第十章定积分的应用§4旋转曲面的面积_数学分析

合集下载

数学分析第十章 定积分的应用

数学分析第十章  定积分的应用
我们让而使dx要想得到一个定积分表达式只要求出被积表达式这就是定积分的微元法当所求量u符合下列条件1u是与一个变量具有可加性就是说如果把区间分成许多部分区间则u相应地分成许多部分量而u等于所有部分量之微元法的一般步骤1根据问题的具体情况选取一个变量例如x为积分变量并确定它的变化区间分成n个小区间取其中任一小区间并记为求出相应于这小区间的部分量与dx的乘积就把dx记作du即dx为被积表达式在区间即为所求量u的积分表达式
x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.

椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图

第十章(10.4)旋转曲面面积

第十章(10.4)旋转曲面面积
2
64 2 a 3
前页 后页 返回
例 求心脏线 r a(1 cos ) 绕极轴旋转所得曲 面的面积. 解 将曲线用参数方程表示:
x r cos a(1 cos )cos , y r sin a(1 cos )sin .
于是
前页 后页 返回
S 2π r sin r 2 r 2 d
[ xi 1 , xi ] ( i 1 ~ n), 则 A
i 1 n
Ai
step2. 近似: i [ xi 1 , xi ],
计算 Ai f ( i ) xi
( i 1~n)
前页 后页 返回
求和:
A f ( i )x i
i 1
n
n
A lim step3. 取极限: f ( i )xi 即 A f ( x )dx 0
把弹簧拉长0.1m,求力所做的功。 【解】根据物理学虎克 定律:
F
F ( x ) kx
( x 0)Байду номын сангаас
0
0.1
当x = 0.01时,F = 5 N = k×0.01 m

5 k 500 0.01
(N )
前页 后页 返回
F ( x ) 500 x
dW ( x )dx 500 xdx


2 a(1 cos )sin a 2 (1 cos )2 a 2 sin 2 d
0
π
2πa
2
0 (1 cos )sin 2cos 2 d
2
π

16πa
0 cos
1 4
π
4

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。

数学分析10.4旋转曲面的面积

数学分析10.4旋转曲面的面积

第十章定积分的应用4 旋转曲面的面积一、微元法定义:已知:若φ(x)=⎰xf(t)dt,则当f为连续函数时,φ’(x) =f(x),或adφ=f(x)dx,且φ(a)=0,φ(b)=⎰bf(t)dt.a现将问题倒过来,若所求量φ是分布在某区间[a,x]上的,或它是该区间端点x的函数,即φ=φ(x), x∈[a,b],且当x=b时,φ(b)适为最终所求的值.在任意小区间[x,x+△x]⊂[a,b]上,若能把φ的微小增量△φ近似表示为△x的线性形式:△φ≈f(x)△x,其中f为某一连续函数,而且当△x→0时,△φ- f(x)△x=o(△x),亦即dφ=f(x)dx,那么只要把定积分⎰bf(x)dx计算出来,就是该问题所求的结果,这种a方法通常称为微元法.注:1、所求量φ关于分布区间必须是代数可加的;2、微元法的关键是正确给出△φ的近似表达式△φ≈f(x)△x.应用:求平面图形面积的微元表达式:△A≈|y|△x,且dA=|y|dx. 求立体体积的微元表达式:△V≈A(x)△x,且dV=A(x)dx.求曲线弧长的微元表达式:△s≈2y1'+dx.+△x,且ds=2y1'二、旋转曲面的面积设光滑曲线C 的方程为y=f(x), x ∈[a,b],不妨设f(x)≥0.曲线C 绕x 轴旋转一周得旋转曲面如图,可用微元法导出其面积公式. 通过x 轴上点x 与x+△x 分别作垂直于x 轴的平面,在旋转曲面上截得一狭带,当△x 很小时,近似于一圆台侧面,即△s ≈π[f(x)+f(x+△x)]22y x ∆+∆=π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x ,其中△y=f(x+△x)-f(x),又y lim 0x ∆→∆=0,2x x y 1lim ⎪⎭⎫⎝⎛∆∆+→∆=)x (f 12'+. 由f ’(x)的连续性可保证:π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x-2πf(x))x (f 12'+△x=o (△x).∴dS=2πf(x))x (f 12'+, S=2π⎰'+ba2)x (f 1f(x )dx.若光滑曲线C 由参数方程:x=x(t), y=y(t), t ∈[α,β]给出,且y(t)≥0,则 由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为: S=2π⎰'+'βα22)t (y )t (x y(t)dt.例1:计算圆x 2+y 2=R 2在[x 1,x 2]⊂[-R,R]上的弧段绕x 轴旋转所得球带的面积.解:圆在x 轴上方的曲线为y=22x R -,则y ’=22xR x --,所得球带的曲面面积为:S=2π⎰-+⋅-21x x 22222xR x 1x R dx=2πR(x 2-x 1).注:当x 1=-R, x 2=R 时,则得球的表面积S 球=4πR 2.例2:计算由内摆线x=acos 3t,y=asin 3t 绕x 轴旋转所得旋转曲面面积。

华东师范大学数学分析第10章

华东师范大学数学分析第10章

(5)r a sin3 3 (a 0,0
3 );
(6)r a ( a 0),0
2.

(1)s
b 1
y '2 ( x)dx
a
s
4 1
0
9 4
xdx
8 27
(10
10
1)
(2) x cos4 (t ), y sin4 t
s 2 x 't2 y '2t dt 0
2 4sin t cost cos4 t sin4 tdt 0
a 64
2
3
(3)
'( y)
[a
1
] y2
b2
a b
(1
) y2
1 2
b2
y,
[ '( y)]2
[
b a
(1
) y 2
b2
y]2
(1 a2
b2
y2 b2 )
1
y2
a2 b2
b2 y2 ( b ,
b
S2
( y) 1
b
'2 ( y)dy 2
b
y2
a1 b
b2
a2 y2 1 b2 y2 dx
5 10
x
1 2
x
从而它的面积为
1 2
x
1 2
x
xOz平面上椭圆方程为
1 4
x2
x2 10
z2 42
1
则 PQR 面积为 25 1
Z2 42
于是所求体积
V
4 2 25 1
0
dz z2
42
2 | 25z 100 z2 4
16
30

§4旋转曲面的面积

§4旋转曲面的面积
b
(3)
首页
×
如果光滑曲线C由参数方程 x=x(t),y=y(t),t ∈[α,β] 且 y(t)≥0,那么由弧微分知识推知曲线C绕 x 轴旋转所得 旋转曲面的面积为
S 2 y(t ) x 2 (t ) y'2 (t )dt .


(4)
事实上,由(2)知,
S 2 f x 1 f
lim f ( x )dx a f ( x )dx.
b T 0
首页
×
一般地,我们归纳出所求量Φ的积分表达式的步骤. (1) 选取积分变量及变化区间; (2) 设想把区间[a,b]分成n个小区间,取其中任一小 区间并记作[x, x+△x],求出相应于此小区间的 部分量△Φ的近似值
dΦ=f(x)dx;
b a 2
x dx = 2 a f x
b
dy 2 1( ) dx dx
= 2 f x dx dy = 2 y( t )ds
b 2 2 a

= 2

2 '2 = 2 y( t ) x ( t ) y ( t )dt .
首页

dx 2 dy 2 y( t ) ( ) ( ) dt dt dt
S f (i )xi ( xi xi xi 1 ).
i 1
首页
n
×
(iii)取极限 注意到(1)式右边的和式既依赖于对区间[a, b] 的分割,又与所有中间点 i( i=1,2,…,n)的取法
有关.可以想象,当分点无限增多,且对[a, b]无限细
分时,如果此和式与某一常数无限接近,且与分点xi, 中间 i 点的选取无关,则就把此常数定义作为曲边梯 形的面积S.

定积分的应用(体积、旋转体的侧面积) ppt课件

定积分的应用(体积、旋转体的侧面积)  ppt课件
d S 2 y ds 2 y dx
因为2 y dx 不是薄片侧面积△S 的
的线性主部 . 若光滑曲线由参数方程
y y f (x)
oa x b x ds dx
给出, 则它绕 x 轴旋转一周所得旋转体的 侧面积为

S 2 (t) 2 (t) 2 (t) d t
例1. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
2
AdA0 a (1 cost) a (1 cost) d t
a2 2 (1 cos t)2 d t 0
y
4a2 2 sin4 t d t
0
2
8a2 sin4 u d u 0

16 a2 2 sin4 u d u 0
解:解方程组

x2 y x
y
2
2

2
y
y x2
得交点(1, 1) ,(1, 1) 。
1 o 1 x
Vx 1 (2 x2 )dx 1 x4dx
x2 y22
1
2
1
(2
x
2
1
x4 )dx
2(2 x
x3

x5
)
1
0
3 50
2(2 1 1) 44. 3 5 15
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)

2
b2 a2
a
(a
2

x2
)
dx
0

2
b2 a2
a2 x

1 3
x3

a 0
4 ab2

旋转曲面的面积

旋转曲面的面积


作业
P255:1,2,3.
0
2
64 a2
3
例3 已知
y
星形线

x y

a a
cos 3 sin 3
t t
(a 0)
a
o
ax
求 10 它所围成的面积;
20 它的弧长;
30 它绕轴旋转而成的旋转体 体积及表面积.
解 10 设面积为 A. 由对称性,有
a
A 4 ydx 0

4
0
a
sin3
积 面,它们在旋转曲面上截下一条狭带.当 dx
很小时,此狭带的面积近似于一圆台的侧面
积,取其为面积元素,dS 2 f (x) 1 f '2 xdx
旋转曲面的面积为
S

2
b
a
f
x
1 f '2 xdx
若曲线由参数方程

x y

xt y t
,
t


x x(t)

y

y(t)
( t )给出,则侧面积公式为:
A 2

y (t )
x'2 (t) y'2 (t)dt

若曲线段由极坐标方程
( ) ( )给出,则侧面积公式为
A 2

( ) sin
2 ( ) '2 ( )d
,


定义,且
y
t


0,
则由弧
微分只是推知曲线 C 绕 x 轴旋转所得曲面的面积
S 2 y t x' 2 t y' 2 t dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
————————————————————
一 微元法
用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通
过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这
样的:设所求量 是一个与某变量(设为 x)的变化区间 有关的量,且关于区间 具
有可加性. 我们就设想把 分成 n 个小区间,并把其中一个代表性的小区间记坐
近似表达式(其中 为
称为量
1)所求量 关于分布区间
2) U f (x)x o(x)
具有代数可加性.
对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:
S | y | x V S(x)x s 1 y2 x
二 旋转曲面的面积
§5 定积分在物理中的某些应用
(一) 教学目的:掌握定积分在物理中的应用的基本方法. (二) 教学内容:液体静压力;引力;功与平均功率.
。在
的一段近似的看成质点,其质量为 ,与 相距
,因此可以按照两质点间的引力计算公式求出这段细直棒对质点 的引力 的大小为
从而求出 在水平方向分力
Fx 的元素为
于是得到引力在水平方向的分力为
dFx
k
的近似值,即细直棒对质点
amdy (a2 y 2 )3/ 2
上式中的负号表示 指向 轴的负向,又由对称性知,引力在铅直方向分力为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
Hale Waihona Puke 例 1 把一个带电量为 的点电荷放在 轴的原点 处,它产生一个电场,并对周围的
电荷产生作用力,由物理学知道,如果有一个单位正电荷放在这个电场中距离原点 为 的
地方,那么电场对它的作用力的大小为 F k q ( 是常数),如图,当这个单位正电荷在 r2
电场中从
处沿 轴移动到 r b(a b) 处时,计算电场力 对它所做得功.
1 变力沿直线所作的功
从物理学知道,如果物体在做直线运动的过程中受到常力 F 作用,并且力 F 的方向与物
体运动的方向一致,那么,当物体移动了距离 s 时,力 F 对物体所作的功是 W FS
如果物体在运动过程中所受到的力是变化的,那么就遇到变力对物体作功的问题,下面通过
例 1 说明如何计算变力所作的功
, 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经
常画出示意图帮助思考),如果能够找到 的形如
上的一个连续函数在点 x 处的值, 为小区间的长度),那么就把
的元素并记做
,即
dU f (x)dx
以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式:
b
f (x)dx
§4 旋转曲面的面积
(一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式. (二) 教学内容:旋转曲面的面积计算公式.
基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面 积;掌握平面曲线的曲率的计算公式. (三) 教学建议: 要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.
a
例如求由两条曲线 y f1 (x) , y f 2 (x) (其中 f1, f 2 C[a, b] )及直线 x a , x b 所
为成图形的面积 A.容易看出面积元素 DA | f1 (x) f 2 (x) | dx 于是得平面图形 f1 (x) y f 2 (x) , a x b 的面积为
解 在上述移动过程中,电场对这个单位正电荷的作用力是不断变化的,取 为积分变量,
它的变化区间为 ,在 上任取一小区间
于是所求的为
kq 时,电场力对它所作的功近似于 dr ,从而得功元素为
r2
例 2 某水库的闸门形状为等腰梯形,它的两条底边各长 10m 和 6m,高为 20m,较长的底边
与水面相齐,计算闸门的一侧所受的水压力。
基本要求: (1)要求学生掌握求液体静压力、引力、功与平均功率的计算公式. (2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公
式. (三) 教学建议:
要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式. ——————————————————————————
b
A | f1 (x) f2 (x) | dx
a
采用微元法应注意一下两点:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
解 如图 3.9.2 以闸门的长底边的中点为原点且铅直向下作 轴,取 为积分变量,它的
变化范围为
.在
上任取一个小区间
点处所受到水的压强近似于 xg(kN / m2 ) ,这窄条的长度近似为10 x ,高度为 ,因而这一 5
窄条的一侧所受的水压力近似为
这就是压力元素,于是所求的压力为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
相关文档
最新文档