数y =−2x +6的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 分别作OA 和OB 的垂线,垂足为C ,D.当矩形OCPD 的面积为4时,点P 的坐标为( )A. (2,2)B. (12,5)C. (1,4)或(12,5)D. (1,4)或(2,2)二、填空题:本题共8小题,每小题3分,共24分。
河北省石家庄市—2020-2021学年数学八年级第二学期期末联考试题含解析

河北省石家庄市—2020-2021学年数学八年级第二学期期末联考试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.关于x 的一元二次方程210ax x -+=有实数根,则a 的最大整数值是( ) A .1B .0C .-1D .不能确定2.在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .a =9 b =41 c =40 B .a =b =5 c =52 C .a :b :c =3:4:5D .a =11 b =12 c =153.我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )A .180︒B .360︒C .540︒D .720︒4.如图,将△ABC 绕点A 旋转至△ADE 的位置,使点E 落在BC 边上,则对于结论:①DE =BC ;②∠EAC =∠DAB ;③EA 平分∠DEC ;④若DE ∥AC ,则∠DEB =60°;其中正确结论的个数是( )A .4B .3C .2D .15.如图,已知ABCD 中,90C ∠=︒,22AC BC ==,将ABC ∆绕点A 顺时针方向旋转60︒到AB C ''∆的位置,连接C B ',则C B '的长为( )A .2B .232-C .31-D .16.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件://AB CD ①;AB CD =②;OA OC =③;OB OD =④,从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .2种B .3种C .4种D .5种7.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1 B .2 C .3 D .4 8.已知二次函数的与的部分对应值如下表:-1 0 1 3-3131下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有( )A .1个B .2个C .3个D .1个9.一个多边形的内角和是1260°,这个多边形的边数是( ) A .6B .7C .8D .910.用配方法解方程2870,x x ++=配方正确的是( ) A .()249x +=B .()2857x +=C .()249x -=D .()2816x -=11.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A .16B .18C .20D .16或2012.如图,AC =BC ,AE =CD ,AE ⊥CE 于点E ,BD ⊥CD 于点D ,AE =7,BD =2,则DE 的长是( )A .7B .5C .3D .2二、填空题(每题4分,共24分) 13.若分式方程122x m x x -=--无解,则m 等于___________ 14.如图,正方形ABCD 的边长为8,点E 是BC 上的一点,连接AE 并延长交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点N 处,AN 的延长线交DC 于点M ,当AB =2CF 时,则NM 的长为_____.15.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:S 甲2_____S 乙2(填“>“或“<”)16.甲、乙两位选手各射击10次,成绩的平均数都是9.2环,方差分别是20.015S =甲,20.025S =乙,则____选手发挥更稳定.17.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.18.如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,若对角线AC 、BD 的长都是20cm ,则四边形EFGH 的周长是______.三、解答题(共78分)19.(8分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:x 时,甲乙两队①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当4所挖管道长度相同,不正确...的个数有()A.4个B.3个C.2个D.1个20.(8分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:购买量x(千克) 1.5 2 2.5 3付款金额y(元)7.5 10 12 b (1)写出a、b的值,a=b=;(2)求出当x>2时,y关于x的函数关系式;(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.21.(8分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.22.(10分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲84 80 88乙94 92 69丙81 84 78(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.23.(10分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,在扇形统计图中分数为7的圆心角度数为度.(2)补全条形统计图,各组得分的中位数是分,众数是分.(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?、两种玩具,其中A类玩具的金价比B玩具的24.(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了A B进价每个多3元.经调查发现:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.、的进价分别是每个多少元?(1)求A B、了两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元(2)该玩具店共购进A B出售,且全部售出后所获得的利润不少于1080元,则该淘宝专卖店至少购进A类玩具多少个?25.(12分)某港口P位于东西方向的海岸线上.在港口P北偏东25°方向上有一座小岛A,且距离港口20海里;在港口与小岛的东部海域上有一座灯塔B,△PAB恰好是等腰直角三角形,其中∠B是直角;(1)在图中补全图形,画出灯塔B的位置;(保留作图痕迹)(2)一艘货船C从港口P出发,以每小时15海里的速度,沿北偏西20°的方向航行,请求出1小时后该货船C与灯塔B的距离.26.如图,在平面直角坐标系中,直线:111l y x 62=-+分别与x 轴、y 轴交于点B C 、,且与直线:221l y x 2=交于A . (1)求出点A 的坐标(2)当12y y >时,直接写出x 的取值范围.(3)点D 在x 轴上,当△CDA 的周长最短时,求此时点D 的坐标(4)在平面内是否存在点Q ,使以O 、C 、A 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.参考答案一、选择题(每题4分,共48分) 1、C 【解析】 【分析】利用一元二次方程的定义和判别式的意义得到a ≠0且△=(﹣1)2﹣4a ≥0,求出a 的范围后对各选项进行判断. 【详解】解:根据题意得a ≠0且△=(﹣1)2﹣4a ≥0, 解得a ≤14且a ≠0, 所以a 的最大整数值是﹣1.故选:C . 【点睛】本题考查了一元二次方程的定义和根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 2、D 【解析】 【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形. 【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=()2,故能构成直角三角形;C 、因为32+42=52,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形; 故选:D . 【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形. 3、C 【解析】 【分析】根据多边形内角和公式(n-2)×180°即可求出结果. 【详解】解:黑色正五边形的内角和为:(5-2)×180°=540°, 故选:C . 【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式. 4、A 【解析】 【分析】由旋转的性质可知,△ABC ≌△ADE ,DE =BC ,可得①正确;∠CAE =∠CAB ﹣∠BAE ,∠DAB =∠DAE ﹣∠BAE ,可得∠EAC =∠DAB ,可判定②正确;AE =AC ,则∠AEC =∠C ,再由∠C =∠AED ,可得∠AEC =∠AED ;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED =60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.5、B【解析】【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:如图,连接BB′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB′C′, ∴AB=AB′,∠BAB′=60°, ∴△ABB′是等边三角形, ∴AB=BB′,在△ABC′和△B′BC′中,AB BB AC B C BC BC ''''⎧'⎪⎩'⎨⎪=== , ∴△ABC′≌△B′BC′(SSS ), ∴∠ABC′=∠B′BC′, 延长BC′交AB′于D , 则BD ⊥AB′,∵∠C=90°,22AC BC == ∴()()222222+=4,∴BD=3, C′D=2,∴BC′=BD -C′D=232-. 故选B . 【点睛】本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键. 6、C 【解析】 【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CD O,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CD O,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.7、B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x>1时,y<0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y随x的增大而减小,④不正确.故选:B【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数基本性质.8、B【解析】【分析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=03322+=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质9、D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.10、A【解析】【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:2870x x++=,287x x∴+=-,∴2816716++=-+,x x2∴+=.x(4)9∴故选:A.【点睛】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.11、C【解析】【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=1.故选C【点睛】本题考查了等腰三角形的性质及三角形三边关系,分情况分析师解题的关键.12、B【解析】【分析】首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.此题主要考查直角三角形的全等判定,熟练运用即可得解.二、填空题(每题4分,共24分)13、1【解析】【分析】先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.【详解】 解:122x m x x -=--, 去分母得:1x m -=,所以:1m x =-,因为:方程的增根是2x =,所以:此时1m =,故答案为:1.【点睛】本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.14、23【解析】【分析】先根据折叠的性质得∠EAB=∠EAN ,AN=AB=8,再根据正方形的性质得AB ∥CD ,则∠EAB=∠F ,所以∠EAN=∠F ,得到MA=MF ,设CM=x ,则AM=MF=4+x ,DM=DC-MC=8-x ,在Rt △ADM 中,根据勾股定理,解得x ,然后利用MN=AM-AN 求解即可.【详解】解:∵△ABE 沿直线AE 翻折,点B 落在点N 处,∴AN =AB =8,∠BAE =∠NAE ,∵正方形对边AB ∥CD ,∴∠BAE =∠F ,∴∠NAE =∠F ,∴AM =FM ,设CM =x ,∵AB =2CF =8,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=243,所以,AM=4+423=823,所以,NM=AM﹣AN=823﹣8=23.故答案为:23.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.15、<【解析】【分析】观察图形,根据甲、乙两名运动员成绩的离散程度的大小进行判断即可得..【详解】由图可得,甲这10次跳远成绩离散程度小,而乙这10次跳远成绩离散程度大,∴S甲2<S乙2,故答案为<.【点睛】本题考查了方差的运用,熟练运用离散程度的大小来确定方差的大小是解题的关键.16、甲【解析】【分析】根据方差越大波动越大越不稳定,作出判断即可.【详解】解:∵S甲2=0.015,S乙2=0.025,∴S乙2>S甲2,∴成绩最稳定的是甲.故答案为:甲.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、y=-2x-1.【解析】【分析】直接根据“上加下减”的平移规律求解即可.【详解】直线y=-2x+4向下平移5个单位长度后:y=-2x+4-5,即y=-2x-1.故答案为:y=-2x-1.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.18、40cm【解析】【分析】利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【详解】∵E,F,G,H,是四边形ABCD各边中点∴HG=12AC,EF=12AC,GF=HE=12BD∴四边形EFGH的周长是HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40(cm).故答案为40cm.【点睛】本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.三、解答题(共78分)19、D【解析】【分析】根据函数图像中数据一次计算出各小题,从而可以解答本题.【详解】①项,根据图象可得,甲队6天挖了600米,故甲队每天挖:600÷6=100(米),故①项正确.②项,根据图象可知,乙队前两天共挖了300米,到第6天挖了500米,所以在6-2=4天内一共挖了:200(米),故开挖两天后每天挖:200÷4=50(米),故②项正确.③项,根据图象可得,甲队完成任务时间是6天,乙队完成任务时间是:2+300÷50=8(天),故甲队比乙队提前8-6=2(天)完成任务,故③项错误;④项,根据①,当x=4时,甲队挖了:400(米),根据②,乙队挖了:300+2×50=400(米),所以甲、乙两队所挖管道长度相同,故④项正确.综上所述,不正确的有③,共1个.故本题正确答案为D.【点睛】本题考查的是函数图像,熟练掌握函数图像是解题的关键.20、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.【解析】【分析】(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.【详解】解:(1)由表格即可得出购买量是函数的自变量x,∵10÷2=5,∴a=5,b=2×5+5×0.8=1.故答案为:5,1;(2)设当x>2时,y关于x的函数解析式为y=kx+b,将点(2.5,12)、(3,1)代入y=kx+b中,得:,解得:,∴当x>2时,y关于x的函数解析式为y=4x+2.(3)∵18.8>10,4x+2=18.8x=4.2∴甲农户的购买量为:4.2(千克).答:甲农户的购买量为4.2千克.【点睛】本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.21、(1)证明见解析;(2)BP的值为7.【解析】【分析】(1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;(2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC,∵DF平分∠ADC,∴∠EDF=∠CDF,∴∠DFC=∠CDF,∴CD=CF,同理可得CD=DE,∴CF=DE,且CF∥DE,∴四边形CDEF为菱形;(2)解:如图,过P作PG⊥BC于G,∵AB =2,BC =3,∠A =120°,且四边形CDEF 为菱形,∴CF =EF =CD =AB =2,∠ECF =12∠BCD =12∠A =60°, ∴△CEF 为等边三角形,∴CE =CF =2,∴PC =12CE =1,∴CG =12PC =12,PG =, ∴BG =BC ﹣CG =3﹣12=52,在Rt △BPG 中,由勾股定理可得BP ,即BP .【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.22、(1)排名顺序为乙、甲、丙;(2)录用甲.【解析】【分析】(1)分别求出甲、乙、丙的平均数,然后进行比较即可;(2)由题意可知,只有乙不符合规定,甲:84×60%+80×30%+88×10%=83.2,丙:81×60%+84×30%+78×10%=81.6,所以录用甲.【详解】解:(1)848088843x ++==甲, 949269853x +-==乙, 818478813x ++==丙, ∴x x x >>乙甲丙,∴排名顺序为乙、甲、丙.(2)由题意可知,只有乙不符合规定, ∵8460%8030%8810%83.2x =⨯+⨯+⨯=甲,8160%8430%7810%81.6x=⨯+⨯+⨯=丙,∵83.281.6>∴录用甲.【点睛】本题考查了平均数与加权平均数,熟练运用平均数与加权平均数公式是解题的关键.23、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.【解析】【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】(1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),m%=520×100%=25%,320×360°=54°,故答案为:25,54;(2)8分这一组的组数为5,如图所示:各组得分的中位数是12(7+6)=6.5,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,220×120=12(组),∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.24、(1)A 的进价是18元,B 的进价是15元;(2)至少购进A 类玩具40个.【解析】【分析】(1)设B 的进价为x 元,则A 的进价为()3x +元,根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设A 玩具a 个,则B 玩具()100a -个,结合“玩具点将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答.【详解】解:(1)设B 的进价为x 元,则A 的进价为()3x +元 由题意得9007503x x=+, 解得15x =,经检验15x =是原方程的解.所以15318+=(元)答:A 的进价是18元,B 的进价是15元;(2)设A 玩具a 个,则B 玩具()100a -个由题意得:()12101001080a a +-≥解得40a ≥.答:至少购进A 类玩具40个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.25、(1)如图,点B 即为所求见解析;(2)出发1小时后,货船C 与灯塔B 的距离为海里.【解析】【分析】(1)轨迹题意画出图形即可;(2)首先证明∠CPB =90°,求出PB 、PC 利用勾股定理即可解决问题;【详解】(1)如图,点B 即为所求(2)如图,∠CPN =20°,∠NPA =25°,∠APB =45°,∠CPB =90°在Rt △ABP 中,∵AP =20,BA =BP ,∴PB =2在Rt △PCB 中,由勾股定理得,CB 22PC PB +2215(102)+17,∴出发1小时后,货船C 与灯塔B 的距离为17【点睛】此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26、(1)(6,3);(2)6x <;(3)(0,0);(4)(6,9)或(6,-3)或(-6,3).【解析】【分析】(1)直接联立两直线解析式,即可得到点A 的坐标;(2)直接在图象上找到12y y >时,x 的取值范围;(3)过点A 作AE OB ⊥交点为E 即可得出点D 与点O 重合的时候,△CDA 的周长最短,即可得出点D 的坐标; (4)分三种情况考虑:当四边形OAQ1C 为平行四边形时;当四边形OQ2AC 为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q 的坐标即可.【详解】(1)联立两直线解析式可得16212y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得:63x y =⎧⎨=⎩∴点A 的坐标为(6,3)(2)由点A (6,3)及图象知,当12y y >时,6x <(3)过点A 作AE OB ⊥交点为E ,由图可知点B 关于直线AE 的对称点为点O∴AO AB =∴当点D 与点O 重合的时候,△CDA 的周长最短即为CO+BC=6+65此时点D 的坐标为(0,0)(4)存在点Q ,使以O 、C 、A 、Q 为顶点的四边形是平行四边形如图所示,分三种情况考虑:当四边形OAQ1C 为平行四边形时,点Q1的横坐标为6,纵坐标为点C 的纵坐标+3=9∴Q1的坐标为(6,9)当四边形OQ2AC 为平行四边形时,点Q2的横坐标为6,纵坐标为点A 的纵坐标-6=-3∴Q2的坐标为(6,-3)当四边形OACQ3为平行四边形时,点Q3关于OC 的对称点为点AQ3的坐标为(-6,3)综上点Q的坐标为:(6,9)或(6,-3)或-6,3).【点睛】本题考查了一次函数的性质,平行四边形的性质,轴对称的性质,解题的重点是要熟练掌握各自的性质.。
2020-2021石家庄市八年级数学下期末试题(含答案)

2020-2021石家庄市八年级数学下期末试题(含答案)一、选择题1.若63n是整数,则正整数n的最小值是()A.4B.5C.6D.72.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是()A.矩形B.菱形C.正方形D.平行四边形3.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元4.计算4133的结果为().A.32B.23C.2D.25.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大6.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m27.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A .10B .89C .8D .41 8.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或7 10.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .11.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.14.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.15.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.16.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________. 17.如图所示,已知ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC 中,能说明ABCD 是矩形的有______________(填写序号)18.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.19.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠.(1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是否为从村庄C 到河边的最近路?(即问:CH 与AB 是否垂直?)请通过计算加以说明;(2)求原来的路线AC 的长.24.如图,已知四边形ABCD 是平行四边形,点E ,F 分别是AB ,BC 上的点,AE =CF ,并且∠AED =∠CF D .求证:(1)△AED ≌△CFD ;(2)四边形ABCD 是菱形.25.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).4.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式414342 333÷=⨯==.故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 6.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.7.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.8.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.9.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k <0,∴一次函数y=kx-k 的图象经过一、三、四象限;故选:B .【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k ≠0)中k ,b 的符号与图象所经过的象限如下:当k >0,b >0时,图象过一、二、三象限;当k >0,b <0时,图象过一、三、四象限;k <0,b >0时,图象过一、二、四象限;k <0,b <0时,图象过二、三、四象限.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因DE 为AC 边的中垂线,可得DE ⊥AC ,AE=CE=4,所以DE 为三角形ABC 的中位线,即可得DE=12BC =3,再根据勾股定理求出CD=5,故答案选D. 考点:勾股定理及逆定理;中位线定理;中垂线的性质. 二、填空题13.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等.14.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+解析:404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+即该船行驶的速度为404033+海里/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.15.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴AC=224-=AB BC∴AC+BC=3+4=7米.故答案是:7.16.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.17.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.18.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点19.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=C D②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.20.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt △ABC 中,∠A=30°,BC=2m ,∠C=90°,∴AB=2BC=4m ,∴2223AB BC -=m ,∴3(m ).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥根据勾股定理,得12AE == (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.23.(1)CH 是从村庄C 到河边的最近路,理由见解析;(2)原来的路线AC 的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB 中,∵CH 2+BH 2=(2.4)2+(1.8)2=9BC 2=9∴CH 2+BH 2=BC 2∴CH ⊥AB ,所以CH 是从村庄C 到河边的最近路(2)设AC =x在Rt △ACH 中,由已知得AC =x ,AH =x ﹣1.8,CH =2.4由勾股定理得:AC 2=AH 2+CH 2∴x 2=(x ﹣1.8)2+(2.4)2解这个方程,得x =2.5,答:原来的路线AC 的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.24.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.25.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。
2020-2021学年河北省石家庄市栾城区八年级(下)期末数学试卷

2020-2021学年河北省石家庄市栾城区八年级(下)期末数学试卷一、选择题(本大题共12小题,共24.0分)1.如图,五角星盖住的点的坐标可能为()A. (3,2)B. (−3,2)C. (−3,−2)D. (3,−2)2.下列判断不正确的是()A. 四个角相等的四边形是矩形B. 对角线垂直的四边形是菱形C. 对角线相等的平行四边形是矩形D. 对角线垂直的平行四边形是菱形3.如图,平行四边形ABCD的周长为36,对角线AC、BD相较于点O,点E是CD的中点,BD=12,则△DOE的周长为()A. 12B. 15C. 18D. 214.在平面直角坐标系中,函数y=−x+1的图象经过()A. 第一,二,三象限B. 第二,三,四象限C. 第一,三,四象限D. 第一,二,四象限5.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A. 此次调查属于全面调查B. 1000名学生是总体C. 样本容量是80D. 被抽取的每一名学生称为个体6.已知点P(x,y)在第四象限,且点P到x轴,y轴的距离分别为2,5.则点P的坐标为()A. (5,−2)B. (−2,5)C. (2,−5)D. (−5,2)7.如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A. 135°B. 140°C. 144°D. 150°8.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A. 3个B. 4个C. 1个D. 2个9.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(ℎ)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5ℎ;②快车速度比慢车速度多20km/ℎ;③图中a=340;④快车先到达目的地.其中正确的是()A. ①③B. ②③C. ②④D. ①④10.如图所示,▱ABCD的周长是20cm,对角线AC于BD交于点O,AB⊥AC,E是BC的中点,△AOD的周长比△AOB的周长多2cm,则AE的长度为()A. 3cmB. 4cmC. 5cmD. 8cm11.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A. k<0B. b=−1C. y随x的增大而减小D. 当x>2时,kx+b<012.如图所示,在矩形ABCD中,AB=4,AD=8,将矩形沿BD折叠,点A落在点E处,DE与BC交于点F,则重叠部分△BDF的面积是()A. 20B. 16C. 12D. 10二、填空题(本大题共8小题,共24.0分)13.函数y=1自变量的取值范围是______ .√x+914.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(−1,1),则“马”位于点______ .15.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序______.(只填序号)x时,x的取值范围为16.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13______.17.已知菱形ABCD的周长为20cm,且相邻两内角之比是1:2,则菱形的面积是______ .18.如图(1)是两圆柱形联通容器(联通处体积忽略不计),向甲容器匀速注水,甲容器的水面高度ℎ(cm)随时间t(分)之间的函数关系如图(2)所示,根据提供的图象信息,若甲容器的底面半径为1cm,则乙容器的底面半径为______cm.19.(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF的延长线与边DE的延长线交于点M,则∠M的大小为______ .20.如图,点A(1,0),点A第一次跳动到点A1(−1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(−2,2),第四次向右跳动5个单位至点A4(3,2),…依此规律跳动下去,点A第2021次跳动至点A2021的坐标是______ .三、解答题(本大题共5小题,共52.0分)21.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B(−2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1B1C1分别是点A,B,C移动后的对应点)请画出三角形A1B1C1;并判断线段AC与位置与A1C1数量关系.22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?23.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是______.(2)补全频数分布直方图,并求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定位每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?24.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.x−1与直线y=−2x+2相交于点P,并分别与x轴相交于25.如图,在平面直角坐标系中,直线y=−12点A、B.(1)求交点P的坐标;(2)求△PAB的面积;x−1上方的部分描黑加粗,并写出此时自变量x的取(3)请把图象中直线y=−2x+2在直线y=−12值范围.答案和解析1.【答案】D【解析】解:A、(3,2)在第一象限,故本选项不合题意;B、(−3,2)在第二象限,故本选项不合题意;C、(−3,−2)在第三象限,故本选项不合题意;D、(3,−2)在第四象限,故本选项符合题意;故选:D.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2.【答案】B【解析】解:A、四个角相等的四边形是矩形,正确;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的平行四边形是矩形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选B.分别利用矩形、菱形的判定定理分别判断后即可确定正确的选项.本题考查了矩形的判定、菱形的判定定理,解题的关键是分别熟知两个图形的判定方法,难度不大.3.【答案】B【解析】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=1BD=6.2又∵点E是CD的中点,1∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选B.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.4.【答案】D【解析】解:∵y=−x+1,∴k<0,b>0,故直线经过第一、二、四象限.故选:D.由直线的解析式得到k<0,b>0,利用一次函数的性质即可确定直线经过的象限.此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.5.【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题主要考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.【解答】B、1000名学生的视力情况是总体,故本选项不合题意;C、样本容量是80,正确;D、被抽取的每一名学生的视力情况称为个体.故本选项不合题意.故选:C.6.【答案】A【解析】解:点P(x,y)点在第四象限,且点P到x轴、y轴的距离分别为2、5,则点P的坐标为(5,−2),故选:A.根据第四象限点的坐标符号和点P到x轴、y轴的距离可得答案.此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.7.【答案】B【解析】解:该正九边形内角和=180°×(9−2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.先根据多边形内角和定理:180°⋅(n−2)求出该多边形的内角和,再求出每一个内角的度数.本题主要考查了多边形的内角和定理:180°⋅(n−2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.8.【答案】A【解析】【分析】本题考查正方形、菱形、矩形的判定,解答本题的关键是明确它们的判定的定理.根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【解答】解:∵四边形ABCD是平行四边形,∴当AB=BC时,它是菱形,故①正确,当AC⊥BD时,它是菱形,故②正确,当∠ABC=90°时,它是矩形,故③正确,当AC=BD时,它是矩形,故④错误,故选:A.9.【答案】B【解析】解:根据题意可知,两车的速度和为:360÷2=180(km/ℎ),相遇后慢车停留了0.5ℎ,快车停留了1.6ℎ,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6−2.5)=80(km/ℎ),则快车的速度为100km/ℎ,所以快车速度比慢车速度多20km/ℎ;故②结论正确;88+180×(5−3.6)=340(km),所以图中a=340,故③结论正确;(360−2×80)÷80=2.5(ℎ),5−2.5=2.5(ℎ),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.根据题意可知两车出发2小时后相遇,据此可知他们的速度和为180(km/ℎ),相遇后慢车停留了0.5ℎ,快车停留了1.6ℎ,此时两车距离为88km,据此可得慢车的速度为80km/ℎ,进而得出快车的速度为100km/ℎ,根据“路程和=速度和×时间”即可求出a的值,从而判断出谁先到达目的地.本题考查了一次函数的应用,行程问题中数量关系的运用,函数图象的意义的运用,解答时读懂函数图象,从图象中获取有用信息是解题的关键.10.【答案】A【解析】解:∵▱ABCD的周长为20cm,∴AB+AD=10cm,OB=OD,∵△AOD的周长比△AOB的周长多2cm,∴(OA+OD+AD)−(OA+OB+AB)=AD−AB=2cm,∴AD=6cm,AB=4m.∴BC=AD=6cm.∵AC⊥AB,E是BC中点,∴AE=1BC=3cm;2故选:A.由▱ABCD的周长为20cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多2cm,可得AB+ AD=10cm,AD−AB=2cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.11.【答案】B【解析】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,−1),故b=−1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.直接利用一次函数的性质结合函数图象上点的坐标特点得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.12.【答案】D【解析】解:∵折叠∴∠ADB=∠BDE,BE=AB=4∵四边形ABCD是矩形∴AD//BC,AD=BC=8,CD=AB=4∴∠ADB=∠DBC∴∠BDE=∠DBC∴BF=DF在Rt△DFC中,DF2=FC2+CD2∴DF2=(8−DF)2+16∴DF=5∴S△BDF=12DF×BE=10故选:D.由折叠可得∠ADB=∠BDE,由题意可证∠ADB=∠DBC,则可得∠BDE=∠DBC即DF=BF,在Rt△DFC 中,根据勾股定理可列方程,解得DF的长度,即可求△BDF的面积.本题考查了折叠问题,矩形的性质,关键是根据勾股定理列出方程.13.【答案】x>−9【解析】解:由题意得:x+9>0,解得,x>−9,故答案为:x>−9.根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式即可.本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.14.【答案】(4,−2)【解析】解:建立平面直角坐标系如图所示,“马”位于点(4,−2).故答案为:(4,−2).根据炮的坐标建立平面直角坐标系,然后写出马的坐标即可.本题考查了坐标确定位置,准确确定出坐标原点的位置是解题的关键.15.【答案】③④②①【解析】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.根据调查的一般步骤,得出结论.本题考查了调查收集数据的过程与方法,掌握调查的一般步骤是解决本题的关键.16.【答案】x>3【解析】解:∵正比例函数y=13x也经过点A,∴kx+b<13x的解集为x>3,故答案为:x>3.根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=13x也经过点A从而确定不等式的解集.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.17.【答案】25√32cm2【解析】解:如图,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=12AC,OB=12BD,AD//BC,∴∠AOB=90°,∠BAD+∠ABC=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠ABO=12∠ABC=30°,∴OA=12AB,∵菱形ABCD的周长为20cm,∴AB=BC=CD=DA=5cm,∴OA=52cm,∴AC=2OA=5cm,OB=√3OA=5√32cm,∴BD=2OB=5√3cm,∴菱形ABCD的面积=12AC⋅BD=12×5×5√3=25√32(cm2).故答案为:25√32cm2.由菱形的性质得出AB=BC=CD=DA,AC⊥BD,OA=12AC,OB=12BD,AD//BC,由已知条件得出∠ABO=12∠ABC=30°,AB=5cm,由含30°角的直角三角形的性质得出OA=12AB,求出AC、BD,菱形ABCD的面积=12AC⋅BD,即可得出结果.本题考查了菱形的性质,含30°角的直角三角形的性质,菱形面积的计算方法;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.18.【答案】2【解析】解:观察函数图象可知:乙容器底面积为甲容器底面积的4倍,∴乙容器底面半径为2cm.故答案为:2由注满相同高度的水乙容器所需的时间为甲容器的4倍,结合甲容器的底面半径即可求出乙容器的底面半径,此题得解.本题考查了函数的图象,根据注满相同高度的水乙容器所需的时间为甲容器的4倍求出两容器的地面半径之比是解题的关键.19.【答案】22.5°【解析】解:∵八边形ABCDEFGH是正八边形,∴∠DEF=(8−2)×180°÷8=135°,∴∠FEM=45°,∴∠DEF=∠EFG,∵BF平分∠EFG,∴∠EFB=∠BFG=12∠EFG=67.5°,∵∠BFE=∠FEM+∠M,∴∠M=∠BFE−∠FEM,∴∠M=22.5°.故答案为:22.5°.根据正求出多边形的内角和公式∠DEF,根据等腰三角形的性质、三角形内角和定理求出∠BFE,计算即可.本题考查的是正多边形和圆的有关计算,掌握正多边形的内角的求法是解题的关键.20.【答案】(−1011,1011)【解析】解:因为A1(−1,1),A2(2,1),A3(−2,2),A4(3,2),A5(−3,3),A6(4,3),A7(−4,4),A8(5,4),…A2n−1(−n,n),A2n(n+1,n)(n为正整数),所以2n−1=2021,∴n=1011,所以A2021(−1011,1011),故答案为(−1011,1011).根据点的坐标、坐标的平移寻找规律即可求解.本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.21.【答案】解:(1)如图,△ABC即为所求.(2)如图所示,A1B1C1即为所求,AC与A1C1相等.【解析】(1)根据A,B,C的坐标画出图形即可.(2)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可,利用平移变换的性质判定AC与A1C1数量关系即可.本题考查作图−平移变换,解题的关键是正确作出△ABC,理解平移变换的性质.22.【答案】解:(1)由图可得农民自带的零钱为50元.(2)(410−50)÷100=360÷100=3.6(元/千克).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530−410)÷(3.6−1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530−160×2.1−50=144(元).答:李大爷一共赚了144元钱.【解析】(1)图象与y轴的交点就是李大爷自带的零钱.(2)根据销售单价=销售额÷销售量,可计算销售单价.(3)计算出降价后卖出的量+未降价卖出的量=总共的黄瓜.(4)赚的钱=总收入−批发黄瓜用的钱.此题主要考查了函数图象,以及利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.23.【答案】(1)100;(2)用水15~20吨的户数:100−10−36−24−8=22(户)∴补充图如下:=79.2°“15吨~20吨”部分的圆心角的度数=360°×22100答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°.=4.08(万户)(3)6×10+22+36100答:该地区6万用户中约有4.08万用户的用水全部享受基本价格.【解析】解:(1)∵10÷10%=100(户)∴样本容量是100,故答案为:100;(2)见答案;(3)见答案.【分析】(1)根据10~15吨部分的用户数和百分比进行计算;(2)先根据频数分布直方图中的数据,求得“15吨~20吨”部分的用户数,再画图,最后根据该部分的用户数计算圆心角的度数;(3)根据用水25吨以内的用户数的占比,求得该地区6万用户中用水全部享受基本价格的户数.本题主要考查了频数分布直方图和扇形统计图,解决问题的关键是在图中获取相关的数据进行计算求解.注意:扇形圆心角的度数=360°×该部分在总数中的百分比,扇形统计图可以更清楚的了解各部分数量同总数之间的关系.此外,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.24.【答案】证明:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠EAO=∠FCO,∵AC的中点是O,∴OA=OC,在△EOA和△FOC中,{∠AOE=∠COF AO=CO∠EAO=∠FCO,∴△EOA≌△FOC(ASA),∴OE=OF;(2)∵OE=OF,AO=CO,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.【解析】(1)根据矩形的性质得出AD//BC,求出∠EAO=∠FCO,根据全等三角形的判定推出△EOA≌△FOC 即可;(2)根据平行四边形的判定得出四边形AFCE是平行四边形,再根据菱形的判定得出即可.本题考查了矩形的性质,平行线的性质,全等三角形的性质和判定,菱形的判定和平行四边形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.【答案】解:(1)由{y=−12x−1y=−2x+2,解得{x=2y=−2,∴P(2,−2);(2)直线y=−12x−1与直线y=−2x+2中,令y=0,则−12x−1=0,−2x+2=0,解得x=−2与x=1,∴A(−2,0),B(1,0),∴AB=3,∴S△PAB=12AB⋅|y P|=12×3×2=3;(3)如图所示:自变量x的取值范围是x<2.【解析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.第21页,共21页。
2021届石家庄市重点中学八下数学期末教学质量检测试题含解析

2021届石家庄市重点中学八下数学期末教学质量检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( )A .3±B .3C .3-D .无法确定2.下列函数中,自变量x 的取值范围是x≥2的是()A . 2y x =-B . 2y x =- C .2 4 y x =- D . 22y x x =+⋅- 3.六边形的内角和是( )A .540°B .720°C .900°D .360°4.某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10D .9 5.下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是( )A .①②③B .②③C .③④D .②④6.下面四张扑克牌其中是中心对称的是( )A .B .C .D .7.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 28.在平面直角坐标系中,把直线y =2x 向左平移1个单位长度,平移后的直线解析式是( )A .y =2x +1B .y =2x ﹣1C .y =2x +2D .y =2x ﹣29.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定10.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过 程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致 是( )A .B .C .D .二、填空题(每小题3分,共24分)11.如图,在五边形ABCDE 中,330A E D ∠+∠+∠=︒,ABC ∠和BCD ∠的平分线交于点O ,则BOC ∠的度数为__________°.12.如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过点C ,且l ∥AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = .13.函数y =1x +的自变量x 的取值范围为____________. 14.如图,AB ∥CD ∥EF ,若AE=3CE ,DF=2,则BD 的长为________.15.若a 56,65b =+=-,则a 与b 的大小关系为a_____b(填“>”、“<”或“=”) 16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC =4,BD =7,CD =3,则△ABO 周长是__.17.如图,在矩形中,的平分线交于点, 于点,连接并延长交于点,连接交于点,下列结论: ①;②;③;④;⑤,其中正确的有__________(只填序号).18.已知一次函数y =kx +3k +5的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为_____三、解答题(共66分)19.(10分)在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.(6分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.21.(6分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.(1)求点的坐标;(2)求出的面积;(3)当的值最小时,求此时点的坐标;22.(8分)已知直线y=kx+b(k≠0)过点(1,2)(1)填空:b= (用含k代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC 的面积为2,求k值;(3)当1≤x≤3,函数值y总大于零,求k取值范围.23.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的小正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A,B,C三点的坐标分别为(5,﹣1),(2,﹣5),(2,﹣1).(1)把△ABC向上平移6个单位后得到△A1B1C1,画出△A1B1C1;(2)画出△A2B2C2,使它与△ABC关于y轴对称;(3)画出△A3B3C3,使它与△ABC关于原点中心对称.24.(8分)已知向量a→、b→求作:2a b-.25.(10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S=甲,数据:11,15,18,17,10,19的方差2353S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.26.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且CE=CF.(1)求证:BE=DF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?参考答案一、选择题(每小题3分,共30分)1、C【解析】【分析】根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2、D【解析】【分析】根据分式与二次根式有意义的条件依次分析四个选项,比较哪个选项符合条件,可得答案.【详解】解:A、2-x≥0,解得x≤2;B、x-2>0,解得x>2;C、有意义,∴4-x2≥0,解得-2≤x≤2;D、x+2≥0且x-2≥0,解得x≥2;分析可得D符合条件;故选:D.【点睛】本题考查函数自变量的取值问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.4、C【解析】【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案. 【详解】设内角为x,则相邻的外角为14x,由题意得,14x +x=180°,解得,x=144°,360°÷36°=10故选:C.【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.5、C【解析】【分析】根据矩形和菱形的判定定理进行判断.【详解】解:对角线互相垂直平分的四边形是菱形,①错误,④正确;两组对边平行,一组邻边相等的四边形是菱形,②错误;对角线相等的平行四边形是矩形,③正确;∴正确的是③④,故选:C.【点睛】本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.6、B【解析】【分析】根据中心对称图形的概念即可求解【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.7、C【解析】【分析】【详解】解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,∴AC∥AC1,B1C=12B1C1,∴△B1DC∽△B1A1C1,∵△B1DC与△B1A1C1的面积比为1:4,∴四边形A 1DCC 1的面积是△ABC 的面积的34, ∴四边形A 1DCC 1的面积是:320154⨯=cm 2, 故选C8、C【解析】 试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x 向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.9、C【解析】【分析】求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-.故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.10、B【解析】【分析】不妨设BC=2a ,∠B=∠C=α,BM=x ,则CN=a-x ,根据二次函数即可解决问题.【详解】不妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a −x ,则有S 阴=y=12⋅x ⋅x tan α+12(a −x )⋅(a −x )tan α =12tan α(m 2+a 2−2ax +x 2)=12tan α(2x 2−2ax +a 2) ∴S 阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.二、填空题(每小题3分,共24分)11、75【解析】【分析】先根据五边形的内角和公式及330A E D ∠+∠+∠=︒求出∠ABC+∠BCD 的度数,再利用角平分线的定义求出∠OBC+∠OCB 的值,然后利用三角形内角和公式即可求出∠BOC 的值.【详解】∵330A E D ∠+∠+∠=︒,∴∠ABC+∠BCD=540°-330°=210°.∵ ABC ∠和BCD ∠的平分线交于点O ,∴∠OBC+∠OCB=12(∠ABC+∠BCD )=12×210°=105°, ∴∠BOC=180°-105°=75°.故答案为:75.【点睛】本题考查了多边形的内角和公式,角平分线的定义,熟练掌握多边形的内角和公式(n-2) ×180°是解答本题的关键.12、6.1或2【解析】分类讨论:(1)当∠PCA =90°时,不成立;(2)∵Rt △ABC 中,AC =8,BC =6,∴AB =2,当∠APC =90°时,∵∠PCA =∠CAB ,∠APC =∠ACB ,∴△CPA∽△ACB,∴ACAB=PCAC,∴810=8PC,∴PC=6.1.(3)当∠CAP=90°时,∵∠ACB=∠CAP=90°,∠PCA=∠CAB,∴△PCA∽△BAC,∴PCAB=CAAC,∴PC=AB=2.故答案为:6.1或2.点睛:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应分类讨论;(2)或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式表示各边的长度,之后利用相似列方程求解.13、x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.14、1【解析】【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵AB∥CD∥EF,AC BD=,2BD =.解得,BD=1,故答案为:1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15、=【解析】【分析】 先对b =进行分母有理化,然后与a 比较即可. 【详解】解:b a ====,即a=b ,所以答案为=. 【点睛】本题考查含二次根式的式子大小比较,关键是对进行b =分母有理化. 16、8.1.【解析】 【分析】直接利用平行四边形的性质得出AO =CO =2,BO =DO =72,DC =AB =3,进而得出答案. 【详解】∵四边形ABCD 是平行四边形,∴AO =CO ,BO =DO ,AB =CD =3,∵AC =4,BD =7,∴AO =2,OB =72, ∴△ABO 的周长=AO +OB +AB =2+72+3=8.1. 故答案为:8.1.【点睛】此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO +BO 的值是解题关键.17、①②③④【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF =BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,∵∠BAE=∠DAE,∠ABE=∠AHD=90°,AE=AD,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,∵∠EBH=∠OHD=22.5°,BE=DH,∠AEB=∠HDF=45°,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④.故答案为:①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.18、-2【解析】【分析】【详解】由已知得:350 {kk+><,解得:-53<k<2.∵k为整数,∴k=-2.故答案为:-2.【点睛】本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.三、解答题(共66分)19、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.20、(1) 2;(2) 33【解析】分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H. 由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.详解:(1)AD∥BC,AE∥CD,∴四边形AFCD是平行四边形∴AD=CF∵AF平分∠BAD∴∠BAF=∠DAF∵AD∥BC∴∠DAF=∠AFB∴∠BAF=∠AFB∴AB=BF∵AB=3,BC=5∴BF=3∴FC=5-3=2∴AD=2.(2)如图,过点B作BH⊥AF交AF于H由(1)得:四边形AFCD为平行四边形且AB=BF=3,∵∠C=30°∴∠HFB=30°∴BF=2BH∵BF=3 ∴BH=32 ∴FH=223927333()9244-=-==, ∴AF=2×332=33 ∴CD=33.点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.21、 (1)点;(2);(3)点.【解析】【分析】(1)联立两直线解析式组成方程组,解得即可得出结论;(2)将代入,求出OB 的长,再利用 (1)中的结论点,即可求出的面积;(3)先确定出点A 关于y 轴的对称点A',即可求出PA+PC 的最小值,再用待定系数法求出直线A'C 的解析式即可得出点P 坐标.【详解】解:(1)∵直线l 1:y=x+3与直线l 2:y=-3x 相交于C ,∴解得:∴点;(2) ∵把代入,解得:,∴,又∵点,∴;(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),连接CA'交y轴于点P,此时,PC+PA最小,最小值为CA'=,由(1)知,,∵A'(3,0),∴直线A'C的解析式为,∴点.【点睛】问题是解本题的关键.22、(1)2﹣k;(2)k=±2;(3)当k>1或﹣1<k<1时,函数值y总大于1.【解析】(1)∵直线y=kx+b(k≠1)过点(1,2),∴k+b=2,∴b=2﹣k.故答案为2﹣k;(2)由(1)可得y=kx+2﹣k,向下平移2个单位所得直线的解析式为y=kx﹣k,令x=1,得y=﹣k,令y=1,得x=1,∴A(1,1),B(1,﹣k),∵C(1+k,1),∴AC=|1+k﹣1|=|k|,∴S△ABC=AC•|y B|=|k|•|﹣k|=k2,∴k2=2,解得k=±2;(3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于1.分两种情况:ⅰ)当k>1时,y随x增大而增大,∴当x=1时,y有最小值,最小值为k+2﹣k=2>1,∴当 k>1时,函数值总大于1;ⅱ)当k<1时,y随x增大而减小,∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,由2k+2>1得k>﹣1,∴﹣1<k<1.综上,当k>1或﹣1<k<1时,函数值y总大于1.23、(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)直接利用旋转的性质得出对应点位置进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A3B3C3,即为所求.【点睛】此题主要考查了平移变换以及轴对称变换和旋转变换,正确得出对应点位置是解题关键.24、见解析【解析】【分析】在平面内任取一点O,分别作出OC a=,利用向量运算的平行四边形法则即可得到答案.=,2OB b【详解】解:在平面内任取一点O,作OA AB b==,作OC a=,则2=-即为所求.如下图.BC a b【点睛】已知基底求作向量,就是先取平面上任意一点,先分别作出与基底共线的向量,再利用向量加法的平行四边形法则作出和向量.15cm ,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm (原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.26、(1)证明见解析;(2)成立,理由见解析.【解析】【分析】(1)由CE=CF ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出BE=DF ;(2)由△CEB ≌△CFD 得,∠BCE=∠DCF ,又∠GCE=45°,可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,可证出GE=BE+GD 成立.【详解】(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA=90°,∵F 是AD 延长线上一点,∴∠CDF=180˚-∠CDA=90°.在Rt △CBE 和Rt △CDF 中,CE CF BC CD =⎧⎨=⎩, ∴Rt △CBE ≌Rt △CDF (HL ),∴BE=DF .(2)成立,理由如下:∵△CBE ≌△CDF ,∴∠BCE=∠DCF.又∵∠BCD=∠BCE+∠DCE=90°,∴∠ECF=∠DCF+∠DCE=90°.∵∠GCE=45°,∴∠GCF=∠ECF-∠GCE=45°.在△ECG 和△FCG 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△ECG ≌△FCG (SAS ),∴GE=GF=DF+DG .又∵BE=DF ,∴GE=BE+DG .【点睛】本题主要考查了正方形的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.。
河北省石家庄市2020年初二下期末综合测试数学试题含解析

14.若关于 的一元二次方程 的一个根是 ,则 的值是_______.
15.在▱ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为_____.
16.对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=−x 均是“闭函数”. 已知 yax2bxc(a0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.
参考答案
一、选择题(每题只有一个答案正确)
1.C
【解析】
试题分析:把方程的解代入方程,可以求出字母系数a的值.
∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
河北省石家庄市2020年初二下期末综合测试数学试题
一、选择题(每题只有一个答案正确)
1.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为( )
A.0B.﹣1C.1D.2
2.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )
A.2cmB.4cmC.6cmD.8cm
3.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()
(1)直接写出点F的坐标(用m表示);
(2)求证:OF⊥AC;
(3)如图(2),若m=2,点G的坐标为(- ,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;
①求k的取值范围;
②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.
2020年石家庄市名校初二下期末达标测试数学试题含解析
2020年石家庄市名校初二下期末达标测试数学试题一、选择题(每题只有一个答案正确)1.如图,在ABCD 中,50C ︒∠=,55BDC ︒∠=,则ADB ∠的度数是( )A .105︒B .75︒C .35︒D .15︒2.下列方程中是关于x 的一元二次方程的是( )A .221 0x x +=B .20ax bx c ++=C .223 2 53x x x --=D . 1 2()()1x x -+=3.关于x 的分式方程522x m x x -=++有增根,则m 的值为( ) A .0 B .5- C .2- D .7-4.如图,已知四边形ABCD 是边长为4的正方形,E 为AB 的中点,将△ADE 绕点D 沿逆时针方向旋转后得到△DCF ,连接EF ,则EF 的长为( )A .23B .25C .26D .2105.如图,在△ABC 中,点D 、E 、F 分别在BC 、AB 、CA 上,且DE ∥CA ,DF ∥BA ,则下列三种说法:(1)如果∠BAC=90°,那么四边形AEDF 是矩形(2)如果AD 平分∠BAC ,那么四边形AEDF 是菱形(3)如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形 .其中正确的有 ( )A .3个B .2个C .1个D .0个6.如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则CDF ∠等于( )A .80︒B .70︒C .65︒D .60︒7.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .8.已知正比例函数y=kx (k<0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( ).A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<09.如图,在矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使DA 与对角线DB 重合,点A 落在点A′处,折痕为DG ,则A′G 的长是()A .1B .43C .32D .2 10.关于函数5y x =-,下列说法正确的是( ) A .自变量x 的取值范围是5x ≥ B .5x =时, 函数y 的值是0C .当5x >时,函数y 的值大于0D .A 、B 、C 都不对 二、填空题11.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动______米.12.已知P 1(-4,y 1)、P 2(1,y 2)是一次函数y=-3x+1图象上的两个点,则y 1_______y 2(填>,<或=) 13.如图,在平面直角坐标系中,点A 为()6,0,点C 是第一象限上一点,以OA ,OC 为邻边作▱OABC ,反比例函数1kyx=的图象经过点C和AB的中点D,反比例函数2kyx=图象经过点B,则21kk的值为______.14.若一次函数2y kx k=++的图象不.经过第一象限,则k的取值范围为_______.15.27的立方根为.16.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____ 17.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.三、解答题18.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?19.(6分)(1)解不等式,并把解集表示在数轴上242xx+>-(2)解分式方程:x21x1x-=-20.(6分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.21.(6分)甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.22.(8分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.23.(8分)已知:如图在菱形ABCD中,AB=4,∠DAB=30°,点E是AD的中点,点M是的一个动点(不与点A重合),连接ME并廷长交CD的延长线于点N连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)当AM为何值时,四边形AMDN是矩形并说明理由.24.(10分)在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=5,b=10,求c的值;(2)若c=54,b=1,求a的值.25.(10分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】由三角形内角和得到∠CBD 的度数,由AD ∥BC 即可得到答案.【详解】解:∵50C ︒∠=,55BDC ︒∠=,∴∠CBD=180°-50°-55°=75°,在ABCD 中,AD ∥BC ,∴∠ADB=∠CBD=75°.故选择:B.【点睛】本题考查了三角形内角和,平行线的性质,解题的关键是熟练掌握三角形内角和与平行线的性质. 2.D【解析】【分析】只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.【详解】A 、221 0x x +=等式左边不是整式,故不是一元二次方程; B 、20ax bx c ++=中a=0时不是一元二次方程,故不符合题意;C 、223 2 53x x x --=整理后的方程是2x+5=0,不符合定义故不是一元二次方程;D 、 1 2()()1x x -+=整理后的方程是230x x +-=,符合定义是一元二次方程,故选:D.【点睛】此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键.3.D【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.详解:方程两边都乘(x+2),得:x-5=m,∵原方程有增根,∴最简公分母:x+2=0,解得x=-2,当x=-2时,m=-1.故选D.点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4.D【解析】【分析】先利用勾股定理计算出DE,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF,则可判断△DEF为等腰直角三角形,然后根据等腰直角三角形的性质计算EF的长.【详解】∵E为AB的中点,AB=4,∴AE=2,∴∵四边形ABCD为正方形,∴∠A=∠ADC=90°,∴∠ADE+∠EDC=90°.∵△ADE绕点D沿逆时针方向旋转后得到△DCF,∴∠ADE=∠CDF,DE=DF,∴∠CDF+∠EDC=90°,∴△DEF为等腰直角三角形,∴.故选D.【点睛】本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.5.B【解析】【分析】【详解】解:因为DE∥CA,DF∥BA,所以四边形AEDF是平行四边形,如果∠BAC=90°,那么四边形AEDF是矩形,所以(1)正确;如果AD 平分∠BAC ,所以∠BAD=∠DAC,又DE ∥CA ,所以∠ADE=∠DAC,所以∠ADE=∠BAD ,所以AE=ED,所以四边形AEDF 是菱形,因此(2)正确;如果AD ⊥BC 且AB=AC ,根据三线合一可得AD 平分∠BAC ,所以四边形AEDF 是菱形,所以(3)错误;所以正确的有2个,故选B .【点睛】本题考查平行四边形的判定与性质;矩形的判定;菱形的判定;正方形的判定.6.D【解析】【分析】连接BF ,根据菱形的对角线平分一组对角求出∠BAC ,∠BCF=∠DCF ,四条边都相等可得BC=DC ,再根据菱形的邻角互补求出∠ABC ,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF ,根据等边对等角求出∠ABF=∠BAC ,从而求出∠CBF ,再利用“边角边”证明△BCF 和△DCF 全等,根据全等三角形对应角相等可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×80°=40°,∠BCF=∠DCF ,BC=DC , ∠ABC=180°-∠BAD=180°-80°=100°,∵EF 是线段AB 的垂直平分线, ∴AF=BF ,∠ABF=∠BAC=40°,∴∠CBF=∠ABC-∠ABF=100°-40°=60°,∵在△BCF 和△DCF 中,BC DC BCF DCF CF CF ⎧⎪∠∠⎨⎪⎩===,∴△BCF ≌△DCF (SAS ),∴∠CDF=∠CBF=60°,故选:D .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.7.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 8.C【解析】试题分析:根据k <1,正比例函数的函数值y 随x 的增大而减小解答. ∵直线y=kx 的k <1, ∴函数值y 随x 的增大而减小, ∵x 1<x 2, ∴y 1>y 2, ∴y 1﹣y 2>1.考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.9.C【解析】【分析】由在矩形纸片ABCD 中,AB=4,AD=3,可求得BD 的长,由折叠的性质,即可求得A′B 的长,然后设A′G=x ,由勾股定理即可得:x 2+4=(4-x )2,解此方程即可求得答案.【详解】∵四边形ABCD 是矩形,∴90A ∠=,∴5BD ==,由折叠的性质,可得:A′D=AD=3,A′G=AG,'90DA G ∠=,∴A′B=BD−A′D=5−3=2,设A′G=x ,则AG=x ,BG=AB−AG=4−x ,在Rt △A′BG 中,222''A G A B BG +=,∴()2244x x +=-,解得:3,2x =∴3'.2A G =故选:C.【点睛】 考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.10.C【解析】【分析】根据该函数的性质进行判断即可.【详解】A. 根据50x ->可得5x >,自变量x 的取值范围是5x >,错误;B. 将5x =代入函数解析式中,y =无意义,错误;C. 当5x >时,0y ==>,正确; D. A 、B 错误,C 正确,故选项D 错误;故答案为:C .【点睛】本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.二、填空题11.2【解析】【分析】如图,先利用勾股定理求出BC 的长,再利用勾股定理求出CE 的长,根据BE=BC-CE 即可得答案.【详解】如图,AB=DE=10,AC=6,DC=8,∠C =90°,∴=,,∴BE=BC-CE=2(米),故答案为2.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.12.>【解析】【分析】根据一次函数的性质即可得答案.【详解】∵一次函数y=-3x+1中,-3<0,∴函数图象经过二、四象限,y随x的增大而减小,∵-4<1,∴y1>y2,故答案为:>【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.13.5 2【解析】【分析】过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到21105 42k bk b==.【详解】如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,又//CO AB ,COE DAF ∴∠=∠,COE ∴∽DAF ,又D 是AB 的中点,AB CO =,12AF DF AD OE CE OC ∴===, 设(),C a b ,则OE a =,CE b =,12AF a ∴=,12DF b =, 116,22D a b ⎛⎫∴+ ⎪⎝⎭, 反比例函数1k y x=的图象经过点C 和AB 的中点D , 11622ab a b ⎛⎫∴=+⨯ ⎪⎝⎭, 解得4a =,()4,C b ∴,又6BC AO ==,()10,B b ∴,2110542k b k b ∴==, 故答案为52. 【点睛】 本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .14.k≤-2.【解析】【分析】根据一次函数与系数的关系得到020k k +≤⎧⎨⎩<,然后解不等式组即可. 【详解】 ∵一次函数y=kx+k+2的图象不经过第一象限,∴020k k +≤⎧⎨⎩< ∴k≤-2.故答案为:k≤-2.【点睛】本题考查了一次函数与系数的关系:对于一次函数y=kx+b (k≠0),k >0,b >0⇔y=kx+b 的图象在一、二、三象限;k >0,b <0⇔y=kx+b 的图象在一、三、四象限;k <0,b >0⇔y=kx+b 的图象在一、二、四象限;k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.(-0.4,0)【解析】【分析】点A (-2,2)关于x 轴对称的点A'(-2,-2),求得直线A'B 的解析式,令y=0可求点P 的横坐标.【详解】解:点A (-2,2)关于x 轴对称的点A'(-2,-2),设直线A'B 的解析式为y=kx+b ,把A'(-2,-2),B (2,3)代入,可得2232k b k b --⎨⎩++⎧== ,解得5412k b ⎧=⎪⎪⎨⎪=⎪⎩ , ∴直线A'B 的解析式为y=54x+12, 令y=0,则0=54x+12,解得x=-0.4,∴点P 的坐标为(-0.4,0),故答案为:(-0.4,0).【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 17.43. 【解析】 试题分析:连接AC ,∵菱形ABCD 的周长为16cm ,∴AB=4cm ,AC ⊥BD ,∵BC 的垂直平分线EF 经过点A ,∴AC=AB=4cm ,∴OA=12AC=2cm , ∴OB=22AB OA -=23cm ,∴BD=2OB=43cm .故答案为43.考点: 菱形的性质;线段垂直平分线的性质.三、解答题18.(1) 乙队单独做需要1天完成任务(2) 甲队实际做了3天,乙队实际做了4天【解析】【分析】(1)根据题意,由“甲工作20天完成的工作量+乙工作50天完成的工作量=1”列方程求解即可.(2)根据“甲完成的工作量+乙完成的工作量=1”得x 与y 的关系式;根据x 、y 的取值范围得不等式,求整数解.【详解】解:(1)设乙队单独做需要x 天完成任务,根据题意得()11203020140x⨯+⨯+=, 解得 x=1.经检验x=1是原方程的解.答:乙队单独做需要1天完成任务.(2)根据题意得x y140100+=,整理得5y100x2=-.∵y<70,∴5100x2-<70,解得x>2.又∵x<15且为整数,∴x=13或3.当x=13时,y不是整数,所以x=13不符合题意,舍去;当x=3时,y=1-35=4.答:甲队实际做了3天,乙队实际做了4天.19.(1)x>2,数轴见解析(2)x=2【解析】【分析】【详解】(1)解:2x>8-(x+2)2x>8-x-2x>2数轴表示解集为∴原方程的解为x=2(2)解:方程两边同乘x(x-1),得:x2-2(x-1)=x(x-1)解这个方程得:x=2经检验:x=2是原方程的根20.参见解析.【解析】试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又∵∠2=∠2 ,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.考点:2.矩形的判定;2.平行四边形性质.21.(1)80km/h;(2)1.【解析】【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【详解】(1)由图象可得,甲车的速度为:(280-120)÷2=80km/h,即甲车的速度是80km/h;(2)相遇时间为:2808060+=2h,由题意可得:602388028060a⨯⨯+=,解得,a=1,经检验,a=1是原分式方程的解,即a的值是1.【点睛】考点:分式方程的应用;函数的图象;方程与不等式.22.48【解析】【分析】根据平行四边形的性质可得BC=AD=8,然后根据垂直的定义可得∠ACB=90°,再利用勾股定理即可求出AC,最后利用平行四边形的面积公式求面积即可.【详解】解:∵四边形ABCD为平行四边形∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ACB中,=6∴S□ABCD=BC·AC=48【点睛】此题考查的是平行四边形的性质、勾股定理和求平行四边形的面积,掌握平行四边形的对应边相等、利用勾股定理解直角三角形和平行四边形的面积公式是解决此题的关键.23.(1)见解析;(1)AM=AMDN是矩形,见解析.【解析】【分析】(1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;(1)根据矩形的性质得到DM⊥AB,结合∠DAB=30°,由直角三角形30°角所对的直角边等于斜边的一半解答.【详解】(1)证明:∵四边形ABCD是菱形,∴ND∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME .∵点E 是AD 中点,∴DE =AE .在△NDE 和△MAE 中,NDE MAE DNE AME DE AE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△NDE ≌△MAE (AAS ).∴ND =MA .∴四边形AMDN 是平行四边形;(1)解:当AM =AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AD =AB =1,∵平行四边形AMDN 是矩形,∴∠AMD =90°.∵∠DAB =30°,∴MD =12AD =12AB =1. 在直角△AMD中,AM ===.【点睛】 本题考查了菱形的性质,平行四边形的判定,全等三角形的判定与性质,矩形的性质,熟记各性质并求出三角形全等是解题的关键,也是本题的突破口.24.(1)c =;(1)34a =. 【解析】【分析】(1)由勾股定理知:c 1=a 1+b 1.(1)由勾股定理知:a 1=c 1﹣b 1.【详解】(1)由勾股定理知:c 1=a 1+b 1=51+101=115.则c =(1)由勾股定理知:a 1=c 1﹣b 1=(54)1﹣11=916.则34a =.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25.(1)详见解析(2)详见解析(3)1【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=1°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE .∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP , 在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=1°,故答案为:1.。
【三套打包】石家庄市八年级下学期期末数学试卷及答案
新八年级(下)数学期末考试题(含答案)一、选择题(本大题共10 小题,每小题3分,共30 分.每小题只有一个选项是正确的,把正确选项前的字母填入下表中)1.化简222a aa++的结果是A.-a B.-1 C.a D.12.在1x,12,212x+,3xyπ,3x y+,1am+中分式的个数有A.2 个B.3 个C.4 个D.5 个3.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有5个红球,且摸出红球的概率为13,那么袋中总共球的个数为A.15 个B.12 个C.8 个D.6 个4.若ab=25,则a bb+的值是A.75B.35C.32D.575.已知x<3A.-x-3 B.x+3 C.3-x D.x-36.如图,梯形A BCD 中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=A.140°B.120°C.110°D.100°7.已知△ABC 和△A'B'C'是位似图形.△A'B'C'的面积为6cm2,周长是△ABC 的一半,AB=8cm,则A B 边上的高等于A.3cm B.6cm C.9cm D.12cm8.如图,在△ABC 中,点E、D、F 分别在边AB、BC、CA 上,且DE∥CA,DF∥BA.下列四个判断中,是假命题的是A.四边形A E DF 是平行四边形B.如果∠BAC=90°,那么四边形AEDF 是矩形C.如果AD 平分∠BAC,那么四边形A EDF 是菱形D.如果A D⊥BC 且A B=AC,那么四边形A EDF 是正方形9.如果点A(x1,y1)和点B(x2,y2)是直线y=kx-b 上的两点,且当x1<x2 时,y2<y1,那么函数y=kx的图象大致是10.一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为A.16+16 2B.16cm2C.16cm2D.48cm2二、填空题(本大题共10 小题,每小题2分,共20 分)11.当x=时,分式211xx-+的值为零.12.13.点A(2,1)在反比例函数y=kx的图象上,当1<x<4 时,y 的取值范围是.14.如图,正方体的棱长为 3,点 M ,N 分别在 C D ,HE 上,CM = 12DM ,HN =2NE ,HC 与 N M 的延长线交于点 P ,则 P C 的值为.15.对于平面内任意一个凸四边形 A BCD ,现从以下三个关系式①AB =CD ,②AD =BC ,③AB ∥CD 中任取两个 作为条件,能够得出这个四边形 ABCD 是平行四边形的概率 是 .16.若关于 x 的分式方程 121m x -=+的解为正数,则 m 的取值范围是 .17.如下图,将边长为 9cm 的正方形纸片 A BCD 折叠,使得点 A 落在边 C D 上的 E 点,折痕为 M N .若 C E 的长为 6cm ,则 M N 的长为 cm .18.如上图,点 A 在双曲线 y =6x上,且 O A =4,过 A 作 A C ⊥x 轴,垂足为 C ,OA 的 垂直平分线交 O C 于 B ,则△ABC 的周长为.19.设函数 y =2x与 y =x -1 的图象的交点坐标为(x 0,y 0),则0011x y -的值为 . 20.如图,在平面直角坐标系中,等边三角形 A BC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点 O 的 一条直线分别与边 A B ,AC 交于点 M ,N ,若 O M = MN ,则点 M 的坐标为( ).三、解答题(本大题共 8 小题,共 50 分,解答时应写出必要的计 算过程,推演步骤或文字说明) 21.计算化简(本题满分 8 分,每小题 4 分) (1)011()23-+ (2) 221()a b a ba b b a -÷-+-22.(本题 5 分)解方程:2431422x x x x x +-+=--+23.(本题满分 5 分)化简代数式:2224421142x x x x x x x-+-÷-+-+,并求当 x =2012 时,代 数式的值.24.(本题满分 5 分)如图,在正方形网格中,△T AB 的顶点坐标分别为 T (1,1)、A(2,3)、B(4,2). (1)以点 T (1,1)为位似中心,在位似中心的 同侧将△T AB 放大为原来的 3 倍,放大 后点 A 、B 的对应点分别为 A '、B',画出 △T A'B': (2)写出点 A '、B'的坐标: A'( )、B'( ); (3)在(1)中,若 C (a ,b)为线段 A B 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).25.(本题满分6 分)如图,四边形ABCD 中,E、F、G、H 分别为各边的中点,顺次连结E、F、G、H,把四边形E FGH 称为中点四边形.连结A C、BD,容易证明:中点四边形E FGH 一定是平行四边形.(1)如果改变原四边形ABCD 的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形A B CD 的对角线满足A C=BD 时,四边形E FGH 为菱形;当四边形A BCD 的对角线满足时,四边形E FGH 为矩形;当四边形A BCD 的对角线满足时,四边形E FGH 为正方形.(2)试证明:S△AEH+S△CFG=14S□ABCD(3)利用(2)的结论计算:如果四边形A BCD新八年级下册数学期末考试试题(含答案)一.选择题(共12小题)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.D.3x2﹣2xy﹣5y2=02.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是()A.甲B.乙C.丙D.都一样3.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B.C.D.m>04.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定5.关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0 B.2 C.2或﹣2 D.﹣26.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5 B.7 C.15 D.177.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)8.对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣19.一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形11.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=1712.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF 交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分)13.已知菱形ABCD的对角线长度是8和6,则菱形的面积为.14.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式.15.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=.16.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B 的坐标是.17.如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是.18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.三、解答题(本大题共8小题,共66分)19.解下列方程式:(1)x2﹣3x+1=0.(2)x2+x﹣12=0.20.如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(Ⅰ)本次抽测的男生人数为,图①中m的值为;(Ⅱ)求本次抽测的这组数据的平均数、众数和中位数;(Ⅲ)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.22.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23.长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?24.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.25.已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.26.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.参考答案与试题解析一.选择题(共12小题)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.D.3x2﹣2xy﹣5y2=0【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;B、当a=0时,该方程不是一元二次方程,故本选项错误;C、该方程不是整式方程,故本选项错误;D、该方程属于二元二次方程,故本选项错误;故选:A.2.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是()A.甲B.乙C.丙D.都一样【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S丙2=6.3>S甲2=4.1>S乙2=3.5,方差最小的为乙,所以麦苗高度最整齐的是乙.故选:B.3.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B.C.D.m>0【分析】根据y随x的增大而减小可知2m﹣1<0,解不等式即可.【解答】解:∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选:C.4.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选:B.5.关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0 B.2 C.2或﹣2 D.﹣2【分析】把x=3代入方程x2+(m2﹣2)x﹣15=0得9+3m2﹣6﹣15=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+(m2﹣2)x﹣15=0得9+3m2﹣6﹣15=0,整理得m=±2.故选:C.6.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5 B.7 C.15 D.17【分析】先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.【解答】解:∵x1,x2,x3的平均数是5,∴x1+x2+x3=15,∴===17.故选:D.7.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)【分析】先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质求解.【解答】解:y=x2﹣4x+5=(x﹣2)2+1,所以抛物线的顶点坐标为(2,1).故选:A.8.对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣1【分析】根据二次函数的性质可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=﹣(x+2)2﹣1,∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误,故选:C.9.一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k、b的值确定一次函数y=3x﹣4的图象经过的象限.【解答】解:k=3>0,图象过一三象限;b=﹣4<0,图象过第四象限,∴一次函数y=3x﹣4的图象不经过第二象限.故选:B.10.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形【分析】分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.【解答】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B正确;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选:B.11.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果游客人数的年平均增长率为x,根据2015年约为12万人次,预计2017年约为17万人次,即可得出方程.【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.12.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF 交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个B.3个C.4个D.5个【分析】依据HL即可判定Rt△ABG≌Rt△AFG;依据∠BAG=∠FAG,∠DAE=∠FAE,即可得到∠EAF=∠BAD;依据勾股定理列方程,即可得到DE=4,CE=8,进而得出CE=2DE;依据三角形外角性质,即可得到∠AGB=∠GCF,即可得到AG∥CF;根据GF=6,EF=4,△GFC和△FCE等高,即可得到S△GFC=×S△GCE=.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠FAG,由折叠可得,∠DAE=∠FAE,∴∠EAF=∠BAD=45°,故②正确;由题意得:EF=DE,BG=CG=6=GF,设DE=EF=x,则CE=12﹣x.在直角△ECG中,根据勾股定理,得CE2+CG2=GE2,即(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,故④正确;∵S△GCE=GC•CE=×6×8=24,∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×24=,故⑤正确.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.已知菱形ABCD的对角线长度是8和6,则菱形的面积为24 .【分析】根据菱形ABCD的面积等于对角线乘积的一半进行解答即可.【解答】解:∵菱形的对角线长的长度分别为6、8,∴菱形ABCD的面积S=BD•AC=×6×8=24.故答案为24.14.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式y=2x2+3 .【分析】先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,3),然后根据顶点式写出平移后的抛物线的解析式即可.【解答】解:抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,3),所以平移后的抛物线的解析式为y=2x2+3.故答案是y=2x2+3.15.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=﹣3 .【分析】根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn 中即可求出结论.【解答】解:∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣3.故答案为:﹣3.16.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B 的坐标是(﹣1,0).【分析】利用点B与点A关于直线x=1对称确定B点坐标.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).17.如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是x<2 .【分析】根据一次函数的性质和图象,可以写出x的取值范围,本题得以解决.【解答】解:由图象可知,当x=2时,y=0,该函数图象y随x的增大而增大,∴当y<0时,x的取值范围是x<2,故答案为:x<2.18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为﹣.【分析】由点A1、A2的坐标,结合平移的距离即可得出点A n的坐标,再由直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,即可得出点A n+1(4n,0)在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.【解答】解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=﹣.故答案为:﹣.三、解答题(本大题共8小题,共66分)19.解下列方程式:(1)x2﹣3x+1=0.(2)x2+x﹣12=0.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴x2﹣3x+=,∴(x﹣)2=,∴x=;(2)∵x2+x﹣12=0,∴(x+4)(x﹣3)=0,∴x=﹣4或x=3;20.如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.【分析】(1)利用直线l1的解析式令y=0,求出x的值即可得到点D的坐标;把点C的坐标代入直线l1的解析式求出m的值,即可得解;根据点B、C的坐标,利用待定系数法求一次函数解析式解答;(2)先求出点A的坐标,再求出AD的长,然后利用三角形的面积公式列式进行计算即可得解.【解答】解:(1)∵点D是直线l1:y=2x﹣2与x轴的交点,∴y=0,0=2x﹣2,x=1,∴D(1,0),∵点C在直线l1:y=2x﹣2上,∴2=2m﹣2,m=2,∴点C的坐标为(2,2);∵点C(2,2)、B(3,1)在直线l2上,∴,解之得:,∴直线l2的解析式为y=﹣x+4;(2)∵点A是直线l2与x轴的交点,∴y=0,即0=﹣x+4,解得x=4,即点A(4,0),∴AD=4﹣1=3,四边形OACD的面积=S△ADC+S△AOD=×3×2+×4×1=5.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(Ⅰ)本次抽测的男生人数为50 ,图①中m的值为28 ;(Ⅱ)求本次抽测的这组数据的平均数、众数和中位数;(Ⅲ)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.【分析】(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m 即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.【解答】解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=28%,所以m=28,故答案为:50、28;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=252,答:估计该校350名九年级男生中有252人体能达标.22.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.【分析】(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【解答】(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°﹣120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴BC=(cm).∴四边形ABCD的面积=.23.长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?【分析】(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,解得.所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.24.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【分析】(1)由“ASA”可证△ABM≌△FDM,可得AB=DF,可得BE=DE,可得∠EBD=45°=∠FCE,可得结论;(2)由题意可得BE=DE=a,可得△BDE是等腰直角三角形,BD=a,由等腰直角三角形的性质可求BM,ME的长;(3)延长AB交CE于点D,连接DF,延长FE与CB交于点G,连接AG,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM =ME;【解答】证明:(1)如图1,延长BM交EF于点D,∵∠ABE=∠ABC=∠CEF=90°,∴AB∥EF∴∠DFM=∠BAM,且AM=MF,∠AMB=∠DMF∴△ABM≌△FDM(ASA)∴AB=DF,BM=DM∵在等腰直角△ABC和等腰直角△CEF中,AB=BC,EC=EF,∠FCE=45°∴DF=AB=BC∴EC﹣BC=EF﹣DF∴BE=DE,且∠BED=90°∴∠EBD=45°=∠FCE∴BM∥CF(2)由(1)可知:AB=BC=DF,BM=DM∵CB=a,CE=2a,∴BE=DE=a,且∠CEF=90°∴△BDE是等腰直角三角形,BD=a,且BM=DM∴BM=EM=BD=a,(3)如图2,延长AB交CE于点D,连接DF,延长FE与CB交于点G,连接AG,∵△ABC是等腰直角三角形∴AB=BC,∠BAC=∠BCA=45°,∠ABC=90°∵∠ECB=45°∴∠BDC=45°=∠ECB=∠CAB∴BD=BC,AC=CD∵AB=BD,点M为AF中点,∴BM=DF.同理可得:CF=CG,ME=AG.在△ACG与△DCF中,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.25.已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.【分析】(1)方程有两个不相等的实数根,则△>0,建立关于n,k的不等式,结合不等式的性质,证出结论;(2)根据根与系数的关系,把x1+x2=k代入已知条件(2x1+x2)2﹣8(2x1+x2)+15=0,即可用k的代数式表示x1;(3)首先由(1)知n<﹣k2,又n=﹣3,求出k的范围.再把(2)中求得的关系式代入原方程,即可求出k的值.【解答】证明:(1)∵关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根,∴△=k2﹣4(k2+n)=﹣3k2﹣4n>0,∴n<﹣k2.又﹣k2≤0,∴n<0.解:(2)∵(2x1+x2)2﹣8(2x1+x2)+15=0,x1+x2=k,∴(x1+x1+x2)2﹣8(x1+x1+x2)+15=0∴(x1+k)2﹣8(x1+k)+15=0∴[(x1+k)﹣3][(x1+k)﹣5]=0∴x1+k=3或x1+k=5,∴x1=3﹣k或x1=5﹣k.(3)∵n<﹣k2,n=﹣3,∴k2<4,即:﹣2<k<2.原方程化为:x2﹣kx+k2﹣3=0,把x1=3﹣k代入,得到k2﹣3k+2=0,解得k1=1,k2=2(不合题意),把x2=5﹣k代入,得到3k2﹣15k+22=0,△=﹣39<0,所以此时k不存在.∴k=1.26.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.【分析】(1)由已知抛物线顶点D可设抛物线顶点式,再把点A代入即求得二次项系数a 的值.(2)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP2,DP2.对BP=BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理.(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小,即需求MH 的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.【解答】解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC于点H ∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为新八年级(下)期末考试数学试题(含答案)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.(3分)下列标识中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)下列根式中,与是同类二次根式的是()A.B.C.D.3.(3分)若反比例函数的图象经过点(﹣1,2),则它的解析式是()A.B.C.D.4.(3分)下列计算正确的是()A.x3+x3=x6B.m2•m3=m6C.3﹣=3D.×=7 5.(3分)下列事件是随机事件的是()A.没有水分,种子发芽B.小张买了一张彩票中500万大奖C.抛一枚骰子,正面向上的点数是7D.367人中至少有2人的生日相同6.(3分)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.了解全市中小学生每天的零花钱C.学校招聘教师,对应聘人员面试D.旅客上飞机前的安检7.(3分)已知关于x的方程=3的解是正数,那么m的取值范围为()A.m>﹣6且m≠﹣2B.m<6C.m>﹣6且m≠﹣4D.m<6且m≠﹣28.(3分)如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A.B.C.D.9.(3分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误10.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.4B.8C.12D.16二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)11.(3分)当x=时,分式的值为零.12.(3分)如果在实数范围内有意义,则x的取值范围是.13.(3分)给出下列3个分式:,,,它们的最简公分母为.14.(3分)已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是.15.(3分)如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=.16.(3分)在●〇●〇〇●〇〇〇●〇〇〇〇●〇〇〇〇〇中,空心圈“〇”出现的频率是.17.(3分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=°.18.(3分)如图,在平面直角坐标系中,有A(﹣3,4)、B(﹣1,0)、C(5,10)三点,连接CB,将线段CB沿y轴正方向平移t个单位长度,得到线段C1B1,当C1A+AB1取最小值时,实数t=.三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.)19.(8分)计算:(1)﹣;(2)(﹣3)×.20.(8分)解方程:(1)=;(2)=1﹣.21.(6分)先化简,再求值:(x﹣)÷,其中x=2+2.22.(6分)如图,四边形ABCD中,∠A=∠ABC=90°,E是边CD的中点,连接BE并延长与AD的延长线相交于点F,连接CF.四边形BDFC是平行四边形吗?证明你的结论.23.(6分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?24.(8分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.。
2020-2021石家庄二中八年级数学下期末试卷(含答案)
21.如图,等边△ABC 的边长是 2,D、E 分别为 AB、AC 的中点,延长 BC 至点 F,使
CF= BC,连接 CD 和 EF.
(1)求证:DE=CF; (2)求 EF 的长. 22.已知:如图,在正方形 ABCD 中,点 E、F 分别在 BC 和 CD 上,AE = AF
(1)求证:BE = DF; (2)连接 AC 交 EF 于点 O,延长 OC 至点 M,使 OM = OA,连接 EM、FM.判断四边形 AEMF 是什么特殊四边形?并证明你的结论. 23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为 18dm2 和 32dm2 的正方形木板.
(1)当﹣2<x≤3 时,求 y 的取值范围; (2)已知点 P(m,n)在该函数的图象上,且 m﹣n=4,求点 P 的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】
分析:首先由 (a 2)2 =|a-2|,即可将原式化简,然后由 1<a<2,去绝对值符号,继而
用这两个图象回答:x 取什么值时, 1 x 1 比|x|大? 2
(2)若函数 y=|x+b|(b 为常数)的图象在直线 y=1 下方的点的横坐标 x 满足 0<x<3, 直接写出 b 的取值范围
25.在平面直角坐标系中,一次函数 y=kx+b(k,b 都是常数,且 k≠0)的图象经过点 (1,0)和(0,2).
18.如图,菱形 ABCD 中,E、F 分别是 AB、AC 的中点,若 EF=3,则菱形 ABCD 的周
长是
.
19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化 考核,甲、乙、丙各项得分如下表:
2020-2021石家庄市初二数学下期末模拟试卷附答案
2020-2021石家庄市初二数学下期末模拟试卷附答案一、选择题1.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .2.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .54.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形6.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .7.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( ) A .3± B .3 C .3- D .无法确定 8.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1 B .-1C .1D .29.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 10.若一个直角三角形的两边长为12、13,则第三边长为( )A .5B .17C .5或17D .5或11.()23- ) A .﹣3B .3或﹣3C .9D .312.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为_______.14.计算:182-=______. 15.若2(3)x -=3-x ,则x 的取值范围是__________. 16.已知函数y =2x +m -1是正比例函数,则m =___________.17.计算:1822-=__________. 18.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.19.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.20.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由 参赛者 推荐语 读书心得 读书讲座 甲 87 85 95 乙94888822.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.23.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.24.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:(1)在图(1)中,作与MN平行的直线AB;(2)在图(2)中,作与MN垂直的直线CD.25.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.4.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-00k k=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.7.C解析:C【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±3,因为k-3≠0,所以k≠3,即k=-3.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.B解析:B【解析】根据一次函数的概念,形如y=kx+b(k≠0,k、b为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b(k≠0,k、b为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.9.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.10.D解析:D【解析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论. 【详解】当12,13为两条直角边时, 第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D . 【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.11.D解析:D 【解析】 【分析】本题考查二次根式的化简,2(0)(0)a a a a a ⎧=⎨-<⎩….【详解】2(3)|3|3-=-=.故选D . 【点睛】本题考查了根据二次根式的意义化简.2a a ≥02a a ;当a ≤02a a .12.D解析:D 【解析】 【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案. 【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等; ②正方形的四个角是直角,而菱形的四个角不一定是直角. 故选D . 【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题13.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC 的度数【详解解析:45° 【解析】 【分析】由平行四边形的性质得出∠ABC =∠D =108°,AB ∥CD ,得出∠BAD =180°﹣∠D =60°,由等腰三角形的性质和三角形内角和定理求出∠ABE =75°,即可得出∠EBC 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠ABC =∠D =120°,AB ∥CD , ∴∠BAD =180°﹣∠D =60°, ∵AE 平分∠DAB , ∴∠BAE =60°÷2=30°, ∵AE =AB ,∴∠ABE =(180°﹣30°)÷2=75°, ∴∠EBC =∠ABC ﹣∠ABE =45°; 故答案为:45°. 【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.14.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】 【分析】先化简二次根式,然后再合并同类二次根式. 【详解】1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法.15.【解析】试题解析:∵=3﹣x∴x -3≤0解得:x≤3 解析:3x ≤【解析】﹣x,∴x-3≤0,解得:x≤3,16.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.17.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.==考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.18.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.19.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1观解析:x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.20.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数解析:﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分), 乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】 此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.23.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中, OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)见解析;(2)见解析【解析】试题分析:画图即可.试题解析:如图:25.原式=2a b a b-=+ 【解析】【分析】 括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+, 当2,b=12时,原式221212++-2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析版】2020—2021年石家庄市栾城县初二下期末数学试卷一、选择题(共16小题,每小题2分,满分32分)1.班长对全班同学说:“请同学们投票,选举一位同学”,你认为班长在收集数据过程中的失误是()A.没有明确调查问题B.没有规定调查方法C.没有确定对象D.没有展开调查2.点P(﹣1,﹣2)到x轴的距离是()A.1 B.2 C.﹣1 D.﹣23.若直线y1=kx+b通过第一、二、四象限,则直线y2=bx+k不通过()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点M(1﹣a,a+2)在第二象限,则a的取位范畴是()A.a>1 B.a>﹣2 C.a<﹣2 D.﹣2<a<15.观看统计图,下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较6.若一个点的横坐标与纵坐标互为相反数,则此点一定在()A.原点B.横轴上C.第二、四象限角平分线上D.第一、三象限角平分线上7.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC ()A.自左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的8.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形9.已知点P(x.y)在x轴上方,且|x|=2,|y|=3,则点P的坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(2,3)或(﹣2,3)10.在函数中,自变量x的取值范畴是()A.x≠﹣1 B.x≠0 C.x≥﹣1 D.x≥﹣1,且x≠0 11.一个正多边形,它的一个外角等于与它相邻的内角的,则那个多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形12.假如点P(﹣1,a)和点Q(b,3)关于原点对称,则a+b等于()A.﹣2 B.2 C.﹣4 D.413.下列命题中,正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.两组对角分别相等的四边形是平行四边形14.已知一次函数y=kx+b的图象如图所示,则当x<0时,y的取值范畴是()A.y>1 B.y<﹣2 C.﹣2<y<0 D.﹣2<y<215.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD对角线AC 上有一点P,使PD+PE的和最小,则那个最小值为()A.2 B.2C.4 D.416.如图,一只蚂蚁以平均的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时刻t变化的图象大致是()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:x﹣2 ﹣1 012 3y6 4 2 0﹣2 ﹣4不等式ax+b>0的解集是.18.如图,在矩形内有两个相邻的正方形,面积分别为2和4,则图中阴影部分的面积是.19.如图,小亮从A点动身,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照如此走下去,他第一次回到动身地A点时,一共走了米.20.如图,边长为1的菱形形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°,连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°…,按此规律估量,所作的第2020个菱形的边长是.三、解答题(共6小题,满分56分)21.如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.22.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,他们都沿相同路线前往.如图,已知a、b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时刻x(分钟)之间的函数图象,请你依照图中提供的信息,写出三个正确结论.①;②;③.23.已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0)(1)请你借助网格,建立适当的直角坐标系,求出四边形ABCD的面积;(2)试判定AB、CD是否垂直,并说明理由.24.春晚小品《扶不扶》对当前现实生活中人们遇到的道德难题进行了艺术再现,某班在一次班会课上,就“遇见路人摔后如何处理”的主题进行了大讨论,并对全班50名学生的处理方式进行统计,得出了所示的统计表和统计图,请依照题中所提供的信息回谷下列问题:组别 A B C D处理方式迅速离开赶忙救助视情形制定只看喧闹人数m 30 n 5(1)统计表中的m=,n=;(2)补全频数分布直方图;(3)若该校共有2000名学生,请据此估量该校学生采取“赶忙救助”方式的学生有多少人?25.如图,已知正方形ABCD的边长为4,点E在边AB上,且AE=1;点F为边CD上一动点,且DF=m.以A为原点,AB所在直线为x轴建立平面直角坐标系.(1)连接EF,求四边形AEFD的面积S关于m的函数关系式;(2)若直线EF将正方形ABCD分成面积相等的两部分,求现在直线EF所对应的函数关系式.26.“端午节”前夕,为保证绿色食品供应,我市预备组织20辆汽车到外地购进黄瓜、豆角、西红柿三种蔬菜共100吨.按打算20辆车都要装运,每辆汽车只能装运同一种蔬菜且必须装满.依照表格提供的信息,解答下列问题.蔬菜种类黄瓜豆角西红柿每辆汽车运载量/吨 6 5 4每吨所需运费/元/吨120 160 180(1)设装运黄瓜的车辆数为x,装运豆角的车辆数为y,求y与x之间的函数关系式;(2)假如装运黄瓜的车辆数许多于5辆,装运豆角的车辆数许多于4辆,那么,车辆的安排有几种方案?并写出每种安排方案?(3)在(2)的条件下,应采纳哪种方案才能使总运费W最少?并求出最少总运费W.2020-2020学年河北省石家庄市栾城县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分32分)1.班长对全班同学说:“请同学们投票,选举一位同学”,你认为班长在收集数据过程中的失误是()A.没有明确调查问题B.没有规定调查方法C.没有确定对象D.没有展开调查考点:调查收集数据的过程与方法.分析:依照调查收集数据的过程与方法,即可即可解答.解答:解:依照班长对全班同学说:“请同学们投票,选举一位同学”,而没有明确选举一位学习优秀,依旧品质优秀,调查的问题不够明确,故选:A.点评:本题考查了调查收集数据的过程与方法,解决本题的关键是明确调查的问题.2.点P(﹣1,﹣2)到x轴的距离是()A.1 B.2 C.﹣1 D.﹣2考点:点的坐标.分析:依照点到x轴的距离等于纵坐标的长度解答.解答:解:点P(﹣1,﹣2)到x轴的距离是2.故选B.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.3.若直线y1=kx+b通过第一、二、四象限,则直线y2=bx+k不通过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:依照图象在坐标平面内的位置关系确定k,b的取值范畴,从而求解.解答:解:已知直线y1=kx+b通过第一、二、四象限,则得到k<0,b>0,那么直线y2=bx+k通过第一、三、四象限.即不通过第二象限;故选B.点评:本题要紧考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意明白得:直线y=kx+b所在的位置与k、b的符号有直截了当的关系.k>0时,直线必通过一、三象限;k<0时,直线必通过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.已知点M(1﹣a,a+2)在第二象限,则a的取位范畴是()A.a>1 B.a>﹣2 C.a<﹣2 D.﹣2<a<1考点:点的坐标;解一元一次不等式组.分析:依照点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得到关于a的不等式组,求解即可.解答:解:∵点M(1﹣a,a+2)在第二象限,∴解得:a>1,故选:A.点评:本题考查了点的坐标,坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范畴,比如本题中求a的取值范畴.5.观看统计图,下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较考点:扇形统计图.专题:图表型.分析:因为缺少两个学校的具体学生数,因此无法对有关人数进行比较.解答:解:因为扇形统计图要紧表示各部分占总体的百分比,没有两个学校具体的学生数,因此无法对有关人数进行比较.故选D.点评:本题需把握扇形统计图的作用,进而解决问题.6.若一个点的横坐标与纵坐标互为相反数,则此点一定在()A.原点B.横轴上C.第二、四象限角平分线上D.第一、三象限角平分线上考点:点的坐标.分析:依照各象限内点的坐标特点和角平分线上的点到角的两边的距离相等解答.解答:解:若一个点的横坐标与纵坐标互为相反数,则此点一定在两坐标轴第二、四象限夹角的平分线上.故选C.点评:本题考查了点的坐标,熟记各象限点的坐标的符合特点和角平分线上的点到角的两边的距离相等是解题的关键.7.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC ()A.自左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的考点:坐标与图形变化-平移.分析:依照平移与点的变化规律:横坐标加上3,应向右移动;纵坐标不变.解答:解:依照点的坐标变化与平移规律可知,当△ABC各顶点的横坐标加上3,纵坐标纵坐标不变,相当于△ABC向右平移3个单位.故选B.点评:本题考查图形的平移变换,关键是要明白得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形考点:菱形的判定;三角形中位线定理.专题:压轴题.分析:因为四边形的两条对角线相等,依照三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.解答:解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.点评:本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形.9.已知点P(x.y)在x轴上方,且|x|=2,|y|=3,则点P的坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(2,3)或(﹣2,3)考点:点的坐标.分析:依照点P(x.y)在x轴上方,那么点P在第一象限或第二象限,即纵坐标大于0,横坐标大于0或小于0,进而依照所给的条件判定具体坐标.解答:解:∵点P(x.y)在x轴上方,∴点P在第一象限或第二象限,∵|x|=2,|y|=3,∴点P的坐标(2,3)或(﹣2,3).点评:本题考查了点的坐标的几何意义,牢记点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.10.在函数中,自变量x的取值范畴是()A.x≠﹣1 B.x≠0 C.x≥﹣1 D.x≥﹣1,且x≠0考点:函数自变量的取值范畴;分式有意义的条件;二次根式有意义的条件.分析:依照二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组求得.解答:解:依照题意得:,解得:x≥﹣1且x≠0.故选D.点评:本题考查的是函数自变量取值范畴的求法.函数自变量的范畴一样从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.一个正多边形,它的一个外角等于与它相邻的内角的,则那个多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形考点:多边形内角与外角.分析:设外角为x°,依照外角和与它相邻的内角为邻补角列方程求出x,再依照外角和等于360°列式运算即可得解.解答:解:设外角为x°,由题意得,x=(180°﹣x),解得x=36,360°÷36°=10,因此,那个多边形是正十边形.故选B.点评:本题考查了多边形内角与外角,依照相邻的内角和外角互为邻补角列出方程是解题的关键.12.假如点P(﹣1,a)和点Q(b,3)关于原点对称,则a+b等于()A.﹣2 B.2 C.﹣4 D.4考点:关于原点对称的点的坐标.分析:关于原点对称,则两点的横、纵坐标差不多上互为相反数,可得a、b的值,依照有理数的加法,可得答案.解答:解:由P(﹣1,a)和点Q(b,3)关于原点对称,得a=﹣3,b=1.a+b=﹣3+1=﹣2,故选:A.点评:本题考查了关于原点对称的点的坐标,利用关于原点对称,则两点的横、纵坐标差不多上互为相反数得出a、b的值是解题关键.13.下列命题中,正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.两组对角分别相等的四边形是平行四边形考点:命题与定理.分析:依照菱形的判定方法对A进行判定;依照矩形的判定方法对B进行判定;依照正方形的判定方法对C进行判定;依照平行四边形的判定方法对D进行判定.解答:解:A、对角线互相垂直的平行四边形是菱形,因此A选项错误;B、对角线相等的平行四边形是矩形,因此B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,因此C选项错误;D、两组对角分别相等的四边形是平行四边形,因此D选项正确.故选D.点评:本题考查了命题与定理:判定一件情况的语句,叫做命题.许多命题差不多上由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“假如…那么…”形式.有些命题的正确性是用推理证实的,如此的真命题叫做定理.14.已知一次函数y=kx+b的图象如图所示,则当x<0时,y的取值范畴是()A.y>1 B.y<﹣2 C.﹣2<y<0 D.﹣2<y<2考点:一次函数与一元一次不等式.专题:数形结合.分析:观看函数图象,写出自变量x<0时对应的函数值的范畴即可.解答:解:当x<0时,y的取值范畴为y<﹣2.故选B.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,确实是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范畴;从函数图象的角度看,确实是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD对角线AC 上有一点P,使PD+PE的和最小,则那个最小值为()A.2 B.2C.4 D.4考点:轴对称-最短路线问题;正方形的性质.分析:由于点B与D关于AC对称,因此连接BD,与AC的交点即为F点.现在PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.点评:此题要紧考查了轴对称﹣﹣最短路线问题,难点要紧是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再依照对称性确定点P的位置即可.要灵活运用对称性解决此类问题.16.如图,一只蚂蚁以平均的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时刻t变化的图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:从A1到A2蚂蚁是匀速前进,随着时刻的增多,爬行的高度也将由0匀速上升,从A2到A3随着时刻的增多,高度将不再变化,由此即可求出答案.解答:解:因为蚂蚁以平均的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时刻匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时刻匀速上升,从A4⇒A5的过程中,高度不变,因此蚂蚁爬行的高度h随时刻t变化的图象是B.故选:B.点评:要紧考查了函数图象的读图能力.要能依照函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情形采纳排除法求解.二、填空题(共4小题,每小题3分,满分12分)17.已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:x﹣2 ﹣1 012 3y6 4 2 0﹣2 ﹣4不等式ax+b>0的解集是x<1.考点:一次函数与一元一次不等式.专题:应用题.分析:依照不等式ax+b>0的解集为函数y=ax+b中y>0时自变量x的取值范畴,由图表可知,y 随x的增大而减小,因此x<1时,函数值y>0,即不等式ax+b>0的解为x<1.解答:图表可得:当x=1时,y=0,∴方程ax+b=0的解是x=1,y随x的增大而减小,∴不等式ax+b>0的解是:x<1,故答案为:x<1.点评:本题要紧考查了一次函数与一元一次方程,以及一元一次不等式之间的关系,难度适中.18.如图,在矩形内有两个相邻的正方形,面积分别为2和4,则图中阴影部分的面积是2﹣2.考点:算术平方根.专题:运算题.分析:依照两个正方形的面积,利用算术平方根定义求出各自的边长,即可确定出阴影部分即可.解答:解:由相邻两个正方形的面积分别为2和4,得到边长为和2,则阴影部分面积S=×(2﹣)=2﹣2,故答案为:2﹣2点评:此题考查了算术平方根,熟练把握算术平方根的定义是解本题的关键.19.如图,小亮从A点动身,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照如此走下去,他第一次回到动身地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,依照多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原先的起点,即一共走了12×10=120米.故答案为:120.点评:本题要紧考查了多边形的外角和定理.任何一个多边形的外角和差不多上360°.20.如图,边长为1的菱形形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°,连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°…,按此规律估量,所作的第2020个菱形的边长是.考点:菱形的性质.专题:规律型.分析:连接DB于AC相交于M,依照已知和菱形的性质可分别求得AC,AE,AG的长,从而可发觉规律依照规律不难求得第2020个菱形的边长.解答:解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=,AG=AE=3=,按此规律所作的第n个菱形的边长为,则所作的第2020个菱形的边长是.故答案为:.点评:此题要紧考查菱形的性质、等边三角形的判定和性质以及学生探究规律的能力,解决本题的关键是发觉规律.三、解答题(共6小题,满分56分)21.如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:由四边形ABCD是平行四边形,依照平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后依照对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定,注意熟练把握定理与性质是解决问题的关键.22.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,他们都沿相同路线前往.如图,已知a、b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时刻x(分钟)之间的函数图象,请你依照图中提供的信息,写出三个正确结论.①骑车的同学比步行的同学晚动身30分钟;②步行的速度是6÷1=6千米/小时;③骑车的同学从动身到追上步行的同学用了50﹣30=20分钟.考点:函数的图象.分析:依照图象上专门点的坐标和实际意义即可求出答案.解答:解:依照图象可得:骑车的同学比步行的同学晚动身30分钟;步行的速度是6÷1=6千米/小时;骑车的同学从动身到追上步行的同学用了50﹣30=20分钟;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提早6分钟到达目的地,故答案为:骑车的同学比步行的同学晚动身30分钟;步行的速度是6÷1=6千米/小时;骑车的同学从动身到追上步行的同学用了50﹣30=20分钟.点评:此题要紧考查了函数图象的读图能力.要能依照函数图象的性质和图象上的数据分析得出所需要的条件,结合实际意义得到正确的结论.23.已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0)(1)请你借助网格,建立适当的直角坐标系,求出四边形ABCD的面积;(2)试判定AB、CD是否垂直,并说明理由.考点:坐标与图形性质;三角形的面积.分析:(1)选取适当的点作为坐标原点,通过原点的两条互相垂直的直线分别作为x轴,y轴,建立坐标系,分别描出点A、点B、点C、点D.如确定(3,6)表示的位置,先在x轴上找出表示3的点,再在y轴上找出表示6的点,过这两个点分别做x轴和y轴的垂线,垂线的交点即所要表示的位置.(2)连接AB与CD并延长解答即可.解答:解:(1)如图1所示:(2)连接AB与CD并延长,如图2:由图可得AB、CD不垂直.点评:要紧考查了直角坐标系的建立.在平面直角坐标系中,一定要明白得点与坐标的对应关系,是解决此类问题的关键.24.春晚小品《扶不扶》对当前现实生活中人们遇到的道德难题进行了艺术再现,某班在一次班会课上,就“遇见路人摔后如何处理”的主题进行了大讨论,并对全班50名学生的处理方式进行统计,得出了所示的统计表和统计图,请依照题中所提供的信息回谷下列问题:组别 A B C D处理方式迅速离开赶忙救助视情形制定只看喧闹人数m 30 n 5(1)统计表中的m=5,n=10;(2)补全频数分布直方图;(3)若该校共有2000名学生,请据此估量该校学生采取“赶忙救助”方式的学生有多少人?考点:频数(率)分布直方图;用样本估量总体;统计表.分析:(1)依照频数直方图得m=5,然后用总数50分别减去A组、B组、D组人数即可得到n 的值;(2)补全频数分布直方图;(3)利用样本估量总体,用B组的百分比来估量该校学生采取“赶忙救助”方式的百分比,然后用2000乘以那个百分比即可.解答:解:(1)m=5,n=50﹣5﹣30﹣5=10,故答案为5,10;(2)如图,(3)2000×=1200(人),因此可估量该校学生采取“赶忙救助”方式的学生有1200人.点评:本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1;频数分布直方图能够清晰地看出落在各组的频数,各组的频数和等于总数.也考查了用样本估量总体.25.如图,已知正方形ABCD的边长为4,点E在边AB上,且AE=1;点F为边CD上一动点,且DF=m.以A为原点,AB所在直线为x轴建立平面直角坐标系.(1)连接EF,求四边形AEFD的面积S关于m的函数关系式;(2)若直线EF将正方形ABCD分成面积相等的两部分,求现在直线EF所对应的函数关系式.考点:一次函数综合题.分析:(1)依照正方形的性质,可得AD的长,∠D、∠A的度数,依照梯形的面积公式,可得答案;(2)依照梯形AEFD与正方形ABCD的关系,可得m的值,依照待定系数法,可得EF的解析式.解答:解:(1)由正方形ABCD的边长为4,得DA=4,∠D=∠A=90°.∵AE=1,DF=m,由梯形的面积公式,得S=(1+m)×4=2m+2 (0<m≤4);(2)由直线EF将正方形ABCD分成面积相等的两部分,得2m+2=×4×4,解得m=3,F(3,4).设EF的函数解析式为y=kx+b (k≠0),将E(1,0)F(3,4)代入函数解析式,得,解得.直线EF所对应的函数关系式y=2x﹣2.点评:本题考查了一次函数综合题,利用了正方形的性质,梯形的面积公式,待定系数法求函数解析式,利用梯形AEFD与正方形ABCD的关系得出F点的坐标是解题关键.26.“端午节”前夕,为保证绿色食品供应,我市预备组织20辆汽车到外地购进黄瓜、豆角、西红柿三种蔬菜共100吨.按打算20辆车都要装运,每辆汽车只能装运同一种蔬菜且必须装满.依照表格提供的信息,解答下列问题.蔬菜种类黄瓜豆角西红柿每辆汽车运载量/吨 6 5 4每吨所需运费/元/吨120 160 180(1)设装运黄瓜的车辆数为x,装运豆角的车辆数为y,求y与x之间的函数关系式;(2)假如装运黄瓜的车辆数许多于5辆,装运豆角的车辆数许多于4辆,那么,车辆的安排有几种方案?并写出每种安排方案?(3)在(2)的条件下,应采纳哪种方案才能使总运费W最少?并求出最少总运费W.考点:一次函数的应用.分析:(1)装运西红柿的车辆数为(20﹣x﹣y),依照三种蔬菜共100吨列出关系式;(2)依照题意求出x的取值范畴并取整数值从而确定方案;(3)分别表示装运三种蔬菜的费用,求出表示总运费的表达式,运用函数性质解答.解答:解:(1)依照题意,装运黄瓜的车辆数为x,装运豆角的车辆数为y,那么装运西红柿的车辆数为(20﹣x﹣y),则有6x+5y+4(20﹣x﹣y)=100,整理得,y=﹣2x+20;(2)由(1)知,装运黄瓜、豆角、西红柿三种蔬菜的车辆数分别为x,20﹣2x,x,由题意,得,解那个不等式组,得5≤x≤8,因为x为整数,因此x的值为5,6,7,8.因此安排方案有4种:方案一:装运黄瓜5辆、豆角10辆,西红柿5辆;方案二:装运黄瓜6辆、豆角8辆,西红柿6辆;方案三:装运黄瓜7辆、豆角6辆,西红柿7辆;方案四:装运黄瓜8辆、豆角4辆,西红柿8辆.(3)设总运费为W(元),则W=6x×120+5(20﹣2x)×160+4x×100=16000﹣480x,∵k=﹣480<0,因此W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案4.。