应用flowmaster2模拟动态液压系统

合集下载

flowmaster软件简介

flowmaster软件简介

FLOWMASTER2总体介绍FLOWMASTER2是FLOWMASTER Ltd.公司开发的面向流体系统仿真的软件平台。

FLOWMASTER Ltd.公司坐落于英国伦敦北郊,成立于1984年,在流体领域享有盛誉的英国国家流体力学研究协会的资助下,FMI八十余名来自世界各地的工程师经过二十年潜心研究与不断改进、完善,使得FLOWMASTER2成为当今流体流域优秀的系统仿真平台。

到目前为止,已有700多家公司购买了FLOWMASTER2,共1500多个使用许可,用户遍布世界上40个国家和地区。

FMI公司仍不断致力于一维流体系统仿真领域的研究,目前该公司不但提供领先的一维流体系统仿真软FLOWMASTER2,同时也向客户提供技术咨询合作等服务。

作为全球领先的一维热流体系统仿真软件,Flowmaster2凭借其内置的强大一维流体动力系统解算器,及面向工程、成熟、完备的流体系统仿真软件包,已经得到了航空航天、汽车、舰船、能源化工、水力泵站等工业领域越来越多的应用,其在流体输运系统、冷却润滑系统、液压动力系统、环控空调系统、污水处理系统、可压供气系统等众多领域的成功案例,赢得了各行业工程师们的赞誉。

FLOWMASTER主要应用领域:航空航天工业燃油系统、发动机热管理系统、环控系统、液压系统、供氧系统、航电冷却系统、除冰系统、推进系统等。

汽车工业热管理系统、润滑系统、发动机舱流动系统、空调系统、燃油共轨系统、进排气系统、地盘系统等。

船舶工业管路系统设计、水分配系统、冷冻水系统、装压舱系统、空调系统、发动机冷却/润滑系统、燃油系统、武器系统、消防系统、流体装载/卸载系统。

能源、化工工业冷却系统、系统水击研究、泵站系统、燃气轮机系统、燃油供给系统、二次空气系统、润滑系统等。

过程工业水/气工程系统、管网系统水击研究、泵站系统、消防系统、工厂装置起动/停机过程研究等。

利用目前世界领先的流体系统仿真工具Flowmaster2,工程师能够将更多的精力集中在系统的设计与优化分析上,技术上的日臻成熟,已经使Flowmaster2成为国内外流体管网系统设计中不可缺少的仿真平台。

《液压与气压传动技术》项目9液压仿真软件Fluidsim精选全文

《液压与气压传动技术》项目9液压仿真软件Fluidsim精选全文
统,顺序阀13因系统压力低而处于关闭状态,液压源1则输出较大流 量,这时液压缸5两腔连通,实现差动快进。 • (2)第一次工作进给:当滑台快进终了时,挡块压下行程阀6,切断快速 运动进油路,电磁铁1Y A继续通电,阀3仍以左位接入系统。这时液 压油只能经调速阀11和二位二通换向阀9进入液压缸5左腔。由于工 进时系统压力升高,液压源1便自动减小其输出流量,顺序阀13此时 打开,单向阀12关闭,液压缸5右腔的回油最终经背压阀14流回油箱, 这样就使滑台转为第一次工作进给运动。进油量的大小由调速阀11调 节,运行速度放慢
• 在“选项”菜单下,执行“仿真”命令,用户可以定义颜色与状态值 之间的匹配关系,暗红色管路的颜色浓度与压力相对应,其与最大压 力有关,FluidSIM软件能够区别三种管路颜色浓度颜色浓度与压力关 系见表9. 3。
上一页 下一页 返回
任务2 Fluidsim仿真软件Байду номын сангаас
• 3新建回路图 • 通过单击按钮 或在“文件”,菜单下,执行“新建’,命令,新
建空白绘图区域,以打开一个新窗口如图9. 6所示。只能在编辑模式 下新建或修改回路图,每个新建绘图区域都自动含有一个文件名,且 可按该文件名进行保存。这个文件名显示在新窗口标题栏上。通过元 件库右边的滚动条,用户可以浏览元件。利用鼠标用户可以从元件库 中将元件“拖动”和“放置”在绘图区域上:将鼠标指针移动到元件 库中的元件上,这里将鼠标指针移动到液压缸上,按下鼠标左键。在 保持鼠标左键期间,移动鼠标指针。则液压缸被选中,鼠标指针由箭 头变为小 ,元件外形随鼠标指针移动而移动。将鼠标指针移动到 绘图区域,释放鼠标左键,则液压缸就被拖置绘图区域里如图9. 7所 示,采用这种方法,可以从元件库中“拖动”每个元件,并将其放到 绘图区域中的期望位置上。按同样方法,也可以重新布置绘图区域中 的元件。

用FLOWMASTER2对空调制冷系统进行过程仿真分析

用FLOWMASTER2对空调制冷系统进行过程仿真分析

用FLOWMASTER2对空调制冷系统进行过程仿真分析全静
【期刊名称】《制冷与空调(四川)》
【年(卷),期】2009(023)005
【摘要】介绍了基于系统分析的一维流体仿真软件FLOWMASTER2,探索制冷系统过程仿真方法,简要介绍对该系统的仿真过程.通过分析系统内部重要的制冷循环,利用其软件对空调制冷系统过程进行建模及其仿真.通过仿真,了解制冷系统设备的压力和流量变化情况,以便更好的理解系统中重要元件的运行工况,并以此验证FLOWMASTER2软件仿真的可行性.
【总页数】4页(P53-56)
【作者】全静
【作者单位】西华大学能源与环境学院,成都,610039
【正文语种】中文
【中图分类】TP237.5
【相关文献】
1.基于FLOWMASTER软件的民用飞机空调制冷系统仿真分析 [J], 简夕忠;况薇
2.用FLOWMASTER2对PSA制氢均压过程仿真及设备优化 [J], 魏丽婷;赖喜德;杨炯波;杨炯良
3.利用计算机进行装载机制动过程仿真分析 [J], 郭福文;程显珠;
4.协同通信过程的调节优化过程仿真分析 [J], 赵哲;张志彦
5.棉花的除杂在轧棉过程中进行还是在纺纱过程中进行 [J], Leife.,F;孟劲
因版权原因,仅展示原文概要,查看原文内容请购买。

flowmaster软件文档集合(二)

flowmaster软件文档集合(二)

cpcu--液压系统使用流体系统仿真软件Flowmaster软件和EXCEL联合仿真应用
(EN)。
5.流体系统仿真软件Flowmaster船舶流体系统仿真平台解决方案 流体系统仿真软件Flowmaster功能与特点简介、仿真平台解决方案、在船舶 领域的应用案例、仿真平台建设预期前景等。
6.流体系统仿真软件Flowmaster国外核能电力应用.pdf 法国法马通公司、法国核电公司、日本JGC、GE Energy公司应用流体系统仿
同步CFD模拟软件FloEFD航空航天领域解决方案,1D(Flowmaster) –
3D(FloEFD) 联合仿真方案等。
19.单级与两级阀控制的高压共轨喷油器性能使用流体系统仿真软件
Flowmaster软件对比分析.pdf
单级与两级阀控制的高压共轨喷油器性能使用流体系统仿真软件Flowmaster
Flowmaster使用过程中问题汇总,er 电机冷却系统应用概述.pdf Flowmaster 电机冷却系统应用概述。
14.用流体系统仿真软件FLOWMASTER2对空调制冷系统进行过程仿真分析 基于系统分析的一维流体仿真软件FLOWMASTER2,探索制冷系统过程仿真方法 ,简要介绍对该系统的仿真过程。
24.基于流体系统仿真软件FLOWMASTER的制冷剂充注量对制冷系统性能影响的 仿真研究
在分析制冷系统作用及基本原理的基础上,使用一维流体系统仿真软件
Flowmaster的元件库建立了制冷系统仿真模型。
25.FLOWMASTER在暖通空调中的应用.pdf
阐述了FLOWMASTER在暖通空调中的应用
26.润滑系统Flowmaster和isight联合仿真(EN) 润滑系统Flowmaster和isight联合仿真(EN)

FLOWMASTER2在核电厂闭式冷却水系统仿真中的应用

FLOWMASTER2在核电厂闭式冷却水系统仿真中的应用
各 个 节 点 的压 力 和 流量 的 问 题 ,从 网络 分 析 的 观 点 去 研 究
流 体 管 系 的传 输 和 瞬 变 过 程 .从 而 避 开 了单 纯 从 流 体 力 学
方 法 去解 决 时所 遇 到 的一 些 困难 [。 2 3
随 着 计 算 机 软 件 程 序 的 发 展 , 出现 了较 多 流 体 分 析 软 件 ,如 一 维 分 析 的 F O L WMA T R 、三 维 分 析 的 Fu n 及 SE 2 l t e A ss ,其 中 三 维 分 析 软 件 Fu n 、A ss 关 注 对 系 统 ny 等 le t n y 更
22 F O . L WMA T R S E 2仿 真 建 模 基 本 思 想 [ ]
( )流 量— — 压力 计 算 模 型 1
FO L WMA T R S E 2中 的元 件 模 型 主 要 基 于 流 量 一 力 关 压 系 .用 户 只 需 输 人 能 够 反 应 元 件 流 阻 特 性 的数 据 就 可 对 元
直 接 采 用 数 据 库 中 pp i e族 , 其 中 包 括 圆 管 ( I E: PP
C LN RC L ——l —一 Y ID IA ≥
A UA NG L R ——- 一 _ 【
HE G N L —— XA O A 一
) 、方管 (IE E T PP :R C —
) 棱 形 管 ( I E:P I— 、 PP R S
泵 ( UMP: MI P XED L F 0w )、 轴 流 泵 ( UMP: P
A IL F O XA L W
_ ) 离 心 式 压 缩 机 ( O R S O . 、 C MP E S R:
) 、离 心 式 风 机 ( AN:CE RI U— F NT F

flowmaster在汽车设计中的应用

flowmaster在汽车设计中的应用
上海冯卡门计算机科技有限公司
Flowmaster

丰富、先进的元件库
Flowmaster
上海冯卡门计算机科技有限公司

简单快捷的操作,快速搭 建系统网络

利用FLOWMASTER2,工程师能够摆脱 大量复杂繁琐的计算工作,将更多的 精力集中在工程设计上。
AC Bend AC pipe AC User Condenser AC Boundary component AC Generic
Flowmaster
AC User Evaporator 上海冯卡门计算机科技有限公司
空调系统仿真网络图1
This system uses an FOT and an accumulator to meter the refrigerant flow and to cycle the compressor clutch to control evaporator temperature. The pressure and flow sources are used to set the air flow across the condenser and evaporator.
Flowmaster
上海冯卡门计算机科技有限公司

Flowmaster在工程中应用的意义



快速的帮助工程师完成和优化系统的设计 减少生产成本,提高产品性能,缩减产品 开发时间和试验次数 将工程师从繁重的计算工作中解脱出来,专 注于产品的设计与优化
Flowmaster
4.5 0.00
0.01
0.02
0.03
0.04
0.05 Time <s>
0.06

Flowmaster仿真设计系统开发与应用

Flowmaster仿真设计系统开发与应用作者:陈健华邱健施伟来源:《科技传播》2017年第03期摘要本文采用C#语言对Flowmaster软件进行二次开发,封装Flowmaster计算模型,开发一套通用性强、操作简便的仿真软件,能够快捷实现核电系统Flowmaster模型及工况数据的更改,实现多工况的自动求解,自动评价计算结果,将仿真工作自动化,从而提高工程师工作效率。

关键词 Flowmaster;二次开发;核电系统;COM功能中图分类号 G2 文献标识码 A 文章编号 1674-6708(2017)180-0050-031 背景上海核工程研究设计院工艺系统所采用Flowmaster软件进行核电工艺系统的仿真计算。

核电工艺系统具有模型庞大、元件种类多等特点,所以仿真模型创建与配置工作量也比较大,不同项目仿真模型需要重新建模,仿真建模需要耗费大量时间。

电厂调试过程中,经常遇到调试结果与设计文件出现偏差的问题,需对仿真模型进行快速修改并指导电站的调试。

本文基于Flowmaster软件接口功能,对软件进行二次开发,封装Flowmaster计算模型,开发一套通用性强、操作简便的仿真软件,能够便捷实现对模型及工况数据的更改,实现多工况的自动求解,自动评价计算结果,将仿真工作自动化,以满足我院工程计算需求,从而提高工程师工作效率。

以下简称该软件为封装软件。

2 封装软件开发2.1 开发环境与工具C#是由C和C++衍生出来的面向对象的编程语言,具有安全、稳定的特点。

C#综合了VB 简单的可视化操作和C++的高运行效率,以其强大的操作能力、优雅的语法风格、创新的语言特性和便捷的面向组件编程的支持成为.NET开发的首选语言。

Microsoft Visual Studio是美国微软公司的开发工具包系列产品,是一个基本完整的开发工具集,它包括了整个软件生命周期中所需要的大部分工具。

C#是微软公司发布的一种面向对象的、运行于.NET Framework之上的高级程序设计语言。

flowmaster软件文档集合(四)

中冶赛迪流体仿真软件flowmaster在冷却水泵配置分析中的应用针对某钢厂的转炉氧枪供水系统的水泵配置情况利用一维流体分析软件flowmaster建立供水系统模型进行瞬态分析得出水泵掉电及备用泵启动过程的仿真结果对比不同配置的结果得出更安全稳定的配置方案
flowmaster软件文档集合 (四)
更新时间:2014-11-11
9.流体系统仿真软件FLowmaster在设计过程中的数据共享流程(EN)
流体系统仿真软件FLowmaster在设计过程中的数据共享流程(EN)
10.流体系统仿真软件Flowmaster汽车热管理系统和空调系统介绍(EN)
流体系统仿真软件Flowmaster汽车热管理系统和空调系统介绍(EN)
11.Flowmaster在泵站过渡过程分析中的应用.pdf 讨论了利用Flowmaster进行泵站水力过渡过程计算的技术要点,给出了管道 、泵组、阀门、空气阀等元件的建模过程,研究了Flowmaster所没有提供的
1.Flowmaster_SBM_水锤+海洋石油开采平台-English.pdf
函数了Flowmaster软件的一个学习案例,在油井过程方面的。
2.流体系统仿真软件Flowmaster--润滑和液压系统应用(EN)
有关流体系统仿真软件Flowmaster--润滑和液压系统应用的英文版文档
3.流体系统仿真软件Flowmaster在汽车热管理方面的介绍(EN)
7. drivesim和flowmaster和matlab汽车冷却系统联合仿真(EN)
有关通用--drivesim和flowmaster和matlab汽车冷却系统联合仿真(EN)
8.Flowmaster一维流体计算软件在柴油机冷却润滑系统中的应用.ppt Flowmaster一维流体计算软件在柴油机冷却润滑系统中的应用

FLOWMASTER2船舶领域应用介绍

FLOWMASTER2在船舶领域的应用北京海基科技有限公司2004年5月目录1. 软件基本介绍 (2)1.1 FLOWMASTER2开发商简介 (2)1.2 FLOWMASTER2软件介绍 (2)1.2.1 可视化建模 (2)1.2.2 仿真分析 (4)1.2.3结果分析以及后处理 (6)1.2.4元件库 (6)1.2.5数据库管理 (6)1.3 FLOWMASTER2软件接口 (7)1.3.1 FLOWMASTER2与其他仿真工具的接口 (7)1.3.2 FLOWMASTER2与CAD工具的接口CADLink工具包 (8)1.4 FLOWMASTER2对电信号与机械信号的仿真与模拟 (8)2. FLOMWASTER2软件的优点 (9)3. FLOWMASTER2在船舶领域的应用 (10)3.1空调系统 (11)3.2 船舶发动机冷却系统 (12)3.3 消防系统 (13)3.4 润滑系统 (14)3.5 压舱进排水系统 (15)3.6 供油系统 (16)4. FLOWMASTER2硬件及操作系统配置要求 (17)5. 购买软件以后技术服务的内容、时间、方式 (18)6. FLOWMASTER2培训 (18)7. 软件的升级情况 (19)8. 软件交付的形式、license的管理方式以及验收内容 (19)9. FLOWMASTER2船舶客户列表 (19)1. 软件基本介绍随着计算机技术的进步,利用软件仿真已是工程技术,尤其是CAE发展的趋势。

利用目前世界领先的流体系统仿真工具FLOWMASTER2,工程师能够将更多的精力集中在系统的设计上。

无论是设计产品的水/液系统、油、气(空气、氧气、二氧化碳、氢气等)系统,FLOWMASTER2都可以对系统进行精确的压力、流量、流速、温度分析。

它可以帮助企业减少生产成本,提高产品性能,缩减产品开发时间和试验次数,提高实验设计质量。

FLOWMASTER2是一个成熟的仿真软件,其设计思路合理,软件技术先进,易熟练掌握,完全有能力仿真各种流体管网系统。

一维流体系统仿真平台flowmaster较其它软件的优势

一维流体系统仿真平台flowmaster较其它软件的优势FLOWMASTER2软件是英国FLOWMASTER INTERNATION LTD 公司开发的产品。

FLOWMASTER2流体系统仿真工具已经通过了ISO9002认证。

FLOWMASTER2在核工业领域的得到广泛的应用,如ABB、EDF、FRAMATOME、Westinghouse、中船719所等。

该软件主要包括稳态分析模块(SS)、瞬态分析模块(ST)、稳态热传导分析模块(SSH)、瞬态热传导分析模块(STH)、高压稳态分析模块(FS)、高压瞬态分析模块(FT)、高压稳态热传导分析模块(FSH)、高压瞬态热传导分析模块(FTH)、相邻元件对系统的影响(CI)、流体配平分析(SF)、求管道通径(SZ)、CADLink接口工具(CL)、MATLABLink 接口工具(ML)、STARLink接口工具(SL)、FLUENTLink接口工具(FL)等17个模块。

与其它软件相比FLOWMASTER2主要具有以下几个优点:A.建模方式先进:利用FLOWMASTER2搭建模型的方式与工程师的设计思路是完全一致的。

在FLOWMASTER2中,工程师可以直接从元器件库中调出系统需要的元器件模型,并将元器件连接起来搭建成系统。

一个经过初步培训的工程师可以在一小时内建立一个100多个元器件组成的系统,并对元器件输入数据。

B.丰富及开放的元器件库:FLOWMASTER2中的元器件库中包含了各种常用的元器件,像泵、管道、接头、弯头、阀、喷嘴等,并根据流体领域的发展趋势建立了该软件特有的元器件库,像一些机械类元件等。

这些元器件完全可以满足各种流体系统的建模需要。

同时,用户也可以将自己开发的元件加入到FLOWMASTER2元件库中。

C.元器件参数齐全、设置简单快速:任何一种元器件所能涉及到的参数在FLOWMASTER2中均有体现,参数的输入全部表格化,简单明了。

D.分析类型完善:FLOWMASTER2可以对流体系统进行静态、动态的分析,可以对压缩流体进行分析,可以进行动、静态热传导分析,可以考虑相邻元件对流体的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Dynamic Analysis of Hydraulic SystemsFlowmaster USA, Inc.5750 Old Orchard, Suite 420Skokie, IL 60077As automation and precision are becoming more critical in product design, hydraulic engineers are being asked to do more and more within the constraints of the fluid systems they design. Hydraulic systems are now taking advantage of new technology such as miniaturization and computer control systems to achieve results that were unattainable just a few years ago. These systems are no longer simple system looped systems of the past where pressure and flow calculations could be done by hand or a simple spreadsheet. Today’s systems are typically complex, branched networks like that shown in Figure 1. Branched networks (even under steady state conditions) increase the difficulty of computation of the flows and pressures in the network. This requires that the flows and pressures throughout the network be solved simultaneously. To further complicate the issue, the flow in any component or in any branch of the system is dependent upon the flow and behavior of all the other components in the system, which means that the system is nonlinear. Usually, iterative techniques must used to address these types of problems, which make hand calculation a very daunting task.Analyzing the pressure and flow of multi-branched hydraulic networks under transient conditions create a situation where manual calculations become unmanageable; even for the most straightforward networks. Transient conditions arise when a network’s boundary conditions (known external flows and pressures) change over time or when the network’s components behave in a dynamic fashion. Typical transient hydraulic events are valveFrom an analysis perspective, the complex, iterative calculations for transient network analysis must be carried out through time using short time steps and repeating the complex, iterative calculations for each time step. Inertial forces, which arise due to changing flow velocities, must be calculated and carried forward from one time step to the next. Furthermore, inertial forces may attenuate due to the presence of energy absorbing or compliant components in the network.Transient hydraulic system behavior must be fully understood so that the design engineer has a firm grasp of the performance envelope that each component in the system must meet. Transient conditions are often the cases that push the limits of the design envelopes. For example, sudden valve closure may cause pressure surges in long pipes that are an order of magnitude higher than steady state pressures. Hydraulic systems must also be studied under a full range of anticipated transient operating conditions. That is, the critical transient condition for one component may not produce critical conditions in another component.The benefit of simulation software to engineers is facilitating the performance and assimilating the results of a huge number of calculations. Engineers can then spend engineering time evaluating the results of the calculations, not grinding through them. FLOWMASTER2 allows the engineer to quickly analyze many different scenarios, and develop a greater understanding of the system.Network Flow Analysis with FLOWMASTER2FLOWMASTER2 is an engineering analysis software package designed for the system analysis of internal fluid flows. FLOWMASTER2 supports the analysis of both steady and time-dependent flows with or without heat transfer. Analysis of compressible flows is also supported. FLOWMASTER2 also provides a specialized Fluid Power component library tailored to the needs of the hydraulics analyst.The engineer builds a schematic representation of the system of interest using a Graphical User Interface. The model is constructed from components pulled from a database of standard components. The GUI provides for quick and easy model construction and reconfiguration and also for convenient result interrogation. The quantities typically computed in such network flow analyses are flow rate (volumetric or mass), system pressures, temperatures, and heat flows.Hydraulic Systems Analysis with FLOWMASTER2The versatility of FLOWMASTER2 to analyze a variety of real hydraulic circuits is demonstrated by the following examples, both of which demonstrate FLOWMASTER2’s ability to analyze hydraulic circuits under time-varying conditions.Example 1 - Steering SystemA schematic representation of a hydraulic steering system is provided in Figure 1. The steering system uses an accumulator and a pump as sources of hydraulic power to drive the steering cylinder.This model was prepared for purposes of demonstration, the data used in it is ‘typical’ with certain simplifications made to better illustrate the system behavior.This type of hydraulic circuit is very common in fluid power applications where a relatively inexpensive accumulator acts as the primary power source and is backed up by a pump. The pumping requirement in this type of circuit is typically smaller than the same circuit without an accumulator. The pump is used to charge the accumulator when it is not assisting the accumulator in doing work. Without an accumulator, a larger more expensive pump would be required to perform all the work and may run idle much of the time.In this simulation, a controller whose function is to sense the pressure in the accumulator and adjust the spool position of the directional control valve (DCV) is used to control the flow from the pump. The controller imposes a spool position, which bypasses pump flow when the accumulator pressure is at or above200 bar. A full open spool position is invoked when the accumulator pressure drops below 190 bar with a linear transition between these two points. This relationship is entered into FLOWMASTER2 using a curve for spool position vs. pressure.For this simulation a relationship between pressure drop and flow rate was established using a digitized curve. Each flow channel in the valve was given the same pressure drop characteristic. The relationship between spool position and channel area is also specified as a digitized curve that allowed for the spool to move 20% with zero available flow area. After the initial opening, the channel area varies proportionally with spool position.The simulation was conducted for a period of one second. The analysis start time is taken at t = 0 and runs until t= 1 second. The specified time step is 0.05 sec., which results in 20 time steps.Figure 2 provides network results volumetric at interesting points in the network. The pressure plot illustrates that until approximately 0.4 sec. into the simulation, the accumulator pressure is greater than 200 bar. Therefore, all the pump flow is dumped back to the reservoir because the DCV that regulates this flow is set to change positions when the accumulator pressure falls below 200 bar. All the accumulator flow is delivered to the head end of the cylinder. As the accumulator pressure decreases due to discharge, the DCV’s spool starts to deliver pump flow to the cylinder. At approximately 0.6 sec into the simulation the accumulator flow is reduced and assisted by the pump to ensure that the cylinder is extending. It can also be seen from Figure 2 that as the pump flow is delivered to the system through the check valve, the return flow to the reservoir is reduced to zero.The pressures at the head end of cylinder and reservoir are nearly constant throughout the transient as one might expect as shown in Figure 3. However, as the pump flow is directed from the tank back into the system, the pump discharge pressure increases to ensure delivery of the required flow as assisted by the accumulator against the head end of the cylinder.Figure 2. Results of Flow Calculations for Various Network Components in Example 1. Now that the hydraulic system steering model has been constructed and yields interesting and predictable results, it can be modified to study various alternatives. For example one may want to study different load cases (fixed loads or loads which vary as a function of rod displacement or velocity). The model can also be used to investigate the system behavior with different capacity pumps or accumulators or a different control system behavior. It may also be beneficial to use the model to investigate the use of rotary actuators instead of linear actuators or use of a pressure compensated pump instead of the control loop.Figure 3. Results of Pressure Calculations for Various Network Nodes in Example 1. Example 2- Actuator Rod Position Control Using Servo ValvesThe system in Figure 4 is a subsection of a hydraulic network that is used to simulate the behavior of an electro-hydraulic servo system used to accurately control three independent actuator rod positions. The characteristics of this system are typical of those used to controlthe swash plate position of a helicopter-rotating wing. This model was constructed to illustrate the interaction of the various components of the rod positioning system as the signal to extend the rod to various positions is sensed. Furthermore, this model is helpful in studying the behavior of the system under the effects of varying one or more engineeringFigure 4. FLOWMASTER2 Schematic of a Servo Valve-Controlled Cylinder PositioningSystem.The system shown in Figure 4 is designed to model the behavior of a typical servo valve-controlled rod positioning system. The system uses a fixed displacement pump as the power source to move the loads attached to the cylinders to the desired positions. The reservoirs are modeled to be under atmospheric conditions. The rod positioning is achieved by using 4-port 3-position directional control valves employed in closed-loop circuits. This type of hydraulic circuit is very typical in fluid power applications, where accurate positioning is desired. Engineers may use numerical models similar to this to predict and optimize the system’s behavior prior to building expensive prototypes.Figure 4 illustrates that the position of the spool in the DCVs controls whether hydraulic fluid will be delivered to the head or rod end of the cylinder. For this model a negative spool position is taken to mean that flow is directed to rod end of the cylinder and acts to retract the rod while a positive spool position extends the cylinder. A neutral Spool position holds the rod and load steady as all DCV ports are blocked and flow through the valve is not allowed.During a FLOWMASTER2 simulation the spool position can be specified in a number of ways. It can be specified directly in the DCV’s input, or it can be specified by spool positions vs. time. This example employs the use of an operational variable controller to read the cylinder rod position and control the spool position with respect to the rod position. The PID (Proportional Integral Derivative) controller used in this simulation senses the rod position of the cylinder to which it is attached and generates an error signal. The error signal is then conditioned to produce a PID output signal, which in turn is transformed to produce a DCV spool position.The PID controller functions as follows:1) The desired rod position set point vs. time is input to the PID controller.2) The actual rod position is measured and a normalized error signal is generated.3) The error signal is conditioned by applying the appropriate gains and action (+ or -) toproduce a PID output.4) The transformation curve is used to transform the PID output to a new value ofmanipulated variable namely DCV spool position.5) The new DCV position results in new flow rate and quantity to the head end of theappropriate cylinder to move the rod to a new position.6) The new position is sensed and compared to the desired position.7) This process is repeated until the normalized error is diminished.A pressure drop vs. flow curve is used to define the loss coefficient or the discharge coefficient for a specific channel. Each flow channel defines the connectivity of the various DCV ports i.e., port 1 to 2 or port 1 to 3. Each channel’s geometrical information is reflected in the shape and values of this curve. The relationship between channel area vs. spool position is the means by which the relative size of the lands on the spool vs. the passages to the ports is defined.Once the schematic has been constructed and the component data and analysis data has been specified an analysis can be run. This analysis was conducted for a period 5 sec. with time step of 0.1 sec. A single case was analyzed for the system described above. For this case, the system was initialized with all cylinder rods fully retracted with the pump flow dropping over the relief valve to the tank. Three independent signals were then given to the closed loop controllers to move the rods to the desired positions. The signal to the two outer cylinders was given so that they would stay fully retracted until 0.2 sec and the signal to move to 30% extension is given at 0.3 seconds. The middle cylinder was to stay filly retracted until 0.5 sec. and the signal to move to 50% extension was given at 1 second. The simulation was conducted to predict the extension profile of the cylinders to determine the control system’s response time and stability.Figure 5 shows the extension profiles for the three cylinders. The outer cylinders begin to move at 0.2 second and the middle cylinder begins to move at 0.5 second. This graph also shows that the response of the control system is stable. As the signal to extend is given, thecylinders are initially slightly overextended and then, by the action of the DCV, they are brought back to the desired position in a stable manner. The outer cylinders do not achieve their desired position until approximately 2 seconds into the transient resulting in a response time of approximately 1.8 seconds. The two outer cylinders are extended exactly at the same rate and at the same times. This is expected since these loops are identical in geometry and control system behavior. The middle cylinder reaches the desired extension at approximately 3 seconds resulting in a response time of 2 seconds. This is also expected since the middle cylinder is being extended farther.Figure 5. Rod Displacement vs. Time.Once a numerical model of this sort is generated, its response to various other modifications and excitations can easily be tested. For example, the various gains on the PID controller can be adjusted to test their impact on the system response time. Also, a pump with a different volumetric flow rate can be exchanged with the existing one to test its impact on the response time. Furthermore, the impact of all the various passive parameters such as pipe lengths, diameters, DCV loss characteristic and reservoir conditions can easily be determined in a FLOWMASTER2 analysis.Summary and ConclusionsIt easy to see from these examples that the behavior of sophisticated hydraulic systems can be accurately predicted using the commercially available FLOWMASTER2 software. Simulation will never totally replace the need for prototyping but, if used properly, it can help reduce the number and cost of prototypes. Once agreement between a numerical model and a prototype has been achieved, simulations can be performed with a high degree of confidence at a significantly lower cost and in a shorter time than a typical prototyping program.REFERENCES1. FLOWMASTER V6.02, Fluid Power Technical Guide. 2000.2. Anthony Esposito; Fluid Power With Applications, Second Edition. Copyright 1988 Prentice-Hall.。

相关文档
最新文档